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Abstract

Purpose—Our goal is to develop an accurate, automated tool to characterize the optic nerve 

(ON) and cerebrospinal fluid (CSF) to better understand ON changes in disease.

Methods—Multi-atlas segmentation is used to localize the ON and sheath on T2-weighted MRI 

(0.6 mm3 resolution). A sum of Gaussian distributions is fit to coronal slice-wise intensities to 

extract six descriptive parameters, and a regression forest is used to map the model space to radii. 

The model is validated for consistency using tenfold cross-validation and for accuracy using a 

high resolution (0.4 mm2 reconstructed to 0.15 mm2) in vivo sequence. We evaluated this model 

on 6 controls and 6 patients with multiple sclerosis (MS) and a history of optic neuritis.

Results—In simulation, the model was found to have an explanatory R-squared for both ON and 

sheath radii greater than 0.95. The accuracy of the method was within the measurement error on 

the highest possible in vivo resolution. Comparing healthy controls and patients with MS, 

significant structural differences were found near the ON head and the chiasm, and structural 

trends agreed with the literature.

Conclusion—This is a first demonstration that the ON can be exclusively, quantitatively 

measured and separated from the surrounding CSF using MRI.
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Introduction

Optic neuritis, from demyelination, is a sudden inflammation of the optic nerve (ON) and is 

marked by pain upon eye movement, and visual symptoms such as a decrease in visual 

acuity, color vision, contrast and visual field defects (1). Demyelination optic neuritis is 

closely linked with multiple sclerosis (MS) and many patients who present with optic 

neuritis will develop MS within 15 years (2). The optic nerve treatment trial showed that the 

majority of patients, but not all, recover vision after an episode of unilateral optic neuritis 

(3). Despite this, there is no current radiological biomarker of the ON that is well suited to 

predicting the visual outcome or even the eventual development of MS or can adequately 

characterize tissue evolution (axonal loss, atrophy) after an event of optic neuritis. 

Furthermore, therapeutic interventions can potentially help preserve and/or restore visual 

function if administered before ON axons are lost, i.e., during the ‘neuroplasticity’ window 

(4–6). It would be beneficial to understand the relationship between ON damage and 

diseases of the central nervous system, such as MS. However, characterization along the 

length of the ON still remains challenging. Visually, high-resolution MRI methods have 

been developed to provide an appreciation of the ON in health (Figure 1A) and in disease 

(Figure 1B). The zoomed, coronal reformatted images in Figure 1A and B also show that in 

patients with remote optic neuritis (Figure 1B inset), tissue atrophy is noted compared to the 

healthy nerve (Figure 1A inset). However, quantification of the degree of atrophy and even 

the distribution of expected, normal and healthy optic nerve sizes has not been well 

characterized. Therefore, the goal of this work is to develop an automated tool to measure 

the size of the ON and the surrounding cerebrospinal fluid (CSF) independently for 

estimating normal population variation and comparison among patient populations.

Early works used scanning-laser-tomography which only provided information about the 

optic disk (7). Optical coherence tomography (OCT) is an important biomarker for visual 

pathologies; yet, OCT only captures the retinal nerve fiber layer at the back of the retina (8). 

In fact, from OCT we understand the magnitude of axonal loss in optic neuritis (9) and the 

relationship with visual loss (10,11). We further hypothesize that gaining information about 

ON damage along the entire length of the nerve will give insight to “normal” areas of the 

nerve, and areas that are either at risk or already undergoing atrophy. Thus, 3D imaging 

techniques may offer a better platform for understanding disease pathology along the length 

of the ON but high-resolution imaging of the entire ON is challenging due to the small size 

and propensity for artifacts that arise from eye movement and orbital fat. Thus, data derived 

from MR and CT are largely used to identify lesions qualitatively sense (i.e., absence or 

presence enhancement) or marked with limited quantitative measures (i.e., single-slice 

cross-sectional area).
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Manual segmentation with “computer assistance” has been and remains the de facto 

standard process to quantitatively characterize the ON using MRI. Hickman et al. used 

contouring to identify ON cross-sections in a longitudinal analysis and revealed patterns 

consistent with acute inflammation followed by long-term atrophy (12,13). Combined 

conventional and magnetization transfer (MT) imaging studies using manual contouring of 

the ON volume have shown that ON degeneration is associated with persistent functional 

deficits (14) and that in acute optic neuritis, MT MRI is more sensitive than measures of 

atrophy in detecting disease-related changes (15). The use of fuzzy clustering algorithms has 

been proposed to differentiate healthy tissue and tumors (16). These studies have focused on 

ROIs consisting of the whole ON rather than capturing the cross-sectional variation along 

the entire tract. Shen et al. suggest limiting consideration to a single ON cross-section to 

limit resource requirements (17). Meanwhile, work toward automating segmentation of the 

ON has developed in the context of radiation therapy (18). Early “atlas–based” techniques 

(19,20) were mildly successful for segmenting the ON (21). To improve sensitivity and 

specificity, Bekes et al. (22) proposed a geometric method for semi-automatic ON 

segmentation, but indicated qualitative disagreements with expertly drawn labels. MRI has 

recently provided images whereby estimates of the ON and the surrounding CSF using 

manual observers have been accurate (23,24); we seek to automate this process. 

Segmentation of optic pathway gliomas has been attempted using a probabilistic tissue 

model (25). Recent efforts have also attempted to automatically segment the ON in MRI but 

did not isolate the nerve from the surrounding CSF or study the application in patients with 

expected ON atrophy (26). Recently, we have proposed multi-atlas segmentation pipelines 

for both CT (27) and MRI (28). The surrounding CSF is not differentiable from the nerve on 

CT, which is why we choose to focus this effort on high-resolution MRI, which when using 

a heavily T2-weighted, fat-saturated acquisition can visualize the dark optic nerve and 

surrounding CSF clearly (Figure 1). We therefore, propose an MRI–based analysis pipeline 

that 1) segments both the ON and CSF sheath together from the surrounding tissue, and 2) 

separates the nerve and CSF into two classes using intensity value information couched in a 

novel model of ON architecture. Importantly, this model takes into account the orientation 

of the optic nerve which may be oblique to the actual imaging plane.

Methods

MRI Acquisition and Summary of Analysis Approach

All MRI studies were performed with approval of the Vanderbilt Institutional Review Board 

and signed informed consent was obtained prior to data acquisition. Six healthy volunteers 

and 6 patients with multiple sclerosis concomitant with a noted clinical history of at least 

unilateral optic neuritis were enrolled in the study. Of the six patients one was male, ages 

ranged from 25 to 34 with an average age of 31. Controls consisted of 2 males while ages 

ranged from 22 to 33 with an average age of 29. Anatomical T2-weighted VISTA scans 

were obtained on a 3T Philips Achieva (Philips Medical Systems, Best, The Netherlands) 

using a 2 channel body coil for transmission and an 8 channel head coil for reception. After 

tri-planar localization, we acquired the T2-weighted volume in the axial plane. The VISTA 

sequence parameters were: 3D FSE (TR/TE/α = 4000ms/404ms/90°), FOV= 180 × 180 × 

42mm3, nominal resolution = 0.6 × 0.6 × 0.6mm3, SENSE factor = 2, fat saturation = SPIR, 
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and total scan time = 5:20. It should be noted that the TE is long due to the nature of the 

asymmetrically sampled k-space pattern of the VISTA (SPACE on Siemens, and CUBE on 

GE) acquisition but does provide excellent tissue:CSF contrast. We reformatted the data into 

the coronal plane and propose a model to fit the ON and surrounding CSF in the reformatted 

plane. The model is initialized using the result of a previously described multi-atlas 

segmentation protocol (28). We then fit the model to the ON using a conjugate gradient 

descent non-convex optimization method. A graphic outline of our proposed pipeline can be 

seen in Figure 2.

Proposed Model

To first approximation, the ON can be thought of as a cylinder (~2–4 mm diameter) inside a 

cylindrical sheath (~3–6 mm diameter), which is imaged at an oblique angle. On T2-

weighted MRI, CSF is brighter than nerve tissue such that the outer cylinder is white and the 

inner cylinder dark. Even using high-resolution methods as those proposed here with 

isotropic resolution ~0.6 mm, there are only a handful of voxels that span the ON (4–7) 

which are significantly partial volumed such that the resulting images appear to be blurred 

elliptical annuli (Figure 3).

We propose a difference of two Gaussians model to fit the intensity values of the ON and 

CSF sheath in the coronal plane.

[1]

where N(μ⃑, Σxy)is a bivariate normal distribution with mean vector μ⃑ = [μx μy] and 

covariance matrix Σxy:

[2]

I0 is an intensity scaling factor, eβ is a scaling factor to control the relative height of the 

inner Gaussian. Formulating the scaling factor as an exponential constrains the scaling term 

from becoming negative and forces the model to be a sum of Gaussians (rather than a 

difference) during optimization. σ2 scales the covariance matrix to change the relative width 

of the inner Gaussian. The covariance matrix is comprised of the following components:

[3]

σx and σy control the width of the model in the x and y direction respectively. 2/(1 + e−ρ) − 1 

is a correlation term which allows for ellipticity in the model. This is necessary due to the 

fact that the ON is not always perpendicular to the imaging plane and thus appears elliptical 

(Figure 3A) and heavily partial volumed (Figure 3B) compared to the true coronal (Figure 
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3C). This term is formulated as a sigmoid function such that the correlation is constrained in 

the range (−1,1), which improves stability during optimization.

In summary, the complete model is composed of eight terms: Θ = [σx, σy, σ2, I0, μx, μy, β, ρ]. 

Model error is defined as the sum of squared error between the model and the observed 

image in Equation [4]. Equation [5] is the derivative of the sum of squared error with respect 

to the set of parameters Θ.

[4]

[5]

For clarity, the partial derivatives for each parameter are shown in equations [6] through 

[11] and can then be used in Equation [5]. The derivatives for σy and μy are omitted as they 

are a direct substitutions into equations [6] and [9], respectively.

[6]

[7]

[8]

[9]

[10]

[11]
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Initialization

The center of the model is initialized at the centroid of the previously described multi-atlas 

segmentation labels in the coronal plane (28). To initialize σx and σy, profiles are taken 

superiorly and inferiorly across the image and two local peaks around the center of the ON 

labels are identified and used to estimate the spread in x and y as half the distance between 

the two peaks. If this fails, both parameters default to an initialization of 2. ρ is initialized by 

similarly finding intensity peaks along the two diagonals and measuring the width between 

the two peaks along each diagonal. ρ is then initialized as the difference between these two 

distances. We initialize σ2 to the experimentally found value of 0.6. β is initialized such that 

the scaling term eβ = 0.5. Finally I0 is found such that the maximum value of the model is 

equal to the maximum value of the input image.

Optimization

For every coronal slice that contained ON labels from the initial multi-atlas segmentation, 

the difference of Gaussian model is fit using an iterative conjugate gradient descent (29). 

The input to the conjugate gradient descent algorithm is a patch which is 9×9 mm (15×15 

voxels) centered at the centroid of the multi-atlas label. The non-linear optimization routine 

is a custom implementation in MATLAB R2013a (The MathWorks, Inc., Natick, MA, 

USA). Specific implementation details follow:

The patch is first normalized to the range [0,1]. The gradient is computed and its negative is 

used as the initial descent direction. The descent step size is found using a line search 

(iterative bracket search using cubic interpolation and bisection every fifth iteration). The 

line search is run for a total of 25 iterations. The step is taken and the conjugate direction is 

then chosen as the descent direction. Every eight iterations (because there are eight input 

parameters) the descent direction is reset to the negative gradient direction. Also, if the 

chosen direction is found to be an ascent direction, the direction is reset to the negative 

gradient. Convergence criteria: the magnitude of the gradient is less than 10−6; the change in 

the cost function is less than 10−12 between iterations. (Note that small gradients and non-

decreasing function values indicate proximity to function extrema.) Divergence criteria: 

algorithm exceeds 70 iterations; function values become increasing or undefined. If a 

divergence criteria is reached the algorithm is restarted (only once) using the last iteration as 

the initialization of the second attempt. This resets the search direction to the gradient 

descent direction, which can allow the optimization to bypass local minima.

Calibration

Synthetic data was generated to calibrate model parameters to the radius of the ON and 

surrounding CSF in physical space. A model of two concentric tubes was constructed 

(Figure 3) and a Monte Carlo simulation is used to simulate partial volume effects. The test 

images simulate 0.6 mm isotropic voxels, which cover an area 30 mm by 30 mm (50×50 

voxels). The model is rotated independently along x and y ranging from zero to 60 degrees 

rotation in 7.5 degree steps. The inner radius is varied from 0.4 mm to 3 mm in 0.1 mm steps 

and the outer radius varies from 0.5 mm to 4 mm in 0.1 mm steps. The CSF thickness is 

constrained to be at least 0.20 mm. Twenty five levels of Rician noise (30) were simulated 

which were experimentally determined to be visually similar to those observed in ON 
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images we have acquired. These combinations produced a training set of 1,250,964 images. 

Six model parameters [σx, σy, σ2, I0, β, ρ] are correlated to surrounding CSF and ON radius 

measurements through a random forest regression (31). The centroids are omitted as they are 

assumed to depend on field of view placement only.

Validation

To validate that the results obtained from the automatic segmentation match manual 

measurements, we acquired a higher resolution scan of a healthy control. We acquired a 

short-inversion time inversion recovery (STIR) scan with TR/TI/TE = 5000ms/200ms/33ms 

and 2 signal averages at 0.5 × 0.5mm2 with 2 mm slice thickness. The image was 

reconstructed at 0.15 × 0.15 mm2 for the measurements. This image was then down sampled 

to 0.6 mm isotropic and smoothed with a 5×5 voxel Gaussian filter with standard deviation 

of 0.25 voxels. Our algorithm is then applied to the down sampled version to obtain an 

automatic measurement which can be compared to manual measurements made on the 

higher resolution scans.

Clinical Application

A small pilot study was conducted to evaluate the viability of this tool in differentiating 

diseased and healthy ONs. Six controls were chosen at random from a population of 47 and 

six patients with MS who have a concomitant clinical history of at least one unilateral optic 

neuritis event. We chose the MS patients who demonstrated poorest visual performance as 

determined by the adjusted 1.25% binocular contrast visual acuity. These patients were 

chosen from a pool of 32 MS patients. Each patient and control data set was acquired as in 

the methods. Using the outlined analysis approach and relying on multi-atlas segmentation 

for initialization (28) to locate the centroids of the ONs in the coronal plane and determine 

whether or not a slice contained ON tissue, we calculated the ON radii at every coronal 

slice. The slice-wise measurements were interpolated to be the same length as the longest 

observed ON. The nature of the ONs allows for them to be present in a different number of 

slices from volume to volume. Interpolation more closely aligns corresponding parts of the 

ON across subjects. A three-element moving window median filter is also applied across 

slices to reduce noise in the measurements.

Results

Calibration

Synthetic data was utilized to calibrate the model parameters of the radii of two concentric 

tubes using Monte Carlo simulation to examine the impact of partial volume effects. Tenfold 

cross validation was performed on a random forest regression using fifteen trees. Fifteen 

was found experimentally to be the point of diminishing returns (R2 improved by less than 

0.01) with more trees and increased training time. The mean R2 of the predicted versus 

actual result of the testing set is 0.959 for the outer radius (CSF) and 0.958 for the inner 

radius (ON). The data density plots of these calibration results can be seen in Figure 4. 

These plots show the correlation between the predicted and true underlying radius of the 

model. Finally, another forest of fifteen trees was built using all of the training data to be 

used on clinical data.
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Validation

Validation proceeded by comparing manual measurement of the radii on high-resolution 

STIR acquisitions compared to the lower-resolution T2-weighted VISTA acquisition that 

was automatically segmented. Using the lower-resolution data, the automatic segmentation 

calculated the underlying inner radius (ON) to be 1.67 mm and the underlying outer radius 

(CSF) to be 2.93 mm. Using the STIR data (Figure 5, left panel) Manual measurements were 

taken along the visually determined approximate major and minor axes for the inner and 

outer radii. Manually, the inner radius was measured at 1.61 mm and 1.86 mm and the outer 

radius was measured at 2.85 mm and 3.26 mm indicating close agreement with the 

automated approach. Details of the measurements can be seen in Figure 5 right panels.

Clinical Application

We compared the average distribution of inner (ON) and outer (CSF) radii across a small 

cohort of healthy controls and MS patients with clinical history of optic neuritis. The 

distributions over slices of the two cohorts (healthy volunteers, dotted solid lines and MS 

patients, dotted lines) along the length of the ON and separated into outer (CSF) radius (top 

curves) and ON radius (bottom lines) are shown in Figure 6. Statistically the profiles differ 

closest to the globe and chiasm and remain relatively similar across healthy volunteers and 

patients in the middle segments. The shaded areas indicate regions in which the radii of the 

two populations are statistically different using a one-sample t-test at p<0.05. It is important 

to note that the regions where the outer radii differ are similar to the where the inner radii 

differ. The inner radii have statistical difference only on slices nearer to the globe.

Comparison with state-of-the-art clustering approach

The proposed model is quite complex and the nature of this problem justifies a complex 

solution. To demonstrate this we have attempted to utilize a commonly utilized method, k-

means clustering, to evaluate how a simpler solution will perform. Multi-dimensional k-

means clustering is performed using the intensity values and the distance from the centroid 

with 1000 replicates on 10,000 simulated images which are randomly chosen from the 1.25 

million simulated images used in the calibration section. To extract the radii the average 

distance from the centroid for the largest group of pixels for each class is used. The radii are 

then taken as the two smallest values as the largest value should be for the background class. 

The results of this evaluation can be seen in Figure 7. Total error is calculated as the sum of 

the inner and outer radii errors in quadrature. The two images with the least total error are 

shown in Figure 7A and 7B. Note that these images have no noise, high contrast and large 

radii. The two images with the highest total error are shown in Figure 7C and D. Note that 

these images have noise, obliqueness and 7D has a very small diameter. For both of these 

images one of the classes was found in the background which is why the radius 

measurements are so far off. The data density plots below these sample images show the 

results for all 10,000 images. The red line represents a line of best fit, which has a negative 

slope for the outer radius. The slope for the best fit line for the inner radius is 0.39 and −0.78 

for the outer radius. The inner and outer radius measurements have correlation coefficients 

of 0.23 and −0.17 respectively.
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Discussion and Conclusions

This is a first demonstration that the ON can be automatically and quantitatively measured 

and separated from the surrounding CSF in vivo using MRI. In simulation, the model was 

found to have an explanatory R-squared for both ON and CSF radii of greater than 0.95. The 

accuracy of the method was within the measurement error on the highest possible in vivo 

acquisition (Figure 5). In the pilot study, significant structural differences were found near 

the ON head and the chiasm. Structurally, this is not surprising, as OCT has shown axonal 

loss near the ON head, which we identify as being an area of diminished ON radii. Very few 

studies have shown atrophy of the nerve proximal to the chiasm, which lends weight to the 

need for a high-resolution imaging method to survey the entire nerve.

Our results are in agreement with previous studies on optic nerve and surrounding CSF radii. 

Geeraerts et al. showed correlation between optic nerve sheath diameter and intracranial 

pressure (32). Their measurements of ON diameter and ON sheath diameter were taken 

3mm posterior to the globe. They found a threshold of ON sheath diameter of 5.8 mm to 

differentiate between those with raised intracranial pressure and subjects without. They also 

found a mean ON diameter of 2.65mm. We replicated these measurements on the left and 

right eyes of our six subjects and six controls, yielding a total of 24 ON diameter 

measurements and 24 ON sheath diameter measurements. We found a consistently larger 

distribution for ON sheath diameter with a mean of 6.58mm with standard deviation of 

0.64mm. A mean ON diameter of 2.42mm with a standard deviation of 0.32 mm agrees well 

with their measurements. A good explanation for this discrepancy in measurement which 

was noted during our replication process is that taking measurements in this area very near 

the globe yields inconsistent results due to a prevalence of motion artifacts from ocular 

movement.

Yiannakas et al. measured the cross sectional area of the anterior portion of the ON and a 

posterior portion of the ON, split 9mm posterior to the globe. They found that the posterior 

portion of the ON was smaller than the anterior portion (24). As can be seen in Figure 6 this 

agrees with our results although the actual distribution of the ON radii along the length of 

the nerve appears to be more complex. They reported a mean cross sectional area in the 

anterior portion of the ON as 11.6 ± 2.2 mm2 and a mean cross sectional area in the 

posterior portion as 8.5 ± 1.7 mm2. Using the assumption that the ON is a tubular structure 

these cross sectional areas correspond to a range of radii of 1.73–2.10 for the anterior 

portion and 1.47–1.80 for the posterior portion. These numbers are close to our 

measurements but it is also important to note that measurements were made using both 

coronal and coronal-oblique slices and were found to have the same mean cross sectional 

area for both the anterior and posterior region to within 1/100th. To evaluate the validity of 

this finding we measure the average angle of the ON relative to a coronal slice for left and 

right ONs in our six patients and six controls. We found a mean angle of 30° ranging from 

10° to 49°. Using the cosine of the mean angle of 30° we can calculate that the radius and 

diameter measurements should be reduced by about 14% which indicates that the cross 

sectional area should be reduced by more than 26% which is larger than their reported error.
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There are a number of possible future directions that could lead to improved resolution and 

accuracy of the measurements. If the method were to be used on a different imaging 

resolution the model-physical space mapping would need to be recalibrated using an 

appropriate simulation framework. The current approach assumes that slices are independent 

which is a simplified framework and as such the measurements tend to be noisy across the 

length of the ON for an individual participant. In this work, we utilized a median filter to 

smooth this noise but constraining the model along the length of the nerve could address 

some of these issues and increase accuracy. More careful inter-slice analysis could improve 

model estimation and result in more accurate segmentation. The proposed method does 

account for bending of the ON but cannot deal with highly complex bends. Our testing 

(section Methods, subsection Calibration) included bending of up to 60 degrees off axis 

from the imaging plane. If the ON were to bend perpendicular to the imaging plane the 

model would no longer fit or had multi-angle or nonlinear bending between slices. The 

curvature of the nerve could be better accounted for in the interpolation step along the entire 

length of the ON. The interpolation step currently assumes even samples along the length of 

every nerve which is not the case. If the curvature of the ON were characterized it would be 

possible to better align each measurement which may reveal new ways to differentiate 

patient populations. Future work will improve upon these techniques to better understand 

ON shape and size and how these vary among populations.

All tools used and developed in this work are available in open source from their respective 

authors. The tools that implement the ON specific components of analysis are based on the 

Java Image Science Toolkit (JIST)(33) and Non-Local STAPLE (34). The ON/sheath 

characterization code is primarily written in MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States) and bundled into an automated program (i.e., “spider”(35)) 

that combines these tools using PyXNAT(36) for XNAT(37) and is available in open source 

through the NITRC project MASIMATLAB (http://www.nitrc.org/projects/masimatlab).
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Figure 1. 
An example of a healthy nerve (A) and an atrophied nerve (B) from the multi-atlas 

segmentation atlas subjects. In the coronal view, ON atrophy is apparent. Quantification of 

these structural difference is the target of the presented algorithm.
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Figure 2. 
The proposed algorithm for ON radii extraction. Multi-Atlas segmentation is used to locate 

the ON and sheath as a single labeled object. Using this result, we use the fact that the data 

are acquired isotropically to switch to a coronal plane where the proposed model is fit. The 

parameters are found through this model fitting, and then fed into a nonlinear regression tree 

to extract the underlying radii.
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Figure 3. 
Some examples of the model used to generate synthetic images. (A) shows a rendering of 

the model and how the imaging plane crosses the tubular structure creating an elliptical 

structure in the image. (B) illustrates an example synthetic image with no noise added and 

slight off axis rotation. (C) presents an example synthetic image which is on axis (with 

Rician noise).
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Figure 4. 
Calibration results for the random forest regression for the inner and outer radii from one 

fold of a tenfold cross validation on the 1.2 million synthetic images. The color scale 

represents data density calculated within a circle of radius 0.1. A five element 2-D moving 

window median filter was applied for smoothing. The isocontours show lines of constant 

data density. Note that data density is higher near the lower end for the inner radius and at 

the higher end for the outer radius, this is due to the width constraint on the synthetic 

images.
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Figure 5. 
The test volume slice used for validation is shown. The four images show the four 

measurements of inner and outer optic nerve diameter. This image was then down sampled 

and smoothed to match current in vivo imaging, and the proposed automatic measurement 

algorithm was applied. The automatic segmentation found the inner radius to be 1.673 mm 

and the outer radius to be 2.929 mm.
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Figure 6. 
Mean inner and outer optic nerve radii for the two six person sample populations tested 

interpolated to the same length as the longest sample. The shaded regions indicate where the 

outer radii are statistically different with p<0.05
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Figure 7. 
Results of evaluation of a simple k-means algorithm using intensity values and the distance 

from the centroid on 10,000 simulated images. (A) and (B) show the two best results, 

predicted radii from the k-means algorithm most closely matched the true underlying radii 

used to generate the image. The colored lines outline the pixels which were used for each 

radius measurement. In these images, the third (blue) class followed the edge of the image. 

(C) and (D) show the two worst results. The data density plots below show the results for all 

10,000 simulated images for the inner and outer radius with a red line of best fit to the data. 

The color scale represents data density calculated within a circle of radius 0.1. A five 

element 2-D moving window median filter was applied for smoothing. The isocontours 

show lines of constant data density. Note the scales on the y-axes.
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