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The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult
pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells them-
selves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previ-
ously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pan-
creatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from
embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptfla* and neurogenin 3-expressing (Ngn3™*) progenitors.
Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary sub-
population of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells re-
sulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally,
we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diag-
nosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunction-
ing pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight

into the histogenesis of pancreatic gastrin-expressing tumors.

astrinomas are endocrine tumors which secrete the peptide

hormone gastrin. They cause Zollinger-Ellison syndrome
(ZES), characterized by multiple duodenal-jejunal ulcers, diar-
rhea, and gastroesophageal reflux (1). Most gastrin-producing cells
are found in the adult gastric antrum and, to a lesser extent, in the
proximal duodenum in mammals. Intriguingly, most primary gastri-
nomas are found in the duodenum. The rest are mainly in the pan-
creas and are only rarely found in the stomach and elsewhere (liver,
lung, and ovaries) (2). Gastrinomas develop either sporadically or
hereditarily, as seen in patients with multiple endocrine neoplasia
type 1 (MEN1; disease identifier OMIM131100). MEN1 patients de-
velop multiple tumors in endocrine organs, primarily affecting
parathyroid glands, the pituitary, the pancreas, and the foregut.
Gastrinomas are the most common functioning tumors of the
gastroenteropancreatic axis in MENT1 patients (3, 4), displaying
multiple small lesions in the duodenum and, in rare cases, in the
pancreas. Sporadic gastrinomas are often solitary tumors occur-
ring both in the duodenum and in the pancreas, and the etiology is
poorly understood. Interestingly, somatic MENI mutations and a
loss of heterozygosity at the MENI locus have been detected in
approximately 30% of both sporadic duodenal and pancreatic
gastrinomas (5, 6). In addition, we have previously reported gas-
trin-expressing pancreatic tumors in about 15% of heterozygous
MenI mutant mice (7), confirming that MENT inactivation plays
a crucial role in the pathogenesis of gastrinomas.

Deciphering the cells of origin of tumors is important not only
for improved understanding of tumor biology but also for person-
alized tumor treatment with targeted therapy (8). Determining
the cells of origin of pancreatic gastrinomas is of special interest,
since gastrin-expressing cells are not found in the normal adult
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human or rodent pancreas. Several studies have described gastrin
expression in developing and neonatal mammal pancreases,
which decreases rapidly after birth (9-13). Analyses of extracts
from a neonatal rodent pancreas established that gastrin was fully
processed and active in the pancreas at this stage (10). Consis-
tently, using transgenic mice harboring the green fluorescent pro-
tein (GFP) gene under the control of the mouse gastrin promoter,
Takaishi and colleagues demonstrated that GFP expression could
be targeted to pancreatic cells in embryonic and neonatal pancre-
ases until 2 days after birth (14). Passaro et al. postulated that stem
cells formed in ventral pancreatic buds could be the cell of origin
of pancreatic gastrinomas found in the gastrinoma triangle, based
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on the clinical features of the tumors (15). Indeed, pancreatic
endocrine cells derive from the differentiation of neurogenin
3-expressing (Ngn3™) progenitors, while gastric and duodenal
gastrin-expressing cells are also derived from endocrine progeni-
tors expressing Ngn3 in the corresponding tissue (16). This sug-
gests that pancreatic gastrin-expressing cells may also arise from
Ngn3* pancreatic endocrine progenitors. Recently, Suissa et al.
(17), using different mouse models and cell lineage tracing, re-
ported the existence of embryonic and perinatal gastrin-express-
ing cell populations in the pancreas and ascertained that they were
a distinct cell lineage derived from pancreatic Ngn3™ progenitors.
However, their role in pancreatic gastrinoma development has
not been addressed.

It is worth mentioning that several previous attempts to gen-
erate mouse gastrinoma models were unsuccessful. Neither the
use of a gastrin promoter-driven simian virus 40 (SV40) large T
antigen (18) nor Men1 disruption in villin-expressing gastrointes-
tinal cells gave rise to gastrinoma development in the mouse (19).
Altogether, the observations described above prompted us to bet-
ter study gastrin-expressing cells in the pancreas and search for
alternative ways to determine the cellular origin of pancreatic gas-
trinomas.

MATERIALS AND METHODS

Human patient samples. The study was conducted in accordance with the
guidelines in the Declaration of Helsinki, and the use of all patient tissue
specimens was carried out according to French laws and regulations.

Animal study approval. All animal maintenance and experiments
were performed in accordance with the animal care guidelines of the Eu-
ropean Union and French laws and were validated by the local Animal
Ethic Evaluation Committee (protocol CLB 2010/016).

Mouse studies. Ngn3'"* knock-in mice were generously provided by Jan
N. Jensen (20). The tetO-cre mouse line [B6.Cg-Tg(tetO-cre)1Jaw/] MGI:
2679524] was purchased from Charles River France. The Menl//lox
-RIP-Cre™ (BMenl knockout [KO]) (21), Menf10%_Gly-Cre" (aMenl
KO) (22), and R26°Yf¥ mouse lines have already been described (23). Ptfla-
Cre knock-in mice (24) were generously provided by Christopher V. E.
Wright.

IHC and IF. Neonate and adult pancreases were fixed in neutral buff-
ered formalin (Lilly’s fixative) for 2 h at room temperature and for 18 h at
4°C, respectively, and then embedded in paraffin. Serial sections of 3 pm
were prepared, mounted on Superfrost Plus glass slides, and subjected to
deparaffinization and rehydration. Immunostainings were performed as
previously described (25). Briefly, endogenous peroxidases were
quenched in 3% H,O, solution for 30 min at room temperature. Heat-
induced epitope retrieval was performed by immersion in antigen-un-
masking solution (catalog no. H-3300; Vector Laboratories) in a micro-
wave oven for 15 min. After blocking with antibody diluent (Dako),
sections were incubated overnight with a primary antibody. For immu-
nofluorescence (IF), stainings were revealed with a Cy3 or Cy5 tyramide
amplification kit (PerkinElmer), according to the manufacturer’s instruc-
tions, with prior incubation with the appropriate biotinylated secondary
antibody or incubation with appropriate Alexa Fluor 488-, 555-, or 647-
coupled secondary antibodies (Life Technologies) for 1 h. For immuno-
histochemistry (IHC), after incubation with the primary antibody, bio-
tinylated secondary antibody was applied for 1 h and revealed using the
avidin-biotin complex (ABC)-3,3'-diaminobenzidine system (Vector
Laboratories). Images were captured on either a Leica DRMB epifluores-
cence microscope (Leica Microsystems), a TCS-SP5 confocal microscope
(Leica Microsystems), or a Zeiss 780 confocal microscope. Cell counting
was manually performed on multiple-channel pictures with the Image]
cell counter module (U.S. National Institutes of Health, Bethesda, MD).
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The data on the graphs and the results of counting are represented as
means * standard errors of the means.

Antibodies. Antigastrin antibody (Novocastra; Leica Biosystems) rec-
ognizing nonsulfated (I) and sulfated (IT) gastrin 17 as well as gastrin 34,
antigastrin antibody (serum 2717; Jens F. Rehfeld), antigastrin antibody
(catalog no. sc-7783; Santa Cruz) recognizing gastrins 17, 34, and 71,
antiprogastrin antibody (rabbit polyclonal antibody; a kind gift from Julie
Pannequin), and anti-Pax4 antibody (a kind gift from Beatriz Sosa-Pineda
[26]) were used in the study (see Table S1 in the supplemental material for
a detailed description of all antibodies used in the study). Donkey second-
ary antibodies coupled with either Alexa Fluor 488, 555, or 647 were used
(Life Technologies, Jackson ImmunoResearch). For IHC or immunoflu-
orescence with tyramide signal amplification, biotinylated secondary an-
tibodies from horse or donkey were used (Vector Laboratories). Negative
controls were conducted by omitting primary antibody incubation. For
the gastrin antibody from Santa Cruz, controls were conducted by incu-
bating the antibody with the corresponding peptide (catalog no. sc-7783
P; Santa Cruz).

Serum gastrin measurement. The concentration of gastrin in serum
from mice was measured with a highly sensitive gastrin radioimmunoas-
say (RIA) (27). Due to the small serum volume (<50 pl), conventional
gastrin RIAs could not be used. The supersensitive RIA (based on anti-
body no. 921325 from the J. F. Rehfeld laboratory) has a detection limit of
1.0 pmol of gastrin per 15 pl of sample in the incubation mixture, and the
cross-reactivity with cholecystokinin (CCK) is minor (<10%), with an
intra-assay coefficient variation of 8%. Note that CCK circulates at a 10-
fold lower concentration than gastrin.

PCRs. Mouse islets were purified using the standard collagenase P
protocol (Roche). Total RNA was isolated from adult C57BL/6] mouse
tissues (Charles River) using an RNeasy minikit (Qiagen). Standard re-
verse transcription-PCRs were performed (annealing temperature, 60°C;
40 cycles) using the following primers: for gastrin, forward (Fw) primer
5'-AACAGCGCCAGTTCAACAAG-3' and reverse (Rv) primer 5'-AAG
TCCATCCATCCGTAGGC-3', for cholecystokinin, Fw primer 5'-TGCT
AGCGCGATACATCCAG-3"and Rv primer 5'-ATCCATCCAGCCCAT
GTAGTC-3', for GIP, Fw primer 5 -TTTCCCTGAGATTGCCCTGC-3'
and Rv primer 5'-CGCAGAGGGGACTTTCATCA-3', for insulin 2, Fw
primer 5'-GCAGCACCTTTGTGGTTCCC-3" and Rv primer 5'-TGCAG
TAGTTCTCCAGCTGG-3', and for the TATA box binding protein (Tbp)
gene, Fw primer 5'-CCCTATCACTCCTGCCACACC-3" and Rv primer
5'-CGAAGTGCAATGGTCTTTAGGTC-3'.

RESULTS

Pancreatic gastrin™ cells represent transient subpopulations of
alpha and beta cells at birth. We first tried to better characterize
the population of mouse neonatal pancreatic gastrin-expressing
(NPG) cells. To achieve that aim, we used different gastrin anti-
bodies that recognize different forms of processed gastrin pep-
tides. The gastrin transcript encodes the progastrin immature pep-
tide that is processed by cleavage and other posttranslational
modifications, giving rise to different mature peptides (gastrin 34
and gastrin 17) and immature gastrin peptides (gastrin 71) (28).
Thus, the presence of the different gastrin peptides is highly de-
pendent on the expression and activity of the key enzymes neces-
sary for its processing. We used the Novocastra antigastrin anti-
body widely used by pathologists for the diagnosis of gastrinomas.
Both this antibody and the homemade serum 2717 recognize gas-
trins 17 and 34. The SCBT antibody recognizes gastrins 17 and 34,
as well as the gastrin 71 precursor. Immunofluorescence (IF) anal-
yses with Novocastra antigastrin antibody demonstrated that scat-
tered cells with positive cytoplasmic staining could be detected in
the pancreas of mouse neonates (Fig. 1A). We quantified the pro-
portion of these NPG cells relative to the total endocrine cell pop-
ulation at birth by performing double IF staining for gastrin and
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FIG 1 Neonatal gastrin-expressing cells represent subsets of alpha and beta cells. (A) IF colocalization of gastrin and chromogranin A, insulin, or glucagon in the
pancreases of newborn wild-type mice (3 = n = 6 mice). Magnified views of the area with the dotted outline are shown on the right. Bars = 20 wm. (B)
Representative IHC stainings for gastrin and CCK in wild-type mouse pancreas and duodenum at birth. Magnified views of the area with the dashed outline are
shown in the middle panel. Bars = 50 wm. (C) Representative IHC staining for gastrin in wild-type mouse pancreas at E12.5 and E14.5 (n = 3 mice of each age).
(Insets) Magnified views of the area with the dashed outline. Bars = 50 pm. (D) Percentage of gastrin-expressing cells (3 = n < 7 mice) expressing glucagon,
insulin, or any of the pancreatic hormones (Cocktail) (see Results) at birth in wild-type mouse pancreas. DAPI, 4',6-diamidino-2-phenylindole; Gas, gastrin; Ins,

insulin; Glu, glucagon.

chromogranin A, a marker of endocrine cells (Fig. 1A). The NPG
cell population represented 4.3% = 0.1% of the total endocrine
cell number at postnatal day 0 (PO) but became undetectable at P7
(data not shown), consistent with previous results reported in the
literature (17, 29). We noticed that in the normal adult mouse
pancreas, weak expression of both gastrin and progastrin was de-
tected in alpha cells with one of the antigastrin antibodies used in
this study (SCBT) (see Fig. S1A in the supplemental material) and
antiprogastrin antibody (from Julie Pannequin) (see Fig. SIB in
the supplemental material), with both antibodies giving rise to
positively stained cells in the antrum and proximal duodenum
(data not shown). Moreover, the gastrin transcript but not the
cholecystokinin transcript was also detected in RNA isolated from
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adult mouse pancreas (see Fig. S1C in the supplemental material).
The data support the existence of either residual gastrin expres-
sion or a differently processed gastrin peptide, possibly gastrin 71,
in adult pancreatic alpha cells on the basis of the specificity of the
antibody used. The related peptide hormone CCK was not ex-
pressed at PO in the pancreas but was detectable in the duodenum
at birth, as was gastrin (Fig. 1B), confirming that there was no
cross-reaction with CCK by the antigastrin antibody used in this
study. Next, we checked the existence of gastrin-expressing (gas-
trin™) cells in the developing mouse pancreas. Gastrin™* cells were
readily detected but rarely at embryonic day 12. 5 (E12.5), and the
population was markedly increased at E14.5 in the developing
pancreas of wild-type mice (Fig. 1C).
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Furukawa and colleagues previously observed that some gas-
trin™ cells were also positive for insulin staining using the restain-
ing method (12). By double IF staining, we could indeed detect
rare cells expressing both gastrin (Novocastra antibody) and in-
sulin (Fig. 1A and D), accounting for 4.4% * 1.8% of total NPG
cells, while most NPG cells were negative for insulin. Since we
observed that most NPG cells localized to the periphery of devel-
oping mouse endocrine islets, where most alpha cells reside, we
sought to determine if these NPG cells could express glucagon.
Indeed, a very high proportion (85.5% % 7.3%) of NPG cells was
also found to express glucagon (Fig. 1A and D). Thus, it appears
that NPG cells represent subpopulations of both developing alpha
and beta cells. We performed double staining of gastrin with other
pancreatic hormones, and we found that somatostatin-expressing
cells did not express gastrin at PO (see Fig. S2 in the supplemental
material). In order to identify cells expressing only gastrin and
none of the other pancreatic hormones, we performed double
staining with gastrin antibody and a cocktail of pancreatic hor-
mones (insulin, glucagon, somatostatin, and ghrelin). A very
small proportion (3.3% * 1.3%) of gastrin-expressing cells was
indeed negative for the hormonal cocktail (Fig. 1D).

Pancreatic gastrin™ cells originate from pancreatic progeni-
tors within the developing pancreas. Considering that all alpha
and beta cells are derived from Ngn3™" endocrine progenitors, we
suspected that NPG cells might also be derived from the differen-
tiation of pancreatic progenitors, as virtually all NPG cells ex-
pressed either glucagon or insulin. In order to determine if NPG
cells were derived from pancreatic progenitors instead of a result
of the migration of gut progenitors or gut differentiated cells, we
performed lineage-tracing experiments with Ptfla-Cre*-R26°"™"
mice, since during development Ptfla-expressing cells give rise
only to pancreatic acinar, ductal, and endocrine cells (24) (Fig.
2A). Using double IF staining, 61.3% = 4.1% of the NPG cells
were found to also express the yellow fluorescent protein (YFP)
reporter in Ptfla-Cre™-R26°"** mice (n = 3 mice) (Fig. 2B), con-
firming our hypothesis. Similar results were obtained when the
proportion of alpha and beta cells expressing the YFP reporter was
counted, indicating that the Cre used was not 100% efficient in the
targeted cell population (data not shown).

We next genetically traced the progeny of Ngn3™ pancreatic
endocrine progenitors using Ngn3""”''-tetO-Cre*-R26°""
mice (Fig. 2A). Consistent with the findings of Suissa et al. (17),
YFP expression could be detected in 10.87% = 5.46% of NPG
cells from these mice (Fig. 2B), with a similar YFP expression
rate being detected in alpha cells from the same mice. We no-
ticed that in wild-type neonatal mouse pancreases, all the gas-
trin™ cells expressed menin protein at the same level observed
in other islet cells (Fig. 2C). We then analyzed Men 1//1ox.
Ngn3""""4_tetO-Cre" -R26°"™" mice, where the Men1 gene can
be disrupted in Ngn3-expressing cells and which are referred to
as PancEndoMenl KO mice. Menin expression was lost in
about 20% (specifically, 20.2% = 4.7%) of NPG cells from Panc-
EndoMenl KO mice (Fig. 2C), further confirming the above-pre-
sented cell-tracing data obtained using YFP. Our results indicate
that NPG cells are derived from the pan-pancreatic (Ptfla™) and
pancreatic endocrine (Ngn3™) progenitors. Taking these results
together, we define, for the first time, NPG cells to be temporal
subpopulations of either glucagon-expressing or insulin-express-
ing cells, with pancreatic progenitors being their common cell of
origin.
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Perinatal pancreatic gastrin-expressing cells display a dis-
tinct molecular signature. To study the relation between NPG
cells and duodenal G cells, we compared the protein expression
profiles of several factors known to be expressed in these cells.
Analyses of the transcription factors expressed by NPG cells
showed that they displayed high levels of MafB expression, and
some also expressed low levels of Pdx1 at PO, whereas they did not
express MafA, Pax4, Cdx2, or Ngn3 (Fig. 3A). Interestingly, at PO
duodenal G cells displayed an MafB™, Pdx1Migh1ow  MafA ™,
Pax4™*, Cdx2 /"% expression profile (Fig. 3B), showing that they
are a cell population distinct from NPG cells.

Mouse pancreatic gastrin-expressing tumors develop upon
Menl disruption in both Ngn3™* pancreatic progenitors and in-
sulin- or glucagon-expressing cells. Having identified that NPG
cells were derived from pancreatic progenitors, we hypothesized
that the pancreatic progenitors and their derivatives, including
NPG cells, could be among the cells of origin of pancreatic gastri-
nomas. To test this hypothesis, we examined aged mice with Men1
disruption in Ngn3™ progenitors. Histological analyses of pancre-
ases dissected from aged PancEndoMenl KO mice showed that
12-month-old mutant mice displayed a large amount of endo-
crine lesions. Tumor lesions exhibited a complete loss of menin
expression, as expected (Fig. 4A), due to Ngn3-Cre-mediated gene
disruption in pancreatic endocrine progenitors, with most of
them being positive for insulin staining by IHC (the detailed data
concerning the analysis of other islet tumors will be published
elsewhere). Interestingly, by using gastrin antibody, several tu-
mors were positively stained (Fig. 4A), whereas other adjacent islet
tumors were not, and CCK was not detected with two different
antibodies in these gastrin-immunoreactive tumor cells (data not
shown). The frequency of gastrin™ lesions in the PancEndoMen1
KO mouse model is reported in Table 1.

Unexpectedly, we found that gastrin® tumors also expressed
insulin (insulin ™) with a much lower intensity than other insulin™
tumors negative for gastrin and other hormones (Fig. 4A; see
also Fig. S3A in the supplemental material). Similar results
were obtained when we studied the occurrence of gastrin™ le-
sions in PancMenl KO (Men™"°*_pPtfla-Cre™) mice, but a
higher proportion of analyzed mice (8/9) displayed pancreatic
gastrin © tumors (Fig. 4B and Table 1). The higher percentage of
gastrin " lesions in the latter mice than in the PancEndoMenl KO
mice most likely resulted from the better Cre efficiency in Panc-
Menl KO mice, since we observed 3-fold more pancreatic endo-
crine cells expressing the reporter at birth in Ptfla-Cre*-R26°"™
mice than Ngn3""""-tetO-Cre"-R26°""" mice (data not shown).
Since NPG cells coexpress insulin or glucagon at birth, we next
sought to determine whether perinatal Menl disruption specifi-
cally in insulin™ or glucagon™ cells led to gastrin™ tumor devel-
opment. Careful analysis of menin-deficient lesions from
Men""*_Rip-Cre (BMenl KO) mice at 12 months of age re-
vealed the occurrence of gastrin™ lesions (Fig. 4B). The cells ex-
pressing gastrin in tumors also expressed insulin but not gluca-
gon, as demonstrated by triple IF staining (Fig. 4C; see also Fig.
S3A in the supplemental material). Three out of four analyzed
BMenl KO mice developed at least one gastrin® tumor, with a
total of 5 lesions out of 106 lesions analyzed being gastrin* (Table
1). Molecular characterization of gastrin* tumors from PancEn-
doMen1 and BMenI KO mice demonstrated that gastrin-express-
ing tumors were Pdx1 ™", consistent with a gastrin beta cell origin
of these tumors (Fig. 4D). Nevertheless, Ki67 analyses did not
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reveal any difference in proliferation from that of other insulin-
expressing tumors (see Fig. S3B in the supplemental material). In
parallel, the same analyses were also carried out in the mutant
mice where the Men1 gene was specifically disrupted in glucagon™
cells (aMenl). All the glucagon-expressing lesions in 12- to 18-
month-old aMenI KO mice were positive for gastrin detection
with the antigastrin antibody (SCBT) but negative for progastrin
detection with a progastrin antibody (homemade). When using
other gastrin antibodies, we observed an occurrence of gastrin™
lesions similar to that found in BMenl KO mice (Table 1). To
homogenize the data, only those lesions revealed to be positive by
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the gastrin antibody used in the clinic (Novocastra) were consid-
ered gastrin™ and are included in Table 1. We additionally mea-
sured the concentration of gastrin in the serum of 12-month-old
PancEndoMenl and BMenl KO mice. We did not detect signifi-
cantly elevated serum gastrin levels in mice presenting with pan-
creatic gastrin™ tumors, possibly reflecting the nonfunctionality
of these lesions (see Fig. S3C and D in the supplemental material).

Gastrin-expressing cells can be seen in a substantial number
of human islet tumors that were not diagnosed as gastrinomas.
The observations presented above prompted us to examine how
frequently gastrin coexpression was found in human islet tumor
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lesions that were not previously diagnosed as gastrinomas. To this
end, we performed gastrin detection by IHC using gastrin anti-
body (Novocastra) in a panel of 34 pancreatic endocrine tumors
(pNETs) from 14 MENI patients, 35 sporadic nonfunctioning
pNETs and another panel of 20 sporadic insulinomas. As shown in
Fig. 5A and B, gastrin expression was detected in 9/34 MEN1
PNETSs tested (from 6/14 MENI1 patients), in 5/35 sporadic non-
functioning pNETs, and in 2/20 cases of sporadic insulinomas.
Among the five sporadic nonfunctioning pNETSs expressing gas-
trin, two displayed additional insulin and glucagon expression.
Among 34 MEN1 pNETs, only 2 tumors were positive for insulin,
and both were negative for gastrin. The remaining MEN1 pNETSs
were glucagon and/or pancreatic polypeptide (PP) positive.
Double staining further demonstrated that gastrin™ cells in the
MEN1 pNETSs tested also coexpressed glucagon or PP (Fig. 5C),
while in the two gastrin-positive sporadic insulinomas, gas-
trin™ cells were negative for glucagon but frequently coex-
pressed insulin (Fig. 5C).

DISCUSSION

By better defining the pancreatic gastrin-expressing cells, the cur-
rent work revealed some new features of perinatal pancreatic gas-
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trin™ cells. Our data extend the origin of NPG cells further to
pancreatic Ptfla™ progenitors. We report that about 60% of NPG
cells expressed the YFP reporter, as determined by lineage tracing.
The 40% of gastrin™ cells negative for the reporter could be the
result of low Cre-mediated recombination efficiency. Impor-
tantly, the presence of only a few gastrin™ cells not coexpressing
other islet hormones at the perinatal stage, the period, unfortu-
nately, omitted in the work of Suissa et al. (17), adds important
information for the definition of NGP cells. The low number of
monohormonal gastrin™ cells at birth detected in our study sug-
gests that, at birth, the monohormonal population initially de-
scribed by Suissa et al. (17) either undergoes cell death or further
differentiates into double-positive cells: glucagon-expressing gas-
trin™* cells or insulin-expressing gastrin™ cells. Assays with a fu-
ture generation of inducible gastrin™ cell-specific Cre driver
mouse lines combined with lineage tracing will certainly provide
information on which of these possibilities occurs. Our data also
provide evidence suggesting that adult alpha cells may still ex-
press some residual level of gastrin, since adult alpha cells are
weakly, yet consistently, positive for both gastrin antibodies
(SCBT) and progastrin antibodies, and that the gastrin tran-
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or focally (right). Bars = 50 wm. (C) Triple IF stainings for insulin, glucagon, and gastrin in 12-month-old control and BMenl KO mice. Gastrin-
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(4',6-diamidino-2-phenylindole). The lesion on the right did not express gastrin but expressed Pdx1, whereas the lesion on the left expressed both gastrin
and Pdx1. Bar = 25 pm.

script can be detected in the adult pancreas. However, the fact
that only one of the three gastrin antibodies used in this study
detected gastrin suggests that the gastrin detected in adult al-
pha cells may represent an immature processed peptide form of
gastrin (gastrin 71). Considering the existence of the numerous
gastrin peptides reported in the literature (28) and the incom-
plete information about gastrin antibodies, more specific tools
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and approaches will be needed to completely clarify the issue.
This is of great interest, as several groups have recently re-
ported on the biological activities of both progastrin and gas-
trin intermediates (30). Taking our results together, we defined
the NPG cells to be temporal subpopulations of islet cells, with
pancreatic progenitors being their common cell origin.

To our knowledge, the attempt to generate a mouse gastri-
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TABLE 1 Summary of gastrin-expressing lesions in different models of
Menl disruption

No. of mice with

gastrin lesions/ No. of gastrin™ lesions/total

Model total no. of mice no. of lesions (%)
PancMenl KO 8/9 14/346 (4.0)
PancEndoMenl KO 2/4 2/70 (2.9)

BMenl KO 3/4 5/106 (4.7)
aMenl KO 1/6 1/34 (2.9)

noma model has so far been unsuccessful, hampering the ability to
perform detailed experimental analyses. Interestingly, targeting of
distinct islet cell lineages, including, in particular, Ptfla® and
Ngn3™ pancreatic progenitors and alpha and beta cells, triggered
the development of pancreatic gastrin-expressing tumors in all the
different mouse Menl models. Importantly, our data show that
these mouse gastrin-expressing tumors do not exactly mimic hu-
man pancreatic gastrinomas, giving rise to hormonal symptoms
due to hypergastrinemia, which is rarely seen in MEN1 patients,
according to detailed analyses provided by Pipeleers-Marichal et

Cell Origin of Pancreatic Gastrin-Expressing Tumors

al. (31). Keeping the clinical definition of human pancreatic gas-
trinoma in mind, we prefer to describe the lesions found in our
mouse models as pancreatic gastrin-expressing tumors. Interest-
ingly, we detected gastrin-expressing lesions in a substantial pro-
portion of patients from three cohorts with human islet tumors
not previously diagnosed as gastrinoma: MEN1 islet tumors, spo-
radic nonfunctioning islet tumors, and insulinomas. Our data
provide evidence showing not only that human gastrin-expressing
lesions similar to those found in our murine models exist but also
that they may be more frequent than may be expected. These
gastrin™ cells could have been missed at diagnosis because of the
lack of clinical symptom and of specific but sensitive antibodies
for gastrin detection. Importantly, the gastrin® tumors in our
mouse models and in human patients that we have described here
may represent prelesions of pancreatic gastrinoma and could clin-
ically awaken, giving rise to gastrinoma. Taken together, the ob-
servations made in MenI-deficient mouse models, revealing no
gastrinoma associated with hypergastrinemia but pancreatic gas-
trin-expressing tumors, are consistent with the data obtained by
analyses of three patient cohorts and are also reminiscent of what
has been described by many clinical studies. Also, in the future it
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FIG 5 Detection of gastrin-expressing cells in human nongastrinoma pancreatic endocrine tumors. (A) Number of tumors with gastrin expression among the
three cohorts with pNETSs analyzed. (B) Representative IHC stainings from two cohorts of human pancreatic endocrine tumors (MEN1 or sporadic). (C) IF
stainings for the indicated factors in pancreatic endocrine tumors containing gastrin-immunoreactive cells. Arrows, gastrin-expressing cells coexpressing

glucagon (top) or insulin (bottom). NF, nonfunctioning. Bars = 20 pm.
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will be interesting and useful to study the similarity and the dif-
ference between gastrinomas and pancreatic gastrin™ tumors in
patients without clinical gastrinoma symptoms.

By direct cell-specific Men1 ablation, the current work affords,
for the first time, strong evidence showing that islet cells them-
selves, either progenitors or differentiated cells, serve as the cells of
origin of pancreatic gastrin-expressing tumors. Our data may also
suggest that the above-mentioned NPG cells could also be among
the cells of origin of these tumors, considering their ontogeny
described in the current study. Remarkably, the frequency of gas-
trin™ tumors found in each of the above-mentioned models re-
sembles the proportion of gastrin-positive cells found during the
late embryonic and neonatal period. Interestingly, a similar situ-
ation may occur in humans, since Anlauf and colleagues reported
that in two tumor banks comprising a total of 300 nonfunctioning
pPNETs, 3% of pNETSs (9/300) stained positive for gastrin (32).
However, we consider the possibility that NPG cells are by no
means the unique cell of origin of pancreatic gastrinomas. Other
possibilities may also be involved in pancreatic gastrinoma devel-
opment, such as the ectopic expression or reexpression of gastrin
by islet tumor cells that may dedifferentiate to the stage of the
perinatal transient population coexpressing gastrin-glucagon and
gastrin-insulin. The latter possibility can be tested in the future by
disrupting the Menl gene uniquely in adult islet cells using an
inducible Cre-loxP system.

Although pancreatic gastrinomas are described in general to
be monohormonal tumors, clinical observations often report
that they coexpress other islet hormones (33, 34). The data
from our analysis of human islet tumors are consistent with
those from these previous works. Intriguingly, we noticed that
the gastrin™ islet lesions observed in our PancEndoMenl mutant
mice coexpress insulin. This finding may suggest that the gastrin™
glucagon-expressing subpopulation could be less sensitive to
Menl disruption and other tumorigenic stimuli than the gastrin ™
insulin-expressing subpopulation. The fact that the transgenic
mice carrying the SV40 large T antigen under the control of the
gastrin promoter gave rise only to insulinomas and not gluca-
gonomas may support such a hypothesis (18). However, this may
not be the case in humans, since many gastrin* MENT islet tu-
mors expressed glucagon in our study. Due to the rarity of MEN1
islet tumors, the significance of this will need to be further studied
in a larger cohort.

In conclusion, the current study provides meaningful insights
into both the ontogeny of islet NPG cells and the histogenesis of
pancreatic gastrinomas. Our data pave the way for further studies
of the molecular mechanisms controlling the development of
pancreatic gastrinomas. The mouse gastrin-expressing tumor
models generated in the current study, the first of their kind, will
also be of help for the conception of new strategies for diagnosis
and treatment of the disease.
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