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Abstract

Carcinogenesis is a complex process during which cells undergo genetic and epigenetic 

alterations. These changes can lead tumor cells to acquire characteristics that enable movement 

from the primary site of origin when conditions become unfavorable. Such characteristics include 

gain of front-rear polarity, increased migration/invasion, and resistance to anoikis, which facilitate 

tumor survival during metastasis. An epithelial to mesenchymal transition (EMT) constitutes one 

way that cancer cells can gain traits that promote tumor progression and metastasis. Two 

microRNA (miRNA) families, the miR-200 and miR-221 families, play crucial opposing roles that 

affect the differentiation state of breast cancers. These two families are differentially expressed 

between the luminal A subtype of breast cancer as compared to the less well-differentiated triple 

negative breast cancers (TNBCs) that exhibit markers indicative of an EMT. The miR-200 family 

promotes a well-differentiated epithelial phenotype, while high miR-221/222 results in a poorly 

differentiated, mesenchymal-like phenotype. This review focuses on the mechanisms (specific 

proven targets) by which these two miRNA families exert opposing effects on cellular plasticity 

during breast tumorigenesis and metastasis.

Keywords

miR-200; miR-221; miR-222; EMT; MET; breast cancer

Introduction

miRNAs are small (18–25 nucleotide) non-coding RNAs that regulate gene expression post-

transcriptionally by binding to the 3’ untranslated region (UTR) of target messenger RNAs 

(mRNAs) (1), and inhibiting translation or targeting the mRNA for degradation (2). The 

extent to which miRNAs regulate the human transcriptome is still under investigation; 

however, miRNAs can target hundreds of genes, suggesting that their regulatory role may be 

as significant as that of transcription factors. miRNAs are differentially regulated during 
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development (3–5). Controlled epithelial to mesenchymal transition (EMT) is a normal 

process in development, required for processes such as gastrulation, mammary gland 

branching, and neural crest formation (reviewed in (6)). However, EMT is a pathological 

event in cancer that contributes to the gain of aggressive characteristics that facilitate 

metastasis (7–10). In cancer EMT, carcinoma cells do not become mesenchymal cells, 

although there can be a marked loss of epithelial hallmarks and a shift toward mesenchymal 

and even neuronal gene expression. It is widely believed that acquisition of these 

characteristics can allow tumor cells to become motile, invasive, and able to intravasate into 

the blood and lymph vessels and survive the metastatic journey. Transcription factors, such 

as Twist, Snai1, and ZEB1/2 (Reviewed in (11)) regulate both normal and oncogenic EMT. 

ZEB1 (zinc finger E-box binding homeobox 1) and ZEB2 (also known as SIP1) directly 

repress the adherens junction protein E-cadherin (12–14) and other genes involved in 

polarity and epithelial identity (15,16).

ZEB1/2 are post-transcriptionally controlled by the miR-200 family of miRNAs (17–19), 

and ZEB2 is indirectly controlled by the miR-221 family (20). Indeed, recent studies have 

identified the miR-200 and miR-221 families as differentially expressed in carcinomas, 

particularly in breast cancer (20,21). Specifically, the miR-200 family is high in the luminal 

breast cancer subtypes, while miR-221/222 is overexpressed in triple negative breast cancers 

(TNBCs), particularly those that have undergone EMT. These miRNAs control expression 

of many genes that define the EMT-like phenotype and likely affect tumor behavior and 

clinical outcome by influencing metastatic potential. Thus, in this review we focus on the 

opposing roles of these two miRNA families in controlling differentiation state or epithelial 

identity in breast cancer.

miR-200 protection of the epithelial phenotype

miR-200 family regulation of EMT in breast cancer

The miR-200 family of miRNAs is comprised of two polycistronic clusters – miR-200c and 

miR-141 on chromosome 12 and miR-200b, miR-200a and miR-429 on chromosome 1. 

miR-200a and miR-141 share a seed sequence, while miR-200b, miR-200c and miR-429 

also share a seed sequence, which differs from that of miR-200a/141 by one nucleotide. 

Because of their sequence similarity, the miRNAs are predicted to share gene targets; 

however, there is evidence that the two clusters control different regulatory networks even in 

the same model. In MDA-231 cells the miR-200bc/429 cluster induces G2/M arrest, while 

miR-200a/141 induces G0/1 arrest (22). Additionally, miR-200c directly targets and down-

regulates the transcription factor ZEB1, while miR-200a does not (23).

The miR-200 family was first discovered to directly target and down-regulate the E-cadherin 

transcriptional repressors ZEB1 and ZEB2, leading to restoration of an epithelial phenotype 

in breast cancer cell lines, characterized by an increase in E-cadherin expression, and 

decreased migration and invasion (17–19). Expression of the miR-200 family correlates with 

an epithelial-like phenotype in the National Cancer Institute (NCI) panel of 60 cancer cells 

lines (19), and suppresses EMT in several additional cancer models, including bladder (24), 

colorectal (25,26), and lung (27–30). Although genes encoding ZEB1/2 are the best-studied 

targets of the miR-200 family, the small consensus binding sequence of miRNAs results in 
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many bioinformatically predicted targets. The miR-200 family has now been confirmed to 

directly target other genes involved in various aspects of EMT. One aspect of EMT that has 

been particularly well studied is the increase in migratory and invasive capacity. Targeting 

and repression of the genes encoding ZEB1/2 by miR-200c and the resultant increase in E-

cadherin decreases migration and invasion; however, direct targeting of genes encoding the 

actin cytoskeleton associated proteins WAVE3 (31) and MSN (32), and the extracellular 

matrix component FN1 (32) also contribute to suppression of motility and invasion. The 

miR-200 family also targets two genes involved in cell cycle control, RND3 (33) and FOG2 

(34).

The power of miRNAs lies in their ability to target multiple genes that contribute to a 

pathway or phenotype. For instance, normal well-differentiated mammary epithelial cells 

exhibit hallmarks such as E-cadherin and hormone receptor expression, while poorly 

differentiated breast carcinoma cells loose these characteristics. When carcinoma cells revert 

towards a less-differentiated state, in addition to loosing expression of epithelial hallmarks, 

they also inappropriately gain expression of proteins that confer the ability to move away 

from the primary tumor when conditions are harsh (hypoxia, lack of nutrients, and build-up 

of waste products). The tumor cells must also be able to resist anoikis in order to survive 

detachment from the basement membrane.

Anoikis resistance is a relatively poorly understood and understudied aspect of EMT. 

Anoikis is apoptosis induced when cells lose attachment to their native extracellular matrix 

(ECM), and resistance to anoikis is required for cancer cells to survive as they move away 

from the primary tumor, and travel through the vasculature or lymphatics to metastatic sites. 

Data from our lab demonstrate that miR-200c suppresses anoikis resistance through direct 

targeting of NTRK2, the gene encoding TrkB (32), a receptor tyrosine kinase involved in 

neuronal development and differentiation. TrkB was first associated with anoikis resistance 

when it was isolated from a cDNA library screen designed to identify genes capable of 

conferring anoikis resistance to normal intestinal epithelial cells (35). TrkB is involved in 

anoikis resistance in breast cancer (32,35–38) and is specifically expressed in TNBCs that 

have undergone EMT, but not luminal A lines (32).

Resistance to chemotherapy is a critical aspect of tumorigenesis also associated with 

acquisition of an EMT phenotype. The miR-200 family has been found to be involved in 

maintaining sensitivity to two classes of chemotherapeutics to date, microtubule targeting 

agents, and DNA damaging drugs. In aggressive cancer cells resistant to taxanes, restoration 

of miR-200c increases sensitivity due to its direct targeting of TUBB3, the gene encoding 

class III beta tubulin (39,40). TUBB3 is a tubulin isoform aberrantly expressed in several 

types of carcinomas (41–43), including breast (44,45), that leads to resistance to taxanes 

(Reviewed in (46)). Additionally, the miR-200 family is down-regulated in MCF7 cells 

selected for resistance to cisplatin (47), or doxorubicin (48). Indeed, miR-200 expression 

correlates with sensitivity to EGFR blocking agents in bladder cancer, and restoration of 

miR-200 family members increased sensitivity to EGFR inhibitors in mesenchymal-like cell 

lines (49). Additionally, lower expression of miR-200c was observed in a panel of 39 breast 

cancer patients resistant to chemotherapy (48). The authors speculate that these effects may 

be due to the predicted targeting of the multidrug resistance gene 1 by miR-200c, but this 
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remains to be proven. Finally, miR-200c directly targets FAP-1, leading to restoration of 

sensitivity to CD-95 (Fas) -mediated apoptosis (50). Thus, the miR-200 family exerts multi-

level control over apoptosis in epithelial cells. The family promotes sensitivity to natural 

apoptotic stimuli, including loss of adhesion and Fas signaling, while also preventing 

resistance to several classes of therapeutic agents.

While not classically thought of as a characteristic of EMT, an overall decrease in miRNA 

abundance is found in aggressive cancer cells (51,52). Dicer, an enzyme involved in the 

maturation of miRNAs, is often low in cancers that have undergone EMT (53). While the 

mechanism remains to be elucidated, we demonstrated that restoration of miR-200c to 

TNBC cell lines causes an increase in Dicer protein (21). Since relatively high levels of 

Dicer and overall miRNA abundance are characteristic of normal epithelial cells, this is a 

unique mechanism through which the miR-200 family promotes an epithelial phenotype.

In addition to regulation of EMT, there is emerging evidence that the miR-200 family plays 

a role in epigenetic regulation and inhibition of stem cell-like qualities in breast, prostate 

(54,55), and colorectal cancer cells (26). Expression of both miR-200 family clusters is 

down-regulated in stem cells isolated from normal human breast, and murine mammary 

glands, as well as in stem cells isolated from breast cancer patients (56). Inhibition of 

miR-200 leads to an enrichment of the stem cell population, and up-regulation of the 

miR-200b direct target Suz12, a subunit of the polycomb repressor complex. Increased 

Suz12 leads to trimethylation and polycomb-mediated repression of the E-cadherin promoter 

(57). Another direct target, the gene encoding class III histone deacetylase, SIRT1, 

deacetylates histone H3 at the E-cadherin promoter, and miR-200 mediated repression of 

SIRT further relieves repression of E-cadherin (58). The miR-200 family also directly 

targets and represses Bmi1, allowing further repression of stemness (26). Additionally, 

expression of miR-200c inhibits clonal expansion of stem cells, and prevents tumor 

formation from patient-derived breast cancer stem cells transplanted into mice (56). Finally, 

two important stem cell factors, Sox2 and KLF4 have been found to be down-regulated 

following restoration of miR-200c (26). Thus, the miR-200 family controls multiple genes 

that repress cancer stem cells, leading to restoration of an epithelial phenotype and 

decreased aggressiveness. The genes and aggressive phenotypes repressed by the miR-200 

family are detailed in Figure 1.

The miR-200 family is highly expressed in luminal A breast cancer cell lines and lost in 

TNBC lines (21); however, data from primary and metastatic breast cancer samples are not 

as clear. Based on the cell line data, it was expected that the miR-200 family would be 

down-regulated in aggressive tumors and metastases. While this is true in some models, and 

restoration of miR-200 to a TNBC cell line prevents metastases (59), in other models the 

miR-200 family positively correlates with metastases (60,61). Consistent with the theory 

that miR-200c positively correlates with a well-differentiated phenotype, the miR-200 

family is very low in the poorly differentiated claudin-low subtype of breast cancer , while 

expression of ZEB1/2, vimentin, and Twist are high and these tumors are enriched for tumor 

initiating cells, suggesting that the miR-200 family must be down-regulated for formation of 

an aggressive subpopulation of tumor cells (62). However, while several profiling studies 

found that expression of the miR-200 family is lost between normal breast tissue and 
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malignant breast cancers (18,63) one profiling experiment (64), comparing luminal A, 

luminal B, basal-like and malignant myoepithelioma, revealed that while the miR-200 

family is highly expressed in luminal tumors, it is also highly expressed in basal-like tumors. 

Only malignant myoepitheliomas showed down-regulation of the miR-200 family, which is 

consistent with a strong EMT phenotype (64).

Expression of the miR-200 family in metastatic disease has been even more contested. 

While one group found the miR-200 family to be down-regulated between matched primary 

versus metastatic breast, colon, lung and bladder cancers (65), another showed that the 

miR-200 family is over-expressed in matched metastases, and that higher than median 

expression of several family members correlates with decreased progression free survival in 

estrogen receptor (ER) positive breast tumors (61). In contrast, high expression of 

miR-200b, and low expression of Suz12 can distinguish primary breast tumors from 

metastases, which express low miR-200b and high Suz12 (57). Further complicating the 

matter are two studies performed in syngeneic mouse mammary carcinoma models. In one 

study, using the 4T1 panel of cells lines, expression of miR-200 in a non-metastatic cell line 

increased metastasis (60). Forced expression of miR-200c and miR-141, or all members of 

the miR-200 family led to increased metastasis in a similar model, the 4TO7 cell line (61). 

These studies suggest that expression of the miR-200 family may induce mesenchymal to 

epithelial transition (MET) during the metastatic cascade. Induction of MET may be 

necessary for colonization of cells at the metastatic site, which would be consistent with 

increased expression of the miR-200 family. It is also possible that EMT is not required for 

metastasis in these models. Another possible explanation is that there are differences in the 

rate limiting steps of the metastatic cascade across models, which could affect the necessity 

of MET in colonization. Finally, regulated expression of miR-200 may be important for 

phenotypic plasticity, and may allow cells to transition between epithelial and mesenchymal 

states as needed.

miR-200 family in plasticity

There is mounting evidence that both EMT and MET are important in the progression of 

carcinomas, and that carcinoma cells exhibit increased plasticity, allowing them to transition 

as necessary. Both EMT and MET are required for proper development, and the role of the 

miR-200 family in transitions between the epithelial and mesenchymal states is becoming 

clear. During embryonic stem cell differentiation, the miR-200 family is down-regulated by 

Snai1 and Wnt signaling, and forced expression of miR-200 leads to cells stalling at the 

epiblast-like stem cell stage of differentiation (66). The miR-200 family is also regulated by 

c-Myc in differentiating embryonic stem cells (67).

Forced expression of miR-200c in epithelial cells of the developing mammary gland 

suppresses ductal growth (56), suggesting that plasticity is required for proper formation of 

the ducts. Similarly, forced expression of miR-200 in plastic, metastatic lung 

adenocarcinoma cells reversed plasticity, preventing the cells from undergoing EMT or 

metastasizing (68). Manipulation of ZEB1/2 and the miR-200 family in Madin-Darby canine 

kidney (MDCK) cells leads to EMT and MET, respectively, but the states remain plastic and 

can be reversed (69). miRNA profiling of embryonic stem cells, induced pluripotent stem 
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(iPSC) cells, differentiated cells and cancer cells revealed that the pluripotent stem cells 

formed two clusters, irrespective of the origin of the cells (embryonic versus induced). The 

miRNAs that distinguished these groups also differentiated normal cells from cancer cells. 

Expression of miR-92 or miR-200 family members in iPSCs changed their classification 

status, leading the authors to suggest that the subdivision in pluripotent stem cell states does 

not reflect their origin, but rather miRNA and gene expression network (70). Similarly, the 

miR-200 family is regulated during reprogramming of somatic cells into iPSCs (71). Thus, 

the miR-200 family, as well as EMT-inducing transcription factors, must be expressed in the 

proper order to allow differentiation of embryonic stem cells.

Regulation of the miR-200 family

The most potent regulators of the miR-200 family are ZEB1 and ZEB2, which have been 

demonstrated to target E-boxes in the miR-200 cluster promoters (72,73). Another well 

recognized EMT inducer, transforming growth factor beta (TGF-β), has also been shown to 

reduce expression of the miR-200 family in transformed human breast epithelial cells (74), 

murine mammary epithelial cells (75), prostate cancer cells (76), and canine renal MDCK 

cells, a model of the epithelial phenotype (18,77). Indeed, treatment with TGF-β leads to 

hypermethylation of the miR-200 promoters, potentially through miR-200a-mediated direct 

targeting of the histone deacetylase SIRT1 (74). Further study of the role of epigenetic 

regulation of the family revealed that the promoters are unmethylated in epithelial cells, and 

in cancer cells that express the family, but heavily methylated in fibroblasts and tumors that 

do not express the miR-200 family (78,79). Furthermore, the permissive epigenetic mark, 

histone H3 acetylation, is decreased at the miR-200 promoter in cancer cells lacking 

expression of the family (80), an epigenetic mark potentially influenced by miR-200a direct 

targeting of HDAC4. Together, this data indicates that while classical EMT-inducers control 

expression of the miR-200 family in tumorigenesis, epigenetic control is also important, and 

potentially forms feedback loops through miR-200 control of epigenetic regulators, 

including SIRT1, HDAC4, and Suz12.

Several other EMT inducers down-regulate the miR-200 family, including platelet derived 

growth factor (PDGF) (81), long-term treatment with the epidermal growth factor receptor 

(EGFR) inhibitor gemcitabine (82), and carcinogen induced tumorigenesis (83). 

Interestingly, treatment of pancreatic cancer cells with curcumin, or the analog CDF, along 

with gemcitabine lead to increased miR-200 family expression (81,84). Additionally, Akt 

isoforms leads to differential miRNA expression profiles. Expression of only Akt2 

dramatically decreases expression of the miR-200 family, while knockdown of Akt1 

induced EMT by reducing expression of the miR-200 family. The authors suggest that the 

expression of miR-200 family members depends on the ratio of Akt1/Akt2, rather than the 

overall activity of Akt (85). To date, the only known activators of miR-200 expression are 

the tumor suppressors p53 (86,87), p63, and p73 (88), and ERalpha (89). However, there are 

likely other positive-regulators of the miR-200 family.
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miR-221/222 suppression of the epithelial phenotype

miR-221/222 expression in breast cancer and other carcinomas

miR-221 and miR-222 are found on the X chromosome and are expressed from a single 

transcript. For many cancer types, miR-221/222 are considered oncomiRs, and are 

overexpressed in tumor compared to normal tissue of origin. This expression pattern holds 

true in breast (63), prostate (90), gastric (91), bladder (92), papillary thyroid carcinoma (93), 

colorectal cancer (94), melanoma (95), and acute myeloid leukemia (96). High miR-221/222 

expression is associated with increased tumor grade (97,98) and poor prognosis (99). High 

miR-221 is found in prostate cancer cell lines, where it is associated with aggressive 

phenotypes, such as androgen-independence and neuroendocrine differentiation (90).

Several studies have demonstrated that miR-221/222 directly target ERα (21,100,101). In 

breast cancer, miR-221/222 negatively correlate with ER status, and are more highly 

expressed in triple negative cell lines as compared to luminal (20,21,100) and the same 

holds true in clinical samples (21,102). Additionally, in the murine mammary tumor virus 

(MMTV)-c-myc mouse model of mammary carcinoma, miR-222 is increased during 

tumorigenesis (103). However, some controversy exists, since one study observed that 

although miR-221 is overexpressed in TNBCs and is associated with poor disease-free and 

overall survival, there was no difference in miR-222 expression between breast cancer and 

normal epithelial tissue (99). Additionally, another study found that miR-221 expression 

positively correlated with ER status in breast cancer patient samples, while miR-222 

expression did not change between ER positive and ER negative samples (104). Thus, as 

with the miR-200 family, although expression of miR-221/222 correlates strongly with 

specific phenotypes in vitro in breast cancer cell lines, more work is required to fully 

elucidate the role of the family in human tumors.

miR-221/222 in EMT and metastasis

Since miR-221/222 are often overexpressed in poorly differentiated, aggressive cancers, it 

stands to reason that these miRNAs play an active role in promoting EMT. Increasing 

miR-221 or 222 can affect various characteristics associated with EMT, including increased 

invasive capacity (90,105), and anoikis resistance (106). Low Dicer is characteristic of 

poorly differentiated cells and cells that have undergone EMT. In TNBC lines, miR-221/222 

directly target and repress Dicer1 (21), leading to the possibility that aberrant expression of 

miR-221/222 leads to decreased Dicer, which in turn leads to a decrease in overall miRNA 

abundance.

Long term mammosphere culture of MCF7 cells induces EMT, with the resulting cells 

displaying a basal B phenotype (107). The cells also exhibit increased expression of stem 

cell markers (CD44 + /CD24 − /low), and exhibited stem cell-like characteristics, including 

chemoresistance. qRT-PCR miRNA profiling demonstrates that miR-200c, −203 and 205 

are decreased, while miR-221/222 are increased in the mammosphere cultured cells, with 

miR-222 increased 20-fold (107). Thus, although further more exhaustive and rigorous 

genetic analysis of necessity and sufficiency remains to be performed, it appears that 

induction of EMT in luminal breast cancer cells involves decreased expression of the 
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miR-200 family and increased expression of miR-221/222. Although miR-221/222 are high 

in both basal A and B breast cancer, their expression is higher in the basal B subtype, which 

has a more mesenchymal phenotype (20), consistent with the role of miR-221/222 in EMT. 

Forced expression of miR-221/222 in luminal breast cancer cells causes a decrease in E-

cadherin and an increase in the mesenchymal marker vimentin (20). Luminal cells 

expressing miR-221/222 gained a more mesenchymal morphology and had increased 

migratory and invasive capacity. Conversely, inhibition of miR-221/222 in basal-like cells 

promoted MET (108). miR-221/222 promote a mesenchymal phenotype in part by directly 

targeting trichorhinophalangeal 1 (TRPS1), and keeping its levels low (20). TRPS1 is a 

transcriptional repressor that binds to GATA sites that can promote MET (20), and is 

underexpressed in breast cancers with poor clinical outcome (109). TRPS1 represses the 

mesenchymal transcription factor ZEB2 through a GATA site in its promoter. As ZEB2 is a 

repressor of E-cadherin, this provides a functional link between expression of miR-221/222 

and repression of E-cadherin in basal breast cancers (20,110).

miR-221/222 control of proliferation

miR-221/222 positively influence cellular proliferation in many types of cancers. While 

there are several mechanisms through which increased growth rate is achieved, the best 

studied is direct targeting of p27KIP1 (98,111), and p57KIP2 (112,113). In patient samples, 

miR-221 or miR-222 levels are often inversely correlated with p27KIP1 (111,114–116) or 

p57KIP2 (94,112). Increasing the expression of miR-221 or miR-222 causes increased 

proliferation in vitro (111,114), and increased tumor growth in xenograft tumor models 

(117). Conversely, antagonizing miR-221/222 results in decreased proliferation both in vitro 

(94) and in vivo (118). In one study, decreased tumor growth was achieved through in vivo 

administration of cholesterol modified anti-miR-221, which suggests that miR-221 can be a 

viable therapeutic target for the treatment of aggressive cancers (119).

Direct targets other than p27KIP1 and p57KIP2 can also mediate the proliferative effects of 

miR-221/222. In gastric cancer cells, the proliferative effects of miR-221/222 are partially 

due to their ability to directly target PTEN (105), and targeting of PTEN is also likely to 

play an important role in breast carcinomas. Additionally, miR-221/222 directly target 

ARH1 (120), a tumor suppressor protein decreased in many types of cancers (121–123). 

Loss of ARH1 results in increased proliferation, colony formation and invasion (120). Thus, 

miR-221/222 promote proliferation by suppressing targets that normally serve to repress 

proliferative pathways.

miR-221/222 in resistance to apoptotic stimuli

Overexpression of miR-221/222 serves to protect cancer cells against various forms of 

apoptotic stimuli, including chemotherapeutics, endocrine therapies, radiotherapy and 

detached growth conditions. MCF7 cells resistant to cisplatin have increased miR-221/222 

expression compared to the wild type cells (47). Antagonizing miR-221 in pancreatic cell 

lines causes increased apoptosis and sensitized the cells to gemcitabine (124). miR-221 and 

miR-222 are increased in taxol resistant cells, and addition of miR-221 to breast cancer cells 

results in increased survival in response to paclitaxel treatment (125). One of the 
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mechanisms through which miR-221/222 repress apoptosis is through direct targeting of 

pro-apototic genes, such as PUMA (126) and BMF (106).

Her2/neu amplified breast cancers tend to be resistant to endocrine therapy (127,128). 

miR-221/222 are high in breast cancers that are positive for Her2/neu, compared to 

Her2/neu negative breast cancers, and overexpression of miR-221/222 causes MCF7 cells to 

become tamoxifen resistant (129). miR-221/222 directly target p27KIP1 (114) and this is one 

of the mechanisms through which the cells become tamoxifen-resistant. In xenograft tumors 

that are resistant to tamoxifen, antagonizing miR-222 sensitizes tumors to tamoxifen (130). 

miR-221/222 directly target TIMP3, a tissue metalloproteinase inhibitor that normally 

inhibits tamoxifen resistant tumor growth. In breast cancer cells that have become resistant 

to tamoxifen through increased miR-221/222 expression, TIMP3 is repressed, and there is a 

resultant increase in the expression of metalloproteases ADAM17 and ADAM 10, as well as 

increased growth factor signaling (130).

While MCF7 cells treated with tamoxifen have slightly decreased levels of miR-221/222, 

cells treated with fulvestrant, either alone or in combination with E2, have increased 

miR-221/222 expression (131), likely because ER represses miR-221/222 (101), so 

degradation of ER after fulvestrant binding could relieve repression of miR-221/222. 

Inhibition of miR-221/222 activity causes decreased proliferation. Fulvestrant resistance is 

explained in part by the downregulation of p27KIP1 and p57KIP2 (111,112), and ER 

(100,101). Increased p-catenin contributes to fulvestrant resistance and E2 independent 

growth (132). Cells overexpressing miR-221/222 have increased nuclear β-catenin, 

corresponding to increased β-catenin-mediated transcriptional activity. TGF-β1 blocks 

proliferation in wild type MCF7s, but not the fulvestrant resistant cells (133,134). However, 

overexpression of miR-221 or miR-222 in wild type cells increases survival in response to 

TGF-β1, and antagonizing these miRNAs in resistant cells increases sensitivity (131). 

Therefore, it is possible that miR-221/222 are involved in switching the effect of TGF-β 

signaling from tumor suppressive to tumor promotional. The genes and phenotypes 

regulated by miR-221/222 are depicted in Figure 2.

Regulation of miR-221/222

There is a negative feedback loop between miR-221/222 and ERα. miR-221/222 directly 

bind to and down-regulate ERα, while ERα binds to estrogen response elements in the 

promoter of miR-221/222 and represses transcription (101). Other transcriptional repressors 

of miR-221/222 function in a cell-type specific manner. For example, in AML cells, the 

AML1 protein binds to the promoter of miR-221/222 and represses transcription (135). In 

melanoma cells, a transcriptional repressor, PLZF (promyelocytic leukemia zinc finger) 

binds to the promoter of miR-221/222 (136).

FOSL1 (Fra-1) is part of the AP-1 transcription complex and promotes invasiveness and 

metastatic potential of breast cancers (137–139). FOSL1 binds an AP-1 site upstream of 

miR-221/222 and promotes transcription (20). Activation of the RAS/RAF/MEK pathway 

increased expression of miR-221/222 in basal breast cancer cells via FOSL1 (20), and 

activation of the MAPK pathway also increases miR-221/222 expression [D. El-Ashry, 

Personal Communication].
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Interplay between the miR-200 and miR-221 families

Perhaps the most convincing evidence that these two families play an important role in 

epithelial plasticity in breast cancer comes from the White lab, in a study where breast 

cancer cells were forced to undergo EMT by being grown in mammosphere conditions. The 

resulting cells had decreased miR-200, and increased miR-221/222 (107). Collectively, as 

described above, these two families clearly exert opposing effects on polarity, migration and 

invasion, proliferation, apoptosis, and differentiation.

ZEB1/2 transcription factors promote a mesenchymal phenotype by repressing genes 

involved in polarity. Therefore, ZEB1/2 is detrimental to an epithelial phenotype, and it is 

essential that these genes remain suppressed in differentiated epithelial cells. While they are 

most definitely repressed at the promoter level, epithelial cells have evolved an additional 

layer of protection against their expression, which is miR-200 mediated repression at the 

post-transcriptional level. Conversely, miR-221/222 promote expression of ZEB2 indirectly 

through TRPS1, and therefore these miRNAs tend to only be expressed in cells that have 

undergone EMT (20).

miR-221/222 directly target and repress Dicer, while miR-200c increases Dicer by a yet to 

be identified mechanism (21). miR-221/222 are more highly expressed in TNBC (21,100). 

miR-103/107 have also been demonstrated to directly target Dicer (140); however, an 

inverse correlation between these miRNA and Dicer has not been as well documented as it 

has for miR-221/222 which are high in tumors in which Dicer levels are low (TNBC). Thus, 

miR-221/222 may keep Dicer levels low in poorly differentiated breast cancers (21). Since 

Dicer is required for the maturation of most miRNAs, this may explain why overall miRNA 

expression is lower in TNBC than luminal. Dicer is often low in cancers that have 

undergone EMT (53). Dicer is clearly lower in TNBC than adjacent normal breast epithelial 

cells, while in luminal A breast cancers the difference between tumor and normal is much 

less dramatic (Figure 3). Interestingly, TAp63 was recently discovered to suppress 

metastasis by positively regulating Dicer (141). It is possible that miR-200c increases Dicer 

through its ability to repress ZEB1, which upregulates deltaNp63 (142), a dominant negative 

inhibitor of TAp63.Consequently, the miR-221 and miR-200 families may control the global 

miRNA landscape in normal and cancerous cells by dueling for control of Dicer. Much 

remains to be explored to fully determine how the influence of these miRNA families over 

Dicer might control motility and metastasis in normal development and cancer.

Conclusions

The role of miRNAs in tumorigenesis and the power they wield with respect to phenotypic 

control and tumor behavior is just beginning to be understood. In this review we focus on 

two of the most dysregulated miRNA families in breast cancer, the miR-200 and miR-221 

families. The miR-200 family serves to protect the epithelial phenotype, while 

simultaneously suppressing EMT and tumorigenesis. The miR-200 family protects against 

migration/invasion, anoikis- and therapeutic resistance, and stem cell-like properties. 

Conversely, miR-221/222 promote a mesenchymal-like phenotype, and support 

tumorigenesis. Expression of miR-221/222 inhibits tumor suppressors and genes involved in 
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apoptosis, cell cycle inhibition, and miRNA processing. Both miRNA families impinge on 

two important pathways: EMT through ZEB1/2, and miRNA processing through Dicer.

These two miRNA families promote dueling phenotypes, thus they are coordinately 

regulated during cellular transformations such as EMT and MET (Figure 4). During 

oncogenic EMT the miR-200 family is strongly down-regulated, while miR-221/222 are 

highly up-regulated and the reverse is true during MET. This suggests that not only is each 

miRNA family important for induction of their respective phenotypes, but that the 

coordinated inverse regulation of these families is required to fully achieve an epithelial or 

mesenchymal phenotype and associated functional properties. In contrast to their now quite 

evident role in breast cancer, to date, these miRNA families have not been specifically 

examined in the normal human breast or mouse mammary gland, although some of their 

identified targets are clearly relevant in the normal gland.

Abbreviations

EMT Epithelial to mesenchymal transition

ZEB1/2 Zinc finger E-box binding homeobox 1/2

UTR Untranslated Region

MET Mesenchymal to epithelial transition

MDCK Madin-Darby Canine Kidney

iPSC Induced pluripotent stem cell

TGF-β Transforming growth factor beta

PDGF Platelet derived growth factor

EGFR Epidermal growth factor receptor

NCI National Cancer Institute

VEGF Vascular endothelial growth factor

ER Estrogen receptor

MMTV Murine mammary tumor virus
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Figure 1. 
Direct targets of the miR-200 family. Members of the miR-200 family directly target and 

down-regulate genes involved in a variety of processes that contribute to tumorigenesis and 

metastasis. References are included in the text.
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Figure 2. 
Direct targets of miR-221/222. miR-221/222 directly target and down-regulate genes 

associated with differentiation or tumor suppression. References are included in the text.

Howe et al. Page 21

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2015 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Dicer protein expression in luminal A and triple negative breast cancer. Formalin-fixed 

paraffin embedded sections of human breast cancers were stained for Dicer using ab5818 

polyclonal antibody (Abcam, Cambridge, MA). Two representative cases each of luminal 

and triple negative are shown in which adjacent normal glands are present in the same field 

of vision (top = luminal, bottom = triple negative) with adjacent normal tissue. Red arrows = 

tumor, black arrows = normal, 200X.
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Figure 4. 
Phenotypic consequences of miR-200 or miR-221/222 expression. In addition to the roles of 

miR-200 and miR-221/222 in protecting the epithelial or mesenchymal phenotype, 

respectively, they are also actively regulated during EMT and MET. Green indicates 

expression of the miRNA is associated with a less aggressive, epithelial phenotype, while 

red indicates the miRNA is associated with aggressive behavior.
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