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Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis
(TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory
disorders. However, the tuberculous granuloma has been assigned the role of a host protec-
tive structure which “walls-off” mycobacteria. Work conducted over the past decade has
provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic
mycobacteria accelerate and exploit granuloma formation for their expansion and dissem-
ination by manipulating host immune responses to turn leukocyte recruitment and cell death
pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma
integrity byexerting a microbicidal immune response, thus preventing an even more rampant
expansion of infection in the extracellular milieu. Even this host-beneficial immune response
required to maintain the bacteria intracellular must be tempered, as an overly vigorous
immune response can also cause granuloma breakdown, thereby directly supporting bacte-
rial growth extracellularly. This review will discuss how mycobacteria manipulate inflam-
matory responses to drive granuloma formation and will consider the roles of the granuloma
in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and
from animal models—rodents, zebrafish, and nonhuman primates. A deeper understanding
of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to
abrogate the host-detrimental aspects of granuloma formation to convert it into the host-
beneficial structure that it has been thought to be for nearly a century.

Pathogenic mycobacteria are exquisitely adapt-
ed to surviving in their hosts, and they have

evolved a variety of virulence mechanisms to
evade and co-opt immune responses, which al-
low them to infect the host, replicate within it,
and transmit to new hosts. A major hurdle that
mycobacteria must face is that for much of their
life within the host, they reside within macro-

phages and dendritic cells (DCs), phagocytes
that play pivotal roles in immunity to tubercu-
losis (TB) (Philips and Ernst 2012). For instance,
to fulfill its life cycle, Mycobacterium tuberculo-
sis, which causes human TB, must gain access
to growth-permissive phagocytes, avoid micro-
bicidal phagocytes, dampen productive innate
and adaptive immune responses, and finally,
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exit the intracellular environment so as to gain
access to the lung airspace where it can become
aerosolized and infect new hosts. How do my-
cobacteria achieve these remarkable feats? Most
of these processes do not occur in isolated
macrophages, but rather in the context of the
granuloma, a cellular aggregate primarily con-
sisting of several types of infected and uninfect-
ed phagocytes (macrophages, monocytes, DCs,
and neutrophils) and T lymphocytes (Rama-
krishnan 2012). A better understanding of TB
pathogenesis then requires tackling its epicenter,
the granuloma. This review will provide an over-
view of our current understanding of the gran-
uloma, its formation, maturation, maintenance,
and role in disease outcome, highlighting recent
findings and new concepts emerging from stud-
ies in animal models (Table 1) and clinical stud-
ies of human TB.

LEADING UP TO THE GRANULOMA

Poor Microbicidal Macrophages Transport
M. tuberculosis to Granuloma Initiation
Sites in Deeper Tissues

Human epidemiological studies and animal
studies have suggested that TB begins with the
inhalation of as few as one to three M. tubercu-
losis bacilli and their deposition in the lower
respiratory tract, where alveolar macrophages
are thought to engulf the bacteria and transport
them from the airspace across the lung epithe-
lium into the parenchyma (Fig. 1) (Wells et al.
1948; Bates et al. 1965; Dannenberg 1993; Wolf
et al. 2007). Experiments in zebrafish larvae
modeling these early interactions show that
macrophages recruited to the site of infection
engulf the mycobacteria and transport them
into deeper tissues (Clay et al. 2007). The ob-
servation that macrophage depletion prevents
tissue dissemination underscores the role of
macrophages in transporting the bacteria from
their site of pathogen entry into distal tissues, a
step that is required for development and trans-
mission of TB.

Our laboratory recently identified a mecha-
nism in mice and zebrafish by which M. tubercu-
losis and the closely related pathogen Mycobac-

terium marinum evade immune recognition via
the Toll-like receptor (TLR)-MyD88 pathway
to recruit and infect permissive macrophages
that transport them across the epithelium (Cam-
bier et al. 2014). These mycobacteria use the
cell-wall-associated lipid phthiocerol dimyco-
ceroserate (PDIM) to mask underlying PAMPs
(pathogen-associatedmolecularpatterns), there-
by avoiding the recruitment of microbicidal
macrophages through TLR-MyD88-dependent
pathways (Cambier et al. 2014). The surface-as-
sociated phenolic glycolipid (PGL), a molecule
that is structurally related to PDIMs (Onwueme
et al. 2005), induces expression of the macro-
phage-monocyte chemokine CCL2 to recruit
and infect mycobacterium-permissive CCR2-
expressing macrophages. These newly infected
macrophages then migrate into deeper tissues
where they can incite granuloma formation.

Mycobacteria Induce Granuloma Formation
in the Context of Innate Immunity

Real-time visualization of the events following
M. marinum infection of zebrafish larvae shows
that within 2–3 d of the infected macrophage
reaching deeper tissues, granulomas can form
around it, through a second wave of macrophage
migration (Davis et al. 2002). These structures
are not simple macrophage aggregates, but bona
fide granulomas as evidenced by two features—
first, the participating macrophages undergo the
cardinal “epithelioid” transformation described
for mature tuberculous granulomas in humans
and mammalian animal models (Spector 1969;
Adams 1976; Williams and Williams 1983; Bou-
leyet al. 2001; Ramakrishnan 2012), and second,
these structures induce the expression of my-
cobacterial granuloma-activated genes that are
expressed in the mature granulomas of adult
frogs but not in axenic cultures or in cultured
macrophages (Ramakrishnan et al. 2000; Davis
et al. 2002). Indeed, within the same larvae,
these genes are not activated when the bacteria
infect individual macrophages, but only when
they participate in granuloma formation (Davis
et al. 2002).

The finding that the tuberculous granulo-
ma is an innate immune-cell-derived structure
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Table 1. Animal models of tuberculous granuloma formation

Advantages Disadvantages Reference(s)

Animal models of
M. tuberculosis
Rabbit Forms lesions similar to humans,

including necrotic mature
granulomas

Few immunological reagents
Few genetic tools

Flynn 2006; Helke
et al. 2006

Guinea pig Forms nonnecrotic mature
granulomas

Few immunological reagents
Few genetic tools
Rarely forms necrotic

granulomas

Flynn 2006; Helke
et al. 2006

Mouse Many immunological reagents
Numerous genetic tools
Well-characterized immune

cell subsets and
immunodominant
M. tuberculosis epitopes

Isogenic strains enable cell
transfer studies

Amenable to intravital
microscopy

Most commonly used
mouse strains form loose,
nonnecrotic granulomas

Persistent infection differs
from human disease

Flynn 2006; Helke
et al. 2006; Egen
et al. 2008; Ernst
2012

Nonhuman
primate
(cynomolgus
and rhesus
macaques)

Similarity to humans
Heterogeneous disease

outcomes from active to latent
disease

Heterogeneous lesions,
including necrotic mature
granulomas

Amenable to noninvasive
imaging techniques

Few genetic tools
Expensive

Flynn 2006; Helke
et al. 2006; Lin
et al. 2014

Animal models of
M. marinum
Zebrafish Natural host of M. marinum

Forms lesions similar to
humans, including necrotic
mature granulomas

Genetically tractable
Larvae are transparent, and

thus well-suited for intravital
microscopy

Large clutch sizes enable
high-throughput studies (e.g.,
genetic and pharmacological
screens)

No lungs
Poorly defined immune

cell subsets
Few immunological reagents

Swaim et al. 2006;
Takaki et al. 2012;
Ramakrishnan
2014

Leopard frog Natural host of M. marinum
Asymptomatic infection

resembles latency in humans
Forms nonnecrotic mature

granulomas

Poorly defined immune
cell subsets

Few immunological reagents
Few genetic tools

Ramakrishnan et al.
1997
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was made possible mainly by the unprecedented
temporal and spatial resolution afforded by real-
time studies in the transparent zebrafish larva.
It was the beginning of the new understanding
that the granuloma, at least in its incipient stag-
es, is a structure built by mycobacteria for their
expansion and dissemination, thus challenging
the long-held view that granulomas are strictly
host-protective structures.

INSIDE THE GRANULOMA

Mycobacteria Use the Granuloma as a Vehicle
for Expansion through Intercellular Spread
Enhanced by the RD1/ESX-1 Virulence Locus

If mycobacterial interactions with innate im-
munity induce granulomas, is there a specific
mycobacterial determinant involved? The an-
swer to this came from a serendipitous obser-
vation on the pattern of infection with an ESX-
1-deficient M. marinum strain (Volkman et al.
2004) and was recently confirmed in vitro in
a human lung tissue model of M. tuberculosis
granuloma formation (Parasa et al. 2014). ESX-
1 is a type VII secretion system that is expressed
by pathogenic mycobacteria, including M. tu-

berculosis, Mycobacterium bovis, and M. mari-
num, and is strongly implicated in M. tubercu-
losis virulence (Simeone et al. 2009). In fact, a
molecular explanation for the reduced virulence
of the Bacillus Calmette–Guérin (BCG) live at-
tenuated vaccine strain of M. bovis came from
genomic and genetic studies that linked BCG’s
attenuation to the loss of the region of diffe-
rence 1 (RD1) locus that contains this secretion
system (Behr et al. 1999; Pym et al. 2002; Hsu
et al. 2003; Guinn et al. 2004). After ascertaining
that the M. marinum DRD1 mutant was atten-
uated in adult leopard frogs and zebrafish,
which are two of its natural hosts, an explor-
atory study comparing wild-type and DRD1
M. marinum infection in zebrafish larvae was
conducted to try to identify the cellular basis
of DRD1’s attenuation in vivo (Volkman et al.
2004; Swaim et al. 2006). If granulomas were
strictly host-protective, one would expect at-
tenuated mycobacteria to show accelerated or
at least unimpaired granuloma formation. In-
stead, DRD1 M. marinum infection resulted
in more delayed and smaller granuloma forma-
tion than wild-type mycobacteria (Volkman
et al. 2004). Importantly, the defective granulo-
ma formation was in the face of grossly normal

IFN-γ
NADPH

TNF

TNF

TNF MMP-1 Airways

DeepPeriphery

MMP-9

ESX-1

Figure 1. Overview of tuberculosis infection development. Host factors that are protective (green) or detrimental
(red) are listed above the drawings. Note that the tumor necrosis factor (TNF) can have both beneficial and
pathogenic roles. Macrophages (gray) engulf extracellular M. tuberculosis bacilli (red) in the alveolar space and
transport them into deeper sites in the lung. Mycobacteria replicate within minimally microbicidal macrophages
that antagonize bacterial growth via TNF-dependent mechanisms. Mycobacteria induce infected macrophage
apoptosis and expression of host MMP9 in an ESX-1-dependent manner. Newly recruited macrophages engulf
infected cell debris, contributing to granuloma expansion. Some of these newly infected macrophages can exit
the primary granuloma and establish secondary granulomas in distal tissues. Neutrophils (light blue) can also
scavenge dying infected cells and kill bacteria through an NADPH-dependent mechanism. M. tuberculosis-
specific T cells (green) arrive at the granuloma and produce interferon-g (IFN-g) to enhance the microbicidal
activity of macrophages. TNF excess and strong T-cell immunity can lead to macrophage necrosis and release of
mycobacteria into the extracellular space, where they can grow relatively unchecked. Subsequent induction of
MMP1 causes granuloma cavitation and release of mycobacteria into the airways.
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growth of the DRD1 M. marinum strain in
the individual macrophages; despite becoming
heavily infected with time, they simply did not
aggregate (Volkman et al. 2004). The normal
intracellular growth of DRD1 M. marinum was
in contrast to a different M. marinum mutant in
another secreted virulence protein, Erp, famous
for being the first mycobacterial virulence de-
terminant to be identified by molecular genetics
(Berthet et al. 1998). Derp M. marinum dis-
played an intracellular growth defect in individ-
ual zebrafish larval macrophages, thus was com-
promised at an earlier step than DRD1 (Fig. 1)
(Cosma et al. 2006). Despite having no intra-
cellular growth defect, DRD1 was as attenuated
as Derp for overall growth in the animals.

The finding that DRD1 infection had a pri-
mary defect at the step of granuloma formation
and resulted in lower bacterial numbers sug-
gested that the granuloma expands rather than
restricts bacterial numbers (Volkman et al.
2004). Macrophage aggregation might impact
bacterial numbers by facilitating the spread of
bacteria to uninfected macrophages that are re-
cruited to the aggregates. If so, then aggregate
formation in wild-type infection should cor-
relate with a dramatic increase in the number
of infected macrophages and bacterial bur-
dens, a hypothesis made eminently testable by
the feasibility of direct and serial observation of
granuloma formation combined with infected
macrophage enumeration in the larvae. Indeed,
the number of infected macrophages did not
change significantly until aggregates formed
and only on aggregation did the number of in-
fected macrophages increase dramatically. Sim-
ilarly, the number of viable bacteria also did not
increase until after aggregation occurred 3–5 d
postinfection. Collectively, these data suggested
that granuloma formation driven by the ESX-1
system promotes intercellular bacterial spread,
thereby providing the bacteria with a means to
expand the infection niche.

In fact, the idea that the granuloma might
benefit mycobacteria first came from earlier
studies in chronically infected adult frogs and
zebrafish with mature granulomas (Cosma et al.
2004). When these animals were superinfected
with an isogenic virulent strain that was differ-

entially marked, the new strain was found to
preferentially migrate rapidly within host mac-
rophages into the preexisting granulomas, in-
cluding their necrotic centers. This trafficking
phenomenon was pathogen-specific, as super-
infecting Salmonella was largely excluded from
granulomas. The superinfecting strain grew
robustly within the preformed granulomas,
suggesting that the granuloma is a microenvi-
ronment of impaired immunity that supports
mycobacterial growth. A follow-up study in
mice showed that superinfecting M. tuberculo-
sis also migrates to mature lung granulomas
(Cosma et al. 2008). These experiments also in-
dicate that even mature granulomas are open
structures that allow cellular influx, challenging
the notion that they serve as physical barriers
which “wall-off” mycobacteria.

Cellular Basis of the Granuloma’s Role in
Bacterial Expansion

The granuloma drives bacterial expansion by
coordinately inducing infected macrophage
apoptosis and uninfected macrophage recruit-
ment to nascent granulomas (Fig. 1) (Davis and
Ramakrishnan 2009). Time-lapse microscopy
showed that newly recruited macrophages mi-
grate within the growing granuloma and engulf
the apoptotic debris of infected macrophages
together with their bacterial contents. Quanti-
tative analyses of infected cell death and phago-
cytosis by new recruits revealed that during
wild-type M. marinum infection, �80% of the
infected granuloma macrophages die within
24 h and that on average, two or three new re-
cruits become infected for every single dying
macrophage. In contrast, DRD1 M. marinum
induces the death of �50% fewer infected mac-
rophages as wild-type mycobacteria and recruits
�25% the number of uninfected macrophages,
and only �50% of these new recruits become
infected. The rate of bacterial growth estimated
by measuring fluorescence area was proportion-
al to the increase in number of infected macro-
phages, suggesting that the process of infected
cell death and rephagocytosis could explain
most, if not all, of granuloma expansion. Be-
cause the kinetics of cell death and recruitment

Immunity and Immunopathology in the TB Granuloma

Cite this article as Cold Spring Harb Perspect Med 2015;5:a018499 5

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



are slower during DRD1 M. marinum infection,
these observations might also largely explain
the cellular basis of attenuation of DRD1 myco-
bacteria in vivo. Rather than inhibiting macro-
phage responses that are generally protective
against nonpathogenic mycobacteria (exempli-
fied by case of the attenuated BCG/RD1 mu-
tant) (Adams 1976; Dannenberg 2003), virulent
mycobacteria have evolved mechanisms (i.e.,
their ESX-1 secretion system) for accelerating
these responses, ultimately molding them into
tools for infection development. Studies in adult
mice and zebrafish suggest that the ESX-1 locus
continues to play a role in mature granuloma
formation/maintenance in the context of adap-
tive immunity, as the attenuated infection with
RD1-mutant bacteria is associated with loose,
poorly developed granulomas (Sherman et al.
2004; Volkman et al. 2004; Swaim et al. 2006).

Mechanistic Basis of Bacterial ESX-1
Induced Granuloma Formation: Co-Option
of Host MMP9

An initial clue to the mechanism of RD1-in-
duced granuloma formation came from the
finding that the RD1 mutant’s aggregation de-
fect could be rescued by superinfecting the an-
imals with wild-type bacteria marked with a
different fluorescent protein; the superinfect-
ing strain infected individual macrophages that
were then able to cause the aggregation of the
DRD1-infected macrophages that had remained
isolated before (Volkman et al. 2004). Moreover,
at least one wild-type-infected macrophage was
required to serve as a nidus for each aggregate,
suggesting that the presence of a macrophage
infected with RD1-competent bacteria creates
a chemotactic gradient that recruits macro-
phages (Volkman et al. 2004).

A better understanding of this chemotactic
pathway came from a differential screen for host
genes that are induced during wild-type but not
DRD1 M. marinum infection in zebrafish larvae
(Volkman et al. 2010). Transcriptional induc-
tion of matrix metalloproteinase-9 (MMP9)
was greater with wild-type than the DRD1 bac-
teria, and this difference was further amplified
when MMP9-dependent gelatinase activity was

assayed in vivo; wild-type infection induced
robust MMP9-dependent gelatinase activity
whereas DRD1 infection had barely any activi-
ty. Genetic knockdown of mmp9 in wild-type
M. marinum-infected fish phenocopied the
granuloma defect observed during DRD1 M.
marinum infection and concomitantly reduced
bacterial burdens and improved host survival
(Volkman et al. 2010). The cellular pattern of
ESX-1-dependent MMP9 induction was in-
triguing: It was more prominent in the epitheli-
al cells surrounding the granuloma than in the
granuloma macrophages themselves. Because
ESX-1-dependent MMP9 induction occurred
even in macrophage-depleted larvae, it appeared
to be a consequence of the direct interaction be-
tween the bacterial secretion system and the ep-
ithelial cells rather than via signals from the in-
fected macrophages. Furthermore, the ESX-1-
dependent MMP9 induction could be attribut-
ed to ESAT-6, a small secreted protein substrate
of the ESX-1 secretion system that has long been
identified as one of the earliest proteins to be
recognized by the T-cell response in humans
(giving it its name early secretory antigenic tar-
get of T cells of 6 kDa size that abbreviates to
ESAT-6) (Andersen et al. 1995; Ravn et al. 1999).

Compositely, the zebrafish findings suggest-
ed a model for granuloma formation in which
ESAT-6 induces MMP9 in epithelial cells neigh-
boring the nascent granuloma. The details of
this mechanism and the relative importance of
macrophage versus epithelial cell MMP9 in
pathogenesis are yet to be worked out. ESX-1-
dependent induction of MMP9 in the epitheli-
um might benefit mycobacteria by providing a
means of signal amplification. For example, a
single infected macrophage might be sufficient
to induce MMP9 in multiple epithelial cells
and thus jumpstart the recruitment of uninfect-
ed macrophages. The mechanisms by which
ESX-1 induces MMP9 and how epithelium-
derived MMP9 promotes macrophage recruit-
ment to nascent granulomas remain unknown
and are under active study. As to how MMP9
induces macrophage chemotaxis, a potential
mechanism of action might involve enhancing
the activity of CCL7 or other chemokines via
proteolysis of the amino terminus (Parks et al.
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2004). CCL7 is an appealing candidate because
it is a substrate of MMP9 in vivo (Greenlee
et al. 2006), is produced by macrophages in re-
sponse to mycobacterial infection (Scott and
Flynn 2002), and can recruit monocytes from
thebloodstream(SoehnleinandLindbom2010).
Other nonmutually exclusive mechanisms
could involve remodeling of the extracellular
matrix at the site of infection through the release
of a sequestered chemoattractant (e.g., glycan-
bound chemokines) (Sarris et al. 2012) or deg-
radation of a physical barrier (e.g., a-dystrogly-
can proteolysis along basement membranes)
(Parks et al. 2004; Agrawal et al. 2006).

Again, the zebrafish findings all have paral-
lels in humans. MMP9 levels are elevated in hu-
man TB (Price et al. 2003; Sheen et al. 2009), and
in lung TB, it is expressed prominently in the
epithelium surrounding the granulomas in ad-
dition to the macrophages themselves (Elking-
ton et al. 2007). Among pleural TB patients,
pleural fluid MMP9 concentrations are higher
in those patients with granulomatous pleural
disease than in those with nongranulomatous
disease (Sheen et al. 2009). Among tuberculous
meningitis patients, increased MMP9 levels in
the cerebrospinal fluid are associated with worse
outcomes (Price et al. 2003). In a mouse mod-
el of M. tuberculosis aerosol infection, MMP9
knockout mice recruited fewer macrophages to
the lung and formed smaller granulomas, fea-
tures that were associated with reduced lung bac-
terial loads as early as 2 wk postinfection and
continuing through the 120-d assay period (Tay-
lor et al. 2006). These data implicate MMP9 and
granuloma formation in pathogenesis similar to
the zebrafish and human data. It is perplexing
then that the authors instead designated MMP9
as a host resistance factor that acts by promoting
granuloma formation; this misinterpretation of
the data at hand so as to align the conclusions
with the protective granuloma model may attest
to how entrenched the model is among TB re-
searchers. Given the broad conservation of the
MMP9-induced susceptibility, identifying the
mycobacterial and host factors involved in mac-
rophage recruitment to nascent granulomas
would be a key step in designing targeted thera-
pies to reduce the kinetics of granuloma forma-

tion just to the point where it is no longer host-
detrimental.

Macrophage Apoptosis in the Granuloma:
Protective or Pathogenic?

Studies of granuloma development in the zebra-
fish suggest that infected macrophage apoptosis
plays a role in expanding infection (Davis and
Ramakrishnan 2009). Detailed observations of
the growing granuloma show that the uninfect-
ed macrophages recruited through RD1-MMP9
signaling remain motile within the granuloma
as if moving in the context of a gradientless sig-
nal. A second signal emanating from dead or
dying macrophages appears to draw these mac-
rophages to them, and their encased bacteria are
then phagocytosed to create new infected cells.
Indeed, RD1-competent mycobacteria also in-
duce more apoptotic death of infected macro-
phages in the granuloma (Volkman et al. 2004;
Davis and Ramakrishnan 2009), consistent with
studies showing that the RD1-encoded viru-
lence determinant ESAT-6 can induce multi-
ple programs associated with cell death in vitro
(Guinn et al. 2004; Derrick and Morris 2007; van
der Wel et al. 2007; Choi et al. 2010; Mishra et al.
2010; Aguilo et al. 2013). It would be predicted
that the coordinated acceleration of new mac-
rophage recruitment and infected macrophage
apoptosis would be required to maximize bacte-
rial expansion in the granuloma. However, be-
cause both processes are dependent on the same
locus, RD1, the specific contribution of bac-
terially induced apoptosis in expanding infec-
tion has been difficult to tease out. Engineering
host MMP9 deficiency dissociates the two pro-
cesses; it reduces macrophage recruitment to
the granuloma and virulence without affecting
apoptosis of infected macrophages (Volkman
et al. 2010). This finding suggests that RD1-me-
diated macrophage apoptosis is not sufficient
for macrophage recruitment but does not tell
us if its acceleration further expands infection.

Further confounding the role of apopto-
sis, pathogenic mycobacteria express virulence
genes that inhibit apoptosis of cultured macro-
phages—nuoG, secA2, and pknE. nuoG encodes
a subunit of the type I NADH dehydrogenase
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complex, secA2 encodes a mycobacterial secre-
tion system, and pknE encodes a serine/threo-
nine kinase (Braunstein et al. 2003; Hinchey
et al. 2007; Velmurugan et al. 2007; Briken and
Miller 2008; Jayakumar et al. 2008). Pathogenic
mycobacteria deficient in any of these genes
show growth defects in cultured macrophages
and in mice or zebrafish (Braunstein et al. 2003;
Hinchey et al. 2007; Velmurugan et al. 2007;
Jayakumar et al. 2008; Sullivan et al. 2012; Wat-
kins et al. 2012; van der Woude et al. 2014).
However, a direct link between their attenuation
and impaired inhibition of macrophage apo-
ptosis has not been made. It is not known if
these bacterial mutants induce more apopto-
sis in vivo, much less if inhibition of apoptosis
by targeting the corresponding host pathways re-
stores their virulence. These experiments would
be particularly important because NuoG, SecA2,
and PknE participate broadly in cellular pro-
cesses whose disruption might be responsible
for their attenuation.

Based on in vitro studies, it has been pro-
posed that apoptosis is a host strategy that is
detrimental to the infecting mycobacteria, in
contrast to necrosis, which favors bacterial
growth (Fratazzi et al. 1997; Oddo et al. 1998;
Keane et al. 2002; Gan et al. 2008; Behar et al.
2011). Some of these studies have caveats: the use
of genetically undefined mutant strains and/
or additional agents to induce specific apopto-
tic death pathways that might override myco-
bacterially induced pathways (Molloy et al.
1994; Fratazzi et al. 1997; Oddo et al. 1998; Keane
et al. 2000; Gan et al. 2008). In terms of apoptotic
pathways, apoptosis induced by Fas ligand or
ATP have opposite effects on intracellular myco-
bacterial viability (Lammas et al. 1997). ESAT-6-
induced apoptotic cell death per se may use bac-
terium-sparing pathways. Even if apoptosis is
detrimental to mycobacteria, the rapid rephago-
cytosis of the dead macrophages in the context of
the granuloma may nullify any bactericidal ef-
fects of apoptosis. In summary, it is possible
that mycobacteria inhibit or induce macrophage
apoptosis depending on the stage of infection.
Mycobacteria might benefit from inhibiting
macrophage apoptosis during the earliest stages
of infection, when they rely on these cells to ac-

cess deeper tissues, and then induce macrophage
apoptosis to expand within the granuloma.

Neutrophils in the Granuloma: Protective
or Pathogenic?

In early zebrafish granulomas, in contrast to ar-
riving macrophages, neutrophils arriving at the
granuloma may help control infection (Fig. 1)
(Yang et al. 2012). Their recruitment to the gran-
ulomas is via signals from the dying macrophag-
es, which they engulf to become infected just
as the macrophages do. A subset of neutrophils
kills the ingested mycobacteria in an NADPH
oxidase-dependent manner. Experimentally pre-
venting neutrophil entry into granulomas by
sequestering neutrophils in hematopoietic tis-
sues enhanced mycobacterial expansion and
granuloma growth. In the context of the gran-
uloma, neutrophil clearance of infected dying
macrophages appears to be protective via two
mechanisms: (1) directly lowering mycobacteri-
al loads, and (2) simultaneously reducing the
kinetics of intercellular spread into uninfected
macrophages and their subsequent death. Work
in other animal models and in humans has
also identified a protective role of neutrophils
in early TB. Neutrophil depletion in mice in-
creased bacterial burdens. This effect could
be mitigated by neutralization of interleukin-
10 (IL-10) or administration of IL-12, interven-
tions that likely enhanced the microbicidal ac-
tivity of macrophages (Pedrosa et al. 2000). In
rats, neutrophil depletion exacerbated TB infec-
tion, whereas transient neutrophilia enhanced
control (Sugawara et al. 2004). Humans with
chronic granulomatous disease (CGD), a genet-
ic disorder caused by NADPH deficiency and
characterized by severely impaired neutrophil
oxidative burst (Amulic et al. 2012), are suscep-
tible to mycobacterial infections, including TB
(Lee et al. 2008; Dogru et al. 2010). Finally, work
in mice suggests an indirect role for how neu-
trophils might be host-protective. DCs can en-
gulf the apoptotic remnants of infected neutro-
phils and migrate to the draining lymph node,
where they support M. tuberculosis–specific T-
cell priming (Blomgran et al. 2012). However,
the relative importance of this mode of antigen
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transfer on T-cell priming is unclear given that
migratory DCs can also transfer unprocessed,
soluble M. tuberculosis antigens to lymph node–
resident DCs through a mechanism not involv-
ing apoptosis (Srivastava and Ernst 2014).

As with macrophages, the role of neutro-
phils in TB protection is confounded by studies
showing they are pathological. In mouse TB in-
fection, aggressive neutrophil responses to M.
tuberculosis have been documented in geneti-
cally susceptible mice (Eruslanov et al. 2005);
in cases of suboptimal macrophage immune re-
sponses, such as during CARD9 (Dorhoi et al.
2010) or miR-223 deficiency (Dorhoi et al.
2013); in the context of impaired IFN-g-medi-
ated immunoregulation (Desvignes and Ernst
2009; Nandi and Behar 2011), and as a conse-
quence of pathogenic Th17 responses (Cruz
et al. 2006, 2010). Together, these studies assign
a pathological role to neutrophils.

So it is likely that neutrophils, similar to
macrophages, play a nuanced role in TB patho-
genesis; they may participate in protective im-
munity during early infection but may cause
immunopathology in advanced stages of the
disease. Both roles are potentially relevant in
human TB where neutrophils are readily de-
tected in the blood of patients with active TB
by a signature IFN gene expression profile (Berry
et al. 2010), in the cerebrospinal fluid of tuber-
culous meningitis (Thwaites et al. 2002; Lowe
et al. 2012) an a in pulmonary TB, where they
can be abundant in both early granulomas and
late cavitary granulomas (Canetti 1955; Eum
et al. 2010).

EXITING THE GRANULOMA

Egress of Infected Macrophages
from the Primary Granuloma

At least in the innate stages of granuloma de-
velopment, even as uninfected macrophages
are being recruited to feed the granuloma,
some newly infected macrophages exit the na-
scent granuloma and establish secondary gran-
ulomas, thus disseminating the infection with-
in the host (Fig. 1) (Davis and Ramakrishnan
2009). Indeed, close temporal monitoring of

the spread of infection from a primary granulo-
ma focus tightly linked departing macrophages
to the spread of infection. A similar phenome-
non was recently documented in a transplan-
tation model of TB in mice, where infected
DCs were observed to exit the primary granulo-
ma and spread the infection into distal tissues
(Schreiberet al. 2011). Although the mechanism
of infected macrophage egress remains unclear,
it does appear to be the main mode of estab-
lishing multiple infection foci early in infection.
It is conceivably a mycobacterial bet-hedging
strategy because different granulomas within
the same individual can expand or contract
from the earliest stages of infection as shown by
close monitoring of guinea pigs, zebrafish, and
monkeys and surmised from detailed histopath-
ological studies of the lungs of infected humans
in the prechemotherapy era (Balasubramanian
et al. 1994; Davis and Ramakrishnan 2009; Ad-
ams et al. 2011; Lin et al. 2014).

Exiting the Intracellular Environment
through Macrophage Necrosis

Although mycobacteria exploit macrophages to
infect and spread within a host, they enhance
their transmission to a new host by becoming
extracellular (Fig. 1). Mycobacteria are notori-
ously adapted to intracellular growth, so the vast
majority of mycobacterial pathogenesis research
has focused on mechanisms of intracellular sur-
vival. However, it has long been known that in
humans, necrotic granulomas, called caseating
granulomas for their cheesy appearance on mac-
roscopic examination, thought to result from
the necrotic breakdown of infected macrophag-
es, are a major contributor to morbidity and
transmission (Rich 1946; Canetti 1955; Grosset
2003; Ramakrishnan 2012). Detailed histologi-
cal studies of tuberculous organs obtained from
autopsies in the prechemotherapy era revealed
that areas of caseation in early granulomas were
associated with more numerous bacteria than
noncaseating lesions (Canetti 1955). Corrobo-
rating these old human studies, work in M.
marinum-infected adult zebrafish (Swaim et al.
2006), as well in M. tuberculosis-infected ma-
caques (Lin et al. 2014), similarly find that case-
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ation is associated from early on with high bac-
terial burdens. Virulent M. tuberculosis grown
in culture acquires a corded appearance charac-
terized by the formation of long, intertwined
serpentine structures (Koch 1882). This in vitro
phenotype correlates well with virulence (Mid-
dlebrook et al. 1947) and has been described
to occur in vivo under conditions in which my-
cobacteria grow extracellularly (Clay et al. 2007,
2008). A recent study of Mycobacterium ab-
scessus infection in zebrafish suggests that the
cording morphology helps mycobacteria avoid
macrophage-mediated immunity; uninfected
macrophages that were recruited to sites of bac-
terial cording failed to rephagocytose the bacte-
rial cords, perhaps because they were too large
to be engulfed (Bernut et al. 2014). Finally, the
bacterial RD1 virulence locus promotes necrosis
of mature granulomas, either by postapoptotic
necrosis or through yet-undefined independent
mechanisms (Volkman et al. 2004; Swaim et al.
2006; Ramakrishnan 2012). These observations
suggest that extracellular survival may be an im-
portant part of mycobacterium’s ability to grow
to high numbers in the compartment most con-
ducive for transmission, a critical survival trait
for a pathogen.

Previous studies could not discern whether
high bacterial burdens promote necrosis, and
the numerous bacteria released can simply sur-
vive in the necrotic debris, or whether the ne-
crotic debris and/or extracellular milieu ac-
tually promote bacterial growth. Work in the
zebrafish larvae has shed light on this issue and
has provided evidence that although the early
granuloma promotes growth, mycobacterial
growth is further enhanced in the extracellular
milieu when bacteria are released after macro-
phage necrosis, or if macrophages are absent
altogether (Clay et al. 2007, 2008; Tobin et al.
2010, 2012; Ramakrishnan 2012; Roca and Ra-
makrishnan 2013). Several immune mecha-
nisms have been implicated in necrosis.

Foamy Macrophages

Lipid-laden foamy macrophages are thought to
contribute to caseum formation. In vitro gran-
uloma models suggest that foamy macrophages

form through a host transcription-dependent
process involving peroxisome proliferator g

(PPARg) and testicular receptor 4 (TR4) and
induced by mycobacterial oxygenated mycolic
acids, which leads to the accumulation of low-
density lipoprotein-derived lipids (Peyron et al.
2008; Mahajan et al. 2012). ESX-1-competent
mycobacteria induce the foamy phenotype by
diverting glycolitic metabolism toward ketone
body synthesis and inducing the expression of
the antilipolytic G-protein-coupled receptor
GPR109A (Singh et al. 2012). These macrophag-
es are common in caseating granulomas, typi-
cally around the edges of the necrotic core, but
rarely present in nonnecrotic lesions (Caceres
et al. 2009). Foamy macrophages are poorly bac-
tericidal compared with their nonfoamy coun-
terparts, attributed in part to increased M2-type
macrophage activation and IL-10 production
(Mahajan et al. 2012) and impaired autophagy
and lysosomal acidification (Singh et al. 2012).
In fact, recent work indicates that M1-type
macrophage polarization inhibits foamy macro-
phage development. Activation of the vitamin D
pathway, which is induced on IFN-g-mediated
stimulation (Fabri et al. 2011), prevents lipid
accumulation by reducing PPARg expression
(Salamon et al. 2014).

Bacteria can be found inside lipid bodies
and contain lipid inclusions, suggesting that
they can use host lipids as nutrient sources
(Peyron et al. 2008; Russell et al. 2009). The lipid
composition of the caseum reflects that of
foamy macrophages, suggesting a link between
foamy macrophages and caseum formation. It
has been proposed that foamy macrophages
contribute to caseum formation by undergo-
ing necrosis, thereby spilling their intracellular
contents (Russell et al. 2009). The lipids released
into the extracellular space might serve as a
nutrient source for enhanced mycobacterial
growth in an environment of impaired cell-me-
diated immunity.

Tumor Necrosis Factor Deficiency as a Cause
of Granuloma Macrophage Necrosis

In general, the failure of the infected macro-
phage to control bacterial replication caused
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by tumor necrosis factor (TNF) deficiency re-
sults in their accelerated necrotic death and re-
lease of bacteria (Fig. 1) (Clay et al. 2008; Tobin
et al. 2010). Numerous lines of evidence have
established the importance of the proinflamma-
tory cytokine TNF in immunity to M. tubercu-
losis. Early studies in mice showed that TNF
deficiency enhances mycobacterial growth and
disease progression (Flynn et al. 1995), and they
have been corroborated by studies in humans
showing that therapeutic neutralization of TNF
for the treatment of autoimmune diseases such
as rheumatoid arthritis and noninfectious in-
flammatory disorders such as Crohn’s disease
increases TB susceptibility (Keane 2005). TNF
signaling deficiency in mice produces disorga-
nized tuberculous lesions teeming with extracel-
lular mycobacteria (Flynn et al. 1995). The stark
morphological differences between the orga-
nized granulomas of TNF-sufficient mice and
the disorganized, necrotic structures of TNF-de-
ficient mice helped establish the idea that TNF
participates in granuloma formation and sup-
ported the notion that granulomas are host-pro-
tective structures formed by the immune system
(Ramakrishnan 2012). However, the sequential
monitoring of granuloma development that
is possible in zebrafish larvae provides a more
nuanced view of TNF involvement in immunity
to TB and granuloma formation (Clay et al.
2008). Larvae rendered deficient in TNF-signal-
ing via knockdown of TNF Receptor 1 showed
increased intramacrophage mycobacterial loads
and, unexpectedly, accelerated granuloma for-
mation. The accelerated kinetics of granuloma
formation are likely caused by an increased
abundance of ESX-1 substrates in the extracel-
lular space, which would induce MMP9 expres-
sion on the epithelial cells surrounding the
infected macrophages. These heavily infected
granuloma macrophages eventually became ne-
crotic, releasing mycobacteria into the extra-
cellular milieu. These observations suggest that
TNF is not required for granuloma formation
per se, but rather preserves granuloma integrity
by inhibiting mycobacterial growth and pre-
venting macrophage death. A live imaging study
in mice showed that TNF blockade in estab-
lished granulomas led to their disintegration

(Egen et al. 2008), adding credence to the
idea that TNF is critical for granuloma mainte-
nance. Consistent with the zebrafish work, a
study in cynomolgus macaques showed that
TNF inhibition increased mycobacterial bur-
dens and extrapulmonary dissemination of the
infection without impeding granuloma forma-
tion (Lin et al. 2010). During active disease,
granulomas in the treated group became more
invasive, extending into adjacent vessels and air-
ways. Strikingly, TNF inhibition did not appear
to disrupt the architecture of established granu-
lomas, but secondary granulomas in adjacent
tissue and in distal organs nonetheless formed
(Lin et al. 2010). These findings are in agreement
with the observations in humans undergoing
anti-TNF therapies who can develop organized
caseating granulomas (Garcia Vidal et al. 2005;
Iliopoulos et al. 2006). Because only some of the
macrophages in established granulomas are in-
fected, TNF deficiency would only cause the ne-
crosis of these, thus forming a necrotic core
within a cellular granuloma that would facilitate
an exit strategy for the bacteria.

TNF Excess as a Cause of Granuloma Necrosis

Unexpectedly, excessive TNF in the granu-
loma is also host detrimental by inducing
macrophage necrosis, but through a different
mechanism from TNF deficiency (Fig. 1). Ex-
cess TNF caused excessive inflammation lead-
ing to Receptor-interacting serine/threonine ki-
nase (RIPK) 1- and RIPK3-dependent necrosis
of granuloma macrophages via production of
mitochondrial reactive oxygen species (ROS)
(Tobin et al. 2012; Roca and Ramakrishnan
2013). Accordingly, and in stark contrast to
TNF-deficiency, macrophages experiencing an
excess of TNF signaling initially have enhanced
control of intracellular mycobacterial growth
because of the ROS. But this ROS then causes
cell necrosis through multiple mechanisms ren-
dering the bacteria extracellular.

T Cells and Granuloma Necrosis

Like phagocytes, CD4þ T cells can also play a
dual role in TB protection and pathology, and
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have also been implicated in granuloma necro-
sis (Fig. 1). HIV-positive individuals with low
CD4þ T-cell counts in the blood are less likely
to have cavitary TB lesions than individuals
with normal CD4þ T-cell frequencies and are
less likely to transmit disease (Kwan and Ernst
2011). A recent study documented that human
T-cell epitopes in the M. tuberculosis complex
are highly conserved, suggesting that patho-
genic mycobacteria benefit from T-cell recogni-
tion (Comas et al. 2010; Ernst 2012). The mech-
anism by which CD4þ T cells contribute to
necrosis is unclear, but it might involve an over-
ly exuberant mycobacteria-specific response
that induces the necrotic death of infected cells.
It is plausible that the specific effector is TNF,
and this might explain the widespread inci-
dence of necrotic granulomas among patients
with advanced TB. The effects of excessive TNF
production might be present, albeit at a small-
er scale, in the normal spectrum of TB lesions
in nongenetically susceptible individuals and
might contribute to caseum formation in estab-
lished granulomas.

Cytotoxic T lymphocyte antigen-4 (CTLA-
4) and program death-1 (PD-1), two members
of the CD28 family of receptors (Greenwald
et al. 2005), have been implicated in determin-
ing whether a T-cell response in TB is host-pro-
tective or host-detrimental. These receptors are
induced during T-cell activation and recognize
ligands decorating the surface of antigen-pre-
senting cells (APCs). Engagement of these re-
ceptors dampens stimulatory signals trans-
duced through the T-cell antigen receptor
(TCR) signaling complex on TCR binding to
cognate peptide:major histocompatibility com-
plex (p:MHC) molecules displayed by the APCs
(Greenwald et al. 2005). Although these re-
ceptors exert critical roles in preventing auto-
immunity by restraining autoreactive T-cell
responses, their engagement in the context of
several infections and cancers is host-detrimen-
tal because it inhibits the development of robust
pathogen- or tumor-specific T-cell immunity
(Peggs et al. 2009; Fife and Pauken 2011; Odor-
izzi and Wherry 2012; Kamphorst and Ahmed
2013). A study of pulmonary TB in a West Af-
rican cohort identified a single nucleotide poly-

morphism (SNP) in the 30-untranslated region
of CTLA4 that correlated with increased disease
severity (Thye et al. 2009). Patients bearing the
þ6230G allele had larger and more numerous
lesions than those with an A/A genotype at the
same position, and the þ6230G individuals ap-
peared to have more cavitary granulomas. Inter-
estingly, this same SNP has been associated with
several autoimmune diseases (Ueda et al. 2003),
suggesting that the susceptibility in TB is due
to a dysfunctional T-cell response. The effects
of CTLA-4 inhibition on mouse models of TB
remain largely unexplored. A study of BCG in-
fection found that CTLA-4 blockade accelerated
the kinetics of T-cell activation and enhanced
IFN-g production but did not alter bacterial
burdens or tissue pathology (Kirman et al.
1999). It remains to be determined if CTLA-4
blockade during M. tuberculosis infection elicits
a similar response. At the very least, this study
showsthat CTLA-4 exerts an inhibitory function
during a mycobacterial infection. Nonetheless,
studies of PD-1 in a mouse model of TB make
a compelling case for the involvement of inhib-
itory receptors in preventing T-cell immunopa-
thology in TB (Lazar-Molnar et al. 2010; Barber
et al. 2011). PD-1 deficiency enhanced M. tu-
berculosis-specific CD4þ T-cell expansion, in-
creased the levels of proinflammatory cytokines
in the lungs, including TNF, caused extensive
tissue necrosis, and precipitated death (Lazar-
Molnar et al. 2010; Barber et al. 2011). Again,
TNF is a plausible culprit for widespread necro-
sis observed in the context of PD-1 deficiency. It
will be interesting to determine if genetic poly-
morphisms in the TNFpathway,PD-1, and other
inhibitory coreceptors or their ligands modulate
susceptibility to TB in humans and, specifically,
development of cavitary granulomas.

Cavitary Granulomas as Vehicles
for TB Transmission

The formation of cavities that harbor very large
numbers of bacteria greatly facilitates aerosol
transmission in the advanced stages of human
lung TB (Fig. 1). Patients harboring radiologi-
cally apparent cavitary lesions are more likely
to have burdens of M. tuberculosis in their ex-
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pectorated sputum and to transmit TB than
those that do not have as advanced lesions
(Palaci et al. 2007). Individual cavitary lesions
may contain 107–109 bacilli (Canetti 1965). The
high level of bacterial replication observed in
cavitary granulomas may also contribute to the
selection of genetic resistance to antitubercular
drugs (Howard et al. 1949).

Recent work argues that the pathogenesis
of cavitation is distinct from necrosis and that
although necrosis is a prerequisite for cavita-
tion, it is not sufficient. The collagenase matrix
metalloproteinase-1 (MMP1) has been impli-
cated in the final steps of granuloma cavitation
through the degradation of the fibrous extracel-
lular matrix surrounding the granuloma (Fig. 1)
(Elkington et al. 2011c). SNPs in MMP1 that
increase protein abundance or enzymatic activ-
ity have been associated with TB hypersuscepti-
bility (Ganachari et al. 2010; Wang et al. 2010).
M. tuberculosis infection in humans induces
MMP1 expression in epithelial cells surround-
ing the granuloma and in leukocytes (Elkington
et al. 2005). Overexpression of human MMP1
in mice infected with M. tuberculosis induced
granuloma breakdown (Elkington et al. 2011a).
Although the specific mycobacterial signals that
induce MMP1 (Ganachari et al. 2010) have not
been identified, it has been noted that M. bovis
BCG is a poor inducer compared with virulent
M. tuberculosis (Elkington et al. 2005), suggest-
ing that MMP1 induction might share similari-
ties with that of MMP9. The factors that induce
cavitation could be therapeutically intercepted
to reduce tissue destruction and minimize trans-
mission (Elkington et al. 2011b).

SUMMARY: A NEW ROLE FOR THE
GRANULOMA FROM A HISTORICAL
PERSPECTIVE

Work over the last decade has revised the role of
the granuloma from host-protective structure to
one that substantially benefits mycobacterial ex-
pansion. The protective granuloma model was
based on several lines of circumstantial evidence
from traditional animal models in which only
single endpoint analyses of tissue histology and
bacterial burdens were possible (Ramakrishnan

2012). In particular, the surmise that granuloma
formation was dependent on adaptive immuni-
ty, the development of which is accompanied by
a plateau in bacterial load contributed to this
thinking (Andersen 1997; Saunders and Cooper
2000; North and Jung 2004; Urdahl et al. 2011).
The idea has been that adaptive immunity is
required for granuloma formation, which in
turn restricts bacterial growth. In this model,
mycobacterium-specific T cells migrate to the
site of infection and interact with infected mac-
rophages through the secretion of cytokines
such as IFN-g and TNF that induce granuloma
formation while enhancing macrophage micro-
bicidal functions. Whereas IFN-g and TNF can
be produced by innate immune cells, T cells are
potent producers of these cytokines and have
been shown to be critical for controlling myco-
bacterial infection in animal models and hu-
mans (Szabo et al. 2003; Al-Muhsen and Casa-
nova 2008; Kwan and Ernst 2011; Philips and
Ernst 2012; Tubo and Jenkins 2014). Mice defi-
cient in CD4þ T cells, IFN-g signaling, or TNF
signaling show disorganized macrophage aggre-
gates that become necrotic (Kindler et al. 1989;
Flynn et al. 1993, 1995; Bean et al. 1999; Caruso
et al. 1999; Scanga et al. 2000; Flynn and Chan
2001; Roach et al. 2002; Algood et al. 2005; Sten-
ger 2005; Chakravarty et al. 2008; Wallis and
Schluger 2010). These observations associated
granuloma formation with a protective immune
response to TB.

The finding that granuloma formation can
occur in the sole context of innate immunity
was instrumental in starting to appreciate the
granuloma’s role in TB pathogenesis. Indeed,
granuloma formation is accelerated by the very
mycobacteria that it was said to “wall-off,” turn-
ing a fundamentally host-beneficial process into
a bacterium-beneficial one. Therefore, slowing
the kinetics of granuloma formation may in fact
benefit the host by allowing processes such as
macrophage apoptosis to play out in the host’s
favor. Furthermore, maintaining macrophage
cellularity by preventing their necrosis is also
favorable to the host by keeping mycobacteria
from the extracellular environment, which is
even more growth-permissive than the intracel-
lular milieu.
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In summary then, the granuloma, as con-
structed and deconstructed by the pathogenic
mycobacteria, is a pathological entity from its
inception when it promotes intracellular bacte-
rial spread to its advanced stages when it pro-
motes extracellular bacterial growth and trans-
mission. An understanding of which processes
are pathogenic, and to what extent, may allow
their modulation so as to render the tubercu-
lous granuloma into a structure that promotes
immunity without immunopathology.
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