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Abstract

Purpose—The inversion from the magnetic field to the magnetic susceptibility distribution is ill-

posed because the dipole kernel, which relates the magnetic susceptibility to the magnetic field, 

has zeroes at a pair of cone surfaces in the k-space, leading to streaking artifacts on the 

reconstructed quantitative susceptibility maps (QSM). A method to impose consistency on the 

cone data (CCD) with structural priors is proposed in order to improve the solutions of k-space 

methods.

Method—The information in the cone region is recovered by enforcing structural consistency 

with structural prior, while information in the non-cone trust region is enforced in order to be 

consistent with the magnetic field measurements in k-space. This CCD method was evaluated by 

comparing the initial results of existing QSM algorithms to the QSM results after CCD 

enhancement with respect to the COSMOS results in simulation, phantom, and in vivo human 

brain.

Results—The proposed method demonstrated suppression of streaking artifacts and the resulting 

QSM showed better agreement with reference standard QSM compared with other k-space based 

methods.

Conclusion—By enforcing consistency with structural priors in the cone region, the missing 

data in the cone can be recovered and the streaking artifacts in QSM can be suppressed.

Keywords

Quantitative Susceptibility Mapping; Conjugate gradient algorithm; Data fitting

INTRODUCTION

Quantitative Susceptibility Mapping (QSM) provides an MRI contrast mechanism capable 

of mapping the underlying tissue magnetic susceptibility, making QSM a useful tool for 
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scientific and clinical studies. The mapping requires solving a magnetic field-to-source 

inverse problem through a dipole deconvolution, which has attracted significant interests 

and has led to the design of fast and accurate deconvolution algorithms. Given the nature of 

MRI data, which is acquired in k-space and displayed in image space, there are naturally k-

space and image space methods used to solve this inverse problem.

Compared to image-space based methods (1–8), which are generally computationally 

expensive and slow, the k-space based methods are easier to implement and faster to 

calculate. Most existing k-space based methods focus on constraining the energy of the 

solution by means such as variations of truncated singular value decomposition (9–13), early 

termination in iterative solution reconstruction (11), or filter use to interpolate the missing 

data (11,14). Although it is desirable to lower the energy of errors in the reconstruction, 

these energy constraints do not discriminate error energy from signal energy and often 

improperly underestimate the strength of the signal.

In this paper, we present an enhancement method that aims to recover the signal energy of 

the solutions of k-space methods by incorporating sophisticate prior information related to 

the underlying susceptibility distribution. We showed that this enhancement method, which 

is applicable to any existing QSM algorithm, is effective in suppressing streaking artifacts 

and retains quantitative accuracy in numerical simulation, phantom experiment, and in vivo 

data when compared with reference standards.

THEORY

The relationship between a magnetic field f and a scalar susceptibility distribution χ may be 

expressed as:

(1)

where F and F−1 are the forward and backward Fourier transforms, respectively. 

 is a diagonal matrix representing the dipole kernel in k-space, with k 

being the k-space coordinate and kz being its projection along the direction of the B0 field. D 

may be regarded as a sampling density function that undersamples Fχ because D has zeroes 

at a pair of opposing conical surfaces at  (15–16). From the undersampled data, χ 

can be recovered: χ* = F−1D+Ff, where D+ is the Moore-Penrose pseudoinverse of D. 

Although there is a loss of information on the cones in Fχ*, two observations suggest that a 

full recovery of χ is possible. First, the number of non-zero unknowns in χ, i.e. unknowns 

that are not equal to zero, may be drastically reduced by applying a sparsifying operator, 

such as a gradient operator ∇, which changes the number of unknowns to the number of 

edge elements in χ. Second, a large portion of k-space is faithfully reconstructed in the 

trusted region, or non-cone region  (th is a threshold value). Indeed, if 

the locations of the edges are known, it is proven that an accurate solution of χ is available 

(17).
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Solving exclusively for the edge elements using a conjugate gradient algorithm

Here, we provide a method for improving the accuracy of k-space methods solutions using 

these two observations. According to the first observation, the susceptibility distribution χ 

may be succinctly expressed in a sparsified domain:

(2)

where U is a diagonal matrix having non-zero elements at locations corresponding to edge 

elements, and ω represents unknown strengths at those locations. According to the second 

observation, such a susceptibility distribution should be consistent with the faithfully 

reconstructed data in the trusted region:

(3)

where T is a binary mask, taking a value of one in the trusted region and zero otherwise, χ0 

is an initial result from any QSM method, F is the Fourier transformation, and ∇+ denotes 

the Moore-Penrose pseudoinverse of ∇. Eq.3 can be used to determine ω, and an edge 

matched susceptibility map can be recovered using χem = ∇+Uω. Since the missing data in 

the cone region is largely recovered from structural priors, we term this method Consistency 

on the Cone Data (CCD) with structural priors.

The normal equation of Eq.3 can be solved by using the conjugate gradient algorithm (CG) 

method. There are three favorable properties of using CG to solve Eq.3.

First, ω will only have nonzero elements at the edge locations dictated by U, effectively 

reducing the number of unknowns. This is because in the conjugate gradient algorithm, the 

candidate solution ω(i) at the ith iteration is repeatedly updated from the previous iteration 

by adding a new search direction, where the new search direction is obtained from the 

Krylov subspace Kr(A, b) = span{b, Ab, A2b, …, Ai−1b}, with A = (TF∇+U)HTF∇+U = 

U∇+HF−1TTF∇+U, and b = (TF∇+U)HTFχ0 = U∇+HF−1TTFχ0. It is noted that the Krylov 

subspace Kr(A, b) is actually spanned by the columns of U. Because U is diagonal and is the 

leading matrix for both A and b, zero diagonal elements in U will lead to zeros in ω.

Second, the number of iterations needed for full convergence is bounded by the number of 

non-zero elements in U. This is because A is a semi-positive definite, so the number of 

iterations needed for convergence is the number of distinct eigenvalues of A (18), which is 

bounded by the rank of A, which is smaller than the rank of U.

Third, even when the iterations are terminated before full convergence is reached, the 

solution may still be acceptable. This is because early termination of the conjugate gradient 

algorithm provides an implicit regularization (19).
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METHODS

The phantom experimental data and in vivo datasets were downloaded from the online QSM 

repository (http://weill.cornell.edu/mri/QSM/Online.zip). The associated parameters for 

preparation and imaging are briefly described below.

Numerical Simulation

A numerical brain phantom with a size of 256 × 256 × 98 was created based on an actual 

brain QSM. Constant susceptibility values are assigned to each of the different grey matter 

regions, which were manually segmented. These regions include the globus pallidus, 

caudate nucleus, putamen, thalamus, cortical grey matter, cerebrospinal fluid, and white 

matter, and their values were 0.19, 0.09, 0.09, 0.07, 0.04, 0, and −0.05 ppm respectively. 

After this, the magnetic field inhomogeneity was calculated according to Eq.1 and the field 

was converted to phase at 11 evenly spaced TE, with a first TE=2.6ms and a TE spacing of 

2.6ms. T2*-decay was not simulated. The signal intensities varied from 1 to 1.6 arbitrary 

unit (a.u.) in the parenchyma, and the noise standard deviation was 0.02 (a.u.) in the real and 

imaginary parts, leading to a signal-to-noise ratio (SNR) above 50 for all voxels.

Gadolinium Phantom Experiments

There were five balloons filled with gadolinium solution (Magnevist, Berlex Labrotories, 

Wayne, NJ) inside the 2% agarose gel phantom. The prepared susceptibility values of the 

gadolinium balloons were 0.05, 0.1, 0.2, 0.4 and 0.8 ppm. The MR imaging was performed 

at a 3T scanner (HDx, GE healthcare, Waukesha, WI) using a multi-echo gradient echo 

sequence. Other imaging parameters were: TE/ΔTE/#TE/TR/FA/BW = 5ms/5ms/

8/70ms/15°/480Hz/pixel, matrix size = 130×130×86, and voxel size =1×1×1 mm3. This 

phantom was scanned in 12 different orientations to obtain a reference standard using 

Calculation Of Susceptibility through Multiple Orientation Sampling (15). The first 

orientation was chosen as the reference orientation and subsequent scans were registered to 

it using FMRIB’s Linear Image Registration Tool (FLIRT) (20–21). The rotational angles 

ranged from 40° to 140°.

In vivo Human Brain Imaging

This human study was approved by our Institutional Review Board. One healthy subject 

volunteered for scanning at the same 3T scanner that was used to scan the phantom. The 

imaging parameters were: TE/ΔTE/#TE/TR/FA/BW = 5ms/5ms10/55ms/15°/260Hz/pixel, 

matrix size = 256×256×146, voxel size =.9375×.9375×1 mm3, and parallel imaging with a 

speed up factor of two. Similar to the phantom experiment, a reference standard using 

COSMOS was obtained by scanning this subject in five different orientations with respect to 

the B0 field. The first orientation was chosen as the reference orientation and subsequent 

scans were registered to it using FLIRT. The rotational angles ranged from 16° to 35°.

CCD Implementation

The field map was estimated from the multi-echo datasets using a nonlinear fitting algorithm 

followed by a magnitude image guided spatial phase unwrapping to resolve ambiguities 

caused by the limited dynamic range (1/ΔTE) (22), where the magnitude image was 

Wen et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://weill.cornell.edu/mri/QSM/Online.zip


obtained by taking the square root of the sum of the squares of all the echoes. After that, 

Projection onto Dipole Field was used for background field removal (23). To apply CCD, an 

initial QSM, χ0, was obtained from one of the existing QSM algorithms (2,6–7,9,11). U was 

determined by applying the gradient operator to the magnitude image and truncating the y% 

of voxels with the lowest gradient values. ω was then solved from Eq.3, where CG iterations 

started with zero as the initial solution and terminated when either the energy of the residual 

was smaller than 1% of the energy of measurement or when the number of iterations 

exceeded 40.

To account for potential error in the edge prior U, the edge matched QSM, χem, was 

combined with the original QSM χ0 in k-space:

(4)

where α is a parameter controlling the weights. This way, the final solution χ* is a weighted 

sum of χem and χ0, such that in the conical surface, the weight for χ0 is at the minimum 

(equal to 0), and the weight for χem is at the maximum (equal to 1). When the weight for χ0 

is at the maximum in the trusted region, the weight for χem is at the minimum.

Validation, Comparison, and Influence of Parameter Selection

The effectiveness of the CCD method was evaluated on simulated and experimental data by 

comparing QSM solutions before and after CCD enhancement. Four QSM reconstruction 

methods, two of which were k-space based and two of which were image-space, were used 

in total. Truncated k-space division (TKD)(9) and LSQR (11) were the two k-space based 

methods used. Note that in the LSQR QSM method, the normal equation of Eq.1 is solved 

using the LSQR solver proposed in Paige and Saunders (24). Compressed sensing 

compensated (CSC) inversion (2) and Morphology Enabled Dipole Inversion (MEDI) (6–7) 

were the two image-space methods used. The various parameters employed in these methods 

were either chosen from their respective original studies or set to the optimal values 

suggested by another previous work through exhaustive search (25). Accuracy was 

evaluated by calculating the normalized root mean square error (RMSE) with respect to the 

truth in numerical simulation and COSMOS results in phantom and in vivo imaging, 

respectively. Linear regression was also performed with respect to truth, prepared 

susceptibility, and COSMOS results in numerical simulation, phantom experiment, and in 

vivo imaging, respectively. In the human brain, only grey matter was included for both 

RMSE calculation and regression analysis to avoid anisotropic susceptibility in the white 

matter, and the grey matter was segmented by applying a threshold (χ = 0) on COSMOS 

QSM. The slopes and coefficients of determination (R2) from the regression analysis were 

recorded. All the calculations were performed on a personal laptop equipped with Intel i7 

quad-core 2.4GHz CPU and 8 gigabytes of memory. The reconstruction time, RMSE, slope 

and R2 were recorded for all the methods.
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In validation and comparison, th = 0.15, y% = 0 and α = 0.1 were used throughout the 

experiments. We further tested the influence of the parameters by adjusting th from 0.0 to 

0.65, y from 0 to 90, and α from 0 to 1 with equidistance.

RESULT

Numerical Simulation

The ground truth, TKD, LSQR, CSC, and MEDI reconstructions and the CCD enhanced 

results of the numerical phantom in image space and k-space are shown in Fig. 1 and 

supporting figure s1 (supporting figures can be found in the Supporting Material). The TKD 

and LSQR results appeared to be noisy in the axial plane compared to the ground truth, but 

the noise was suppressed with CCD (arrows in Fig. 1). The results of CSC and MEDI before 

and after CCD enhancement appeared similar. In the k-space view, there was substantial 

reduction of signal energy near the cone region in TKD, LSQR, and CSC, and the energy 

was markedly recovered with the CCD enhancement. The k-space views of the MEDI 

solution and the CCD enhanced MEDI solution were visually identical.

Gadolinium Phantom

The COSMOS, TKD, LSQR, CSC, MEDI reconstructed phantom QSM, as well as the 

results after CCD enhancement, are shown in image space and k-space in Fig. 2 and 

supporting figure s2. There were substantial streaking artifacts in the TKD and LSQR 

reconstructions, and the streaking was markedly suppressed with CCD. In the k-space view, 

the signal energy near the conical surface appeared to be amplified in TKD and suppressed 

in LSQR (arrows in Fig. 2). With CCD enhancement, the signal energy was consistent over 

the entire k-space. CCD also suppressed the streaking artifacts seen on the CSC result. The 

MEDI result and the corresponding CCD enhanced result appeared visually identical in both 

image-space and k-space.

In vivo Human Brain

The COSMOS, TKD, LSQR, CSC, and MEDI reconstructed in vivo brain QSM and the 

CCD enhanced results are shown in image space and k-space in Fig. 3 and supporting figure 

s3. The TKD, LSQR, and CSC results appeared to be noisy in the axial plane compared to 

the COSMOS results, and the noise was suppressed with CCD. In MEDI, the result appeared 

to be smoothed with CCD. There was a loss of cortical details across all the methods. In the 

k-space view, the signal energy near the conical surfaces appeared to be amplified in TKD 

and CSC and suppressed in LSQR (arrows in Fig. 3), but the signal energy consistency was 

improved after CCD enhancement.

Table 1 summarizes the reconstruction time and accuracy of the above results. CCD 

consistently reduced RMSE for all the methods except for MEDI in simulation, and 

improved R2 for k-space based methods. Regarding the calculation time, although CCD took 

longer than k-space based methods, it was only about 10% of the overall CSC calculation 

time and 30% of the overall MEDI calculation time in experimental data. The axial, sagittal, 

and coronal views of the above results are included in supporting figures, where the 

suppression of streaking artifacts can be better assessed.
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Influence of parameter selection

When th increased from 0 to 0.65, the RMSE showed a decreasing trend. Most of the 

reduction in RMSE was achieved before th reached 0.2. After that, the RMSE decreased 

slowly, but the susceptibility signal became underestimated, as shown in Fig. 4A.

There was a similar trend between α and RMSE. Most of the reduction in RMSE was 

achieved before alpha reached 0.2. After that, the RMSE almost stopped decreasing, but the 

image became over-smoothed, as shown in Fig. 4B.

The RMSE did not show great dependence on the choice of y%, especially in the range of 

10% to 80%. This is consistent with the image quality as shown in Fig. 4C.

DISCUSSION

In this paper, we presented a consistency on the cone data (CCD) enhancement method to 

reduce streaking artifacts on QSM by incorporating structural prior. Compared to the initial 

QSM, the CCD enhancement demonstrated improved quantitative agreement with ground 

truth and markedly improved image quality for k-space QSM methods, with a moderate 

computational time.

The CCD enhanced solutions outperform the other k-space based methods because CCD 

better accounts for the loss of information in dipole inversion. Fundamentally, CCD 

attempts to enforce consistency by data fitting with all available known information, which 

has three components: 1) the measured magnetic field, 2) the noise properties of the 

magnetic field, and 3) the structural information about the susceptibility. Correspondingly, 

CCD forces consistency across the three components. The data fitting is forced to be 

consistent with measured MRI data in the trusted region according to the dipole model and 

noise characteristics, and the susceptibility in the cone region (untrusted region) needs to be 

consistent with structural information. This way, the loss of information in the original 

dipole inversion problem is recovered by the introduction of the structural consistency.

In this process, the parameter th controls the size of the non-trusted region. In the non-

trusted region, the SNR of the field map may be low, which is expected because the dipole 

kernel suppresses signal, but not noise, in the cone region. th therefore provides an effective 

means to exclude data with low SNR. The parameter α controls the contribution of the edge 

matched QSM χem in the final QSM. When α = 0, the final QSM coincides with the initial 

QSM χ0 and often has streaking artifacts in k-space based methods. When α = ∞, the final 

QSM coincides with χem. In practice, it is very often that some edges on the susceptibility 

map are not captured by the prior U, so a large α tends to lead to over-smoothing. In this 

study, we empirically determined α = 0.1 is able to remove streaking without over-

smoothing.

Although CCD improved the k-space based methods to achieve image qualities similar to 

some state-of-the-art image-space based methods, CCD is different from current image-

space based methods in two major ways. 1) Constraints are applied differently. In CCD, the 

gradient support may be regarded as a hard constraint, i.e., χem is strictly spanned by the 
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gradient support. In contrast, the regularization employed in image-space based methods 

may be regarded as a soft constraint, as the strength of the constraint is dependent on the 

regularization parameter. 2) The computational burden is lower. CCD only requires solving 

a single linear optimization problem using conjugate gradient algorithm, and this conjugate 

gradient algorithm may be further accelerated by applying preconditioning to facilitate 

convergence (3). CSC and MEDI need to solve nonlinear optimizations. This generally 

involves solving a series of linear optimization problems, which is much more time 

consuming. Therefore, combining k-space based methods and CCD may be a time-efficient 

way to achieve image quality comparable to some image-space based methods.

We also noticed that in the conjugate gradient algorithm that only a few iterations are 

needed to converge to a good solution, which helps to avoid long calculation times. This 

may be attributed to the properties of the Krylov subspace that dictate the iterative updates. 

When solving Ax = b using CG, b may be expressed as a linear combination of eigenvectors 

vi of A: b = Σαivi, so . Therefore, directions corresponding to larger 

eigenvalues of A are preferentially searched for at earlier stages, improving the efficiency of 

the search. By modeling the susceptibility in the gradient domain where uniform regions 

have small values in U, the conjugate gradient algorithm visits search directions that tend to 

introduce variations in uniform regions at a later point. Therefore, early termination actually 

helped with the solution. This may also explain why the final QSM is not sensitive to the 

choice of y%, as the small values in U have little contribution when the iteration is 

terminated.

Conjugate gradient algorithm has been widely applied in numerical optimization and 

included in many QSM algorithms. The original LSQR method published by Paige and 

Saunders is a variation of the conjugate gradient algorithm that may have better numerical 

stability. However, the LSQR QSM method enforces data consistency only through the 

dipole model, which has low eigenvalues in the cone region, leading to low energy in the 

reconstruction as well. CG has also been employed in other image space based QSM 

methods as a subroutine to solve the regularized minimization problem (5–7).

The CCD method may be further extended to remove non-local image artifacts due to 

undersampling, such as in dynamic spiral or radial MRI. For example, in the temporal 

resolution acceleration with constrained evolution reconstruction (TRACER) algorithm for 

spiral MRI(26), only the first frame is fully sampled, and later frames use the first frame as 

the reference for reconstruction. So for TRACER, it may be possible for a CCD-like method 

to reconstruct the contrast changes in later frames using the edge information from the first 

frame. It is also possible to apply this method to dynamic CT data, such as in the prior image 

constrained compressed sensing (27) method for reconstructing dynamic CT. A CCD-like 

method might be able to utilize this prior data for reconstructing undersampled dynamic CT 

to reduce the ionizing radiation to patients.

It should be noted that here, we used a simple dipole model to account for measured 

magnetic fields in the human brain, where more sophisticated models, such as tensor (28), 

may be needed. The mismatch between model and data may explain the suboptimal 

performances (e.g. low R2) of different methods in the human brain. In addition, the success 
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of the CCD method hinges on the quality of the structural information. If the reference 

image for deriving U is overly smooth, the final reconstruction may also be over-smoothed. 

However, MRI is an excellent technique for depicting tissue structures. In addition to using 

the magnitude as the reference image, phase images may be used as well, as phase and 

susceptibility are strongly correlated in the Laplacian domain: , where 

 is the second order partial differential operator along the direction of the main magnetic 

field. The structural priors may be further improved by combining the magnitude and phase 

images (8).

CONCLUSION

We presented a CCD enhancement method to remove streaking artifacts on quantitative 

susceptibility images by enforcing consistency with known structural information in the 

dipole cone region. The CCD method is applicable to any existing QSM algorithms. It has 

been verified in simulation, experimental phantom, and in vivo brain imaging and has been 

shown to improve the image qualities of k-space based methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A comparison between QSM reconstructions before and after CCD enhancement in a 

numerical simulation. The first row shows the COSMOS results and the solutions of QSM 

algorithms. The CCD enhanced results are shown in the second row. The third and fourth 

rows show the sagittal k-space view of the corresponding results in the first and second row. 

The arrows indicate the signal variation near the conical surfaces.
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Figure 2. 
A comparison between QSM reconstructions before and after CCD enhancement in a 

gadolinium phantom. The first row shows the COSMOS results and the solutions of QSM 

algorithms. The CCD enhanced results are shown in the second row. The third and fourth 

rows show the sagittal k-space view of the corresponding results in the first and second row. 

The arrows indicate the signal variation near the conical surfaces.
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Figure 3. 
A comparison between QSM reconstructions before and after CCD enhancement in a human 

brain scan. The first row shows the COSMOS results and the solutions of QSM algorithms. 

The CCD enhanced results are shown in the second row. The third and fourth rows show the 

sagittal k-space view of the corresponding results in the first and second row. The arrows 

indicate the signal variation near the conical surfaces.
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Figure 4. 
Influence of the parameters on the CCD enhanced brain QSM. A) The change of RMSE and 

image quality over a range of threshold values. B) The change of RMSE and image quality 

over a range of alpha values. C) The change of RMSE and image quality over a range of y%.
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