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ABSTRACT

Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase,

lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs),

epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known

eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number

of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (v-3) PUFAs. Oxylipins have essential roles in

normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs

generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA

composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall

physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and a-linolenic acids,

because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on

oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and

describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the

differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. Adv Nutr 2015;6:513–40.
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Introduction
Oxylipins are PUFA oxidation products formed via one or
more mono- or dioxygen-dependent reactions. They are
major mediators of PUFA effects in the body, with the
most well-known oxylipins being the eicosanoids formed
from arachidonic acid (AA)4 (20:4n–6). Oxylipins also can

be formed from other PUFAs, with the more common
ones being octadecanoids derived from linoleic acid (LA)
(18:2n–6) and a-linolenic acid (ALA) (18:3n–3), eicosanoids
derived from dihomo-g-linolenic acid (DGLA) (20:3n–6)
and EPA (20:5n–3), and docosanoids derived from adrenic
acid (AdA) (22:4n–6) and DHA (22:6n–3). The PUFA pre-
cursors to oxylipins can be obtained directly from the diet
or from the elongation and desaturation of LA and ALA
into longer-chain PUFAs. Hence, a high n–6 PUFA intake
is generally associated with a high concentration of n–6
PUFA-derived oxylipins and a high n–3 PUFA intake is gener-
ally associated with a high concentration of n–3 PUFA-derived
oxylipins.

However, the types of oxylipins produced from tissue
PUFAs not only depend on the amount of dietary PUFAs
consumed, but also on the amounts of competing PUFAs
for incorporation into phospholipids and for elongation
and desaturation to longer-chain PUFAs. Further, the oxy-
genases present for metabolizing these PUFAs into oxylipins
in each tissue, as well as enzyme preferences for specific
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PUFAs, influence oxylipin production. Hence, the tissue
oxylipin profile does not necessarily mimic dietary PUFA in-
take or tissue PUFA profile, necessitating the direct assess-
ment of tissue oxylipins in order to understand the effects
of PUFAs that are mediated via oxylipins. The recent advent
of lipidomics methodologies has enabled the analyses of oxy-
lipin profiles from all PUFA substrates simultaneously, raising
awareness of the vast number of oxylipins in the body. Indeed,
these analyses have shown that AA oxylipins comprise less
than one-half of all oxylipins. Other studies have shown
that oxylipins derived from PUFAs besides AA also have sig-
nificant biological activity. This necessitates the investigation
of the entire oxylipin profile in order to understand the over-
all effects of dietary PUFAs via their metabolism to oxylipins.
Therefore, because there is currently no collated data on
oxylipins in mammalian tissue, the purpose of this review
is to provide a detailed compilation of the main oxylipins
formed from the various PUFAs, and to provide a general
overview of their functions.

Oxylipin Formation
Oxylipins are found throughout the body in all tissues,
urine, and blood. Classically, they have been described as
having a short half-life, acting locally, and not being stored,
but being synthesized in situ when needed. However, not
all oxylipins are short-lived, as evidenced by the steady-
state concentrations of both free and esterified oxylipins
in tissues such as the liver, adipose tissue, the kidney, and
ileum (1–3). The free forms are presumably the biologi-
cally active oxylipins, but the functions of those that are
found esterified to phospholipid are not known. It is pos-
sible that they may alter membrane properties or act as a
storage reservoir.

Oxylipin formation begins with cell activation, which
results in precursor PUFAs in the sn-2 position of mem-
brane phospholipids being liberated by cytosolic phospho-
lipase A2 (cPLA2) (4). Evidence for the importance of this
enzyme is provided by findings from a patient lacking this
enzyme, in whom liberation of free PUFAs and subsequent
oxylipin formation is reduced compared with healthy
controls (5, 6). However, although only AA oxylipins
were examined in these studies, lack of cPLA2 did not com-
pletely block oxylipin formation. A recent study showed
that inhibition of adipose TG lipase in mast cells also re-
duced oxylipin formation (7). Because TGs typically con-
tain only small amounts of AA, this raises the question of
whether non-AA PUFAs might be released in greater
amounts via alternate pathways, such as adipose TG lipase.
Further studies examining whether PUFA liberation via
this enzyme is a direct source of PUFAs for oxylipin biosyn-
thesis, or whether TG lipase indirectly provides PUFAs
for incorporation into phospholipid before liberation via
cPLA2 activity, remain to be carried out. Once formed,
free oxylipins can mediate their biological effects via inter-
actions with receptors or intracellular effectors, or can be
re-esterified into lipids. In addition, small amounts of

PUFAs esterified to phospholipid or cholesterol can be
converted into oxylipins in situ (8, 9).

PUFA metabolism into oxylipins occurs by 3 main
pathways, which are briefly described below. For more details
on specific oxylipin generating enzymes, oxylipin receptors,
and breakdown products of oxylipins, there are several excel-
lent reviews (10–21).

Cyclooxygenase
The first oxylipin generation pathway involves cyclooxygenase
(COX) enzymes, which convert PUFAs into prostanoids, i.e.,
PGs and thromboxanes (10–12). Prostanoids have one or
more double bonds and a characteristic five-carbon ring
structure at the 8- to 12-carbon positions of 20-carbon
PUFA-derived oxylipins. COX converts DGLA, AA, EPA,
and AdA into 1-, 2-, 3- and dihomo-2-series prostanoids,
such as prostaglandin D1 (PGD1), PGD2, PGD3, and
dihomo-PGD2, respectively (22, 23). After the prostanoids
are produced and released, they mediate their effects via
binding to G protein–coupled receptors on the surface of
cells, or other intracellular effectors, such as PPARg (10,
12). The number of double bonds and the type of ring struc-
ture of a prostanoid determines its receptor specificity.
There are 5 classes of prostanoid receptors, including recep-
tors for PGD, PGE, PGI, PGF, and thromboxane A. Each of
these receptors can have several isoforms, which may them-
selves have differing effects. They are characterized by their
most potent biological ligand, but there is also some ligand
crossreactivity with these receptors (12). In addition to the
prostanoids, COX also can produce select hydroxy FAs
[e.g., 11-hydroxy-eicosatetraenoic acid (11-HETE) from
AA, 13-hydroxy-docosahexaenoic acid (13-HDoHE) from
DHA, and 9-hydroxy-octadecadienoic acid (9-HODE)
from LA] (24–27).

Lipoxygenase
The second pathway of oxylipin formation involves lipoxy-
genases (LOXs) that catalyze the formation of hydroxy FAs
and their metabolites (including leukotrienes, lipoxins, re-
solvins, protectins, maresins, hepoxilins, and eoxins). There
are multiple LOX enzymes that have traditionally been clas-
sified by the position of the hydroperoxy and hydroxy FAs
they form from AA [e.g., 5-hydroperoxy-eicosatetraenoic
acid (5-HpETE) and 5-HETE are formed from AA by 5-
LOX activity]. This nomenclature has limitations because
the position is different with PUFAs of differing chain
length, some enzymes act at multiple positions, and there
can be differences in the positional specificities of the
same homolog in different species (11, 15). An alternative
nomenclature is to use the gene names to describe the
LOX enzymes (15).

Hydroxy FAs (e.g., 5-HETE) produced via LOXare furtherme-
tabolized to their keto [(e.g., oxo-eicosatetraenoic acid (oxo-ETE)]
or dihydroxy derivatives [e.g., 5,15-dihydroxy-eicosatetraenoic
acid (5,15-DiHETE)]. 5-LOX activated by 5-lipoxygenase
activating protein (FLAP) results in the production of leuko-
trienes, including leukotriene B4 and those previously known
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as the slow reacting substance of anaphylaxis, the cysteinyl
leukotrienes (19). Combinations of sequential LOX activities
(and sometimes including epoxygenase and hydrolase activi-
ties) results in the formation of di- and tri-hydroxy FAs, which
includes the lipoxins, resolvins, protectins, and maresins (14,
16). Hepoxilins also are formed from 12-HpETE (21) and
eoxins from 15-HpETE (28). As with prostanoids, the LOX-
derived oxylipins also appear to mediate their effects by bind-
ing to G protein–coupled receptors and intracellular effectors,
although receptors for all oxylipins have not been identified.

Cytochrome P450
The third pathway of PUFA metabolism to oxylipins in-
volves a diverse array of membrane-bound cytochrome
P450 (CYP) enzymes that are so named because of their
unique absorbance at 450 nm when reduced and bound
by carbon monoxide. Originally known for their roles in
xenobiotic metabolism, there are over 50 CYP enzymes
expressed in humans, divided into multiple families
and subfamilies based on amino acid identity (11).
CYP enzymes that form oxylipins can have epoxygenase
or v-hydroxylase activity. For example, they can convert
AA, EPA, and DHA into epoxy-eicosatrienoic acid
(EpETrE), epoxy-eicosatetraenoic acid (EpETE), and epoxy-
docosapentaenoic acid [(EpDPE), sometimes abbreviated
EDP] respectively, via epoxygenase, and HETE, hydroxy-
eicosapentaenoic acid (HEPE), and HDoHE, respectively,
via v-hydroxylase activity. Epoxygenase products are rap-
idly metabolized via soluble epoxide hydrolase (sEH) to
form dihydroxy FAs such as the AA, EPA, and DHA metabo-
lites dihydroxy-eicosatrienoic acid (DiHETrE), DiHETE,
and dihydroxy-docosapentaenoic acid, respectively.
Similar to oxylipins formed via the other pathways, these
oxylipins also mediate their effects via specific receptors
or by crossreacting with other oxylipin receptors (11, 13,
17, 18). In addition, they may also enter cells and mediate
effects intracellularly by modulating transcription factors
and ion channels (13).

PUFA Substrates for Oxylipin Formation
Oxylipins are formed from a number of n–3 and n–6
PUFA precursors, such as the n–6 PUFAs AA, LA, g-linolenic
acid (GLA), DGLA, and AdA, and the n–3 PUFAs ALA,
stearidonic acid, EPA, and DHA. Although studies indicate
that cPLA2 exhibits preference for AA and EPA (29, 30), the
presence of oxylipins from other PUFAs demonstrates that
they can be released in sufficient quantities for oxylipin
production. Pathways are shown in the figures and are de-
scribed by the PUFA precursors below.

N–6 PUFAs
Arachidonic acid. AA produces 2-series oxylipins (Figure 1)
via the COX pathway, initially resulting in the formation
of PGG2 and subsequently to PGH2, which is then rapidly
converted to other PGs (e.g., PGF2a) and thromboxanes
(e.g., thromboxane A2) via specific PG and thromboxane syn-
thases (20). As is the case with the other oxylipins, prostanoids

are then rapidly degraded to numerous inactive and active
metabolites, some of which can be used as markers of
the parent compound, whereas others can mediate the
same or opposite effects ascribed to the parent compounds
(31–33).

AA also produces oxylipins via the LOX pathway, result-
ing in HpETEs, (e.g., 12-HpETE), which are further rapidly
converted to hydroxy FAs via glutathione peroxidase (34).
5-, 12-, and 15-HETE are the most commonly described
HETEs in mammals, although 8-, 9-, and 11-HETE also
are produced, and sometimes in greater amounts (35, 36).
The 11- or 15-HETE isomers also can be produced via
COX activity, as indicated above (24, 25). HETE can be fur-
ther converted to oxo-ETE via dehydrogenase activity (37,
38), or to DiHETE via further COX (e.g., 5,11-DiHETE),
LOX (e.g., 5,15-DiHETE), or CYP v-hydroxylase (e.g.,
5,20-DiHETE) activity (39, 40). In addition, the HpETE
formed via LOX can be metabolized via several other routes:
5-HpETE can be further converted to 4-series leukotrienes
(e.g., leukotriene C4) via 5-LOX after activation by FLAP;
12-HpETE can be isomerized to hepoxilins (e.g., hepoxilin
B3) and subsequently converted to trioxilins (e.g., trioxilin
B3) (21, 41); and 15-HpETE can be converted to eoxins
(e.g., eoxin C4) (28). Moreover, lipoxins (e.g., lipoxin A4)
can be formed from 5- or 15-HpETE via further LOX ac-
tivity (42–44). Epi-lipoxin (e.g., 15-epi-lipoxin A4) for-
mation can also be initiated by aspirin-acetylated or
nitrosylated COX2 and 5-LOX (45–47). AA also can be con-
verted nonenzymatically to HETE (48) and isoprostanes
(e.g., iso-PGF2a) (49). The latter are often used as a marker
of oxidative stress in vivo; for further discussion of these
nonenzymatic oxylipins, see the review byMusiek et al. (49).

AA metabolism via CYP v-hydroxylase activity results
in the formation of HETE with the hydroxy group being
at the omega or methyl end of the FA (e.g., 20-HETE),
whereas CYP epoxygenase activity yields epoxy FAs (e.g.,
14,15-EpETrE), which can be converted to dihydroxy FAs
(e.g., 14,15-DiHETE) via sEH activity, as reviewed in sev-
eral articles (13, 17, 18). Formation of other HETEs (e.g.,
13-HETE) may be mediated via CYP bisallylic hydroxylase
activity (50–52), but the importance of this pathway is less
known.

Linoleic acid. Although the size of the literature for LA oxy-
lipins (Figure 2) is markedly smaller than that for most
other oxylipins (especially AA oxylipins), LA oxylipins are
usually present in tissues and blood in higher amounts
than oxylipins derived from any other PUFA (53–55). LA
produces oxylipins through the LOX pathway, resulting
in hydroperoxy FAs, which are rapidly converted to hy-
droxy FAs (e.g., 13-HODE), which can be further metabo-
lized to keto FAs (e.g., 13‑oxo-octadecadienoic acid) (56,
57). LA also can be metabolized via the epoxygenase
activity of CYP, resulting in epoxygenated FAs [e.g.,
9,10-epoxy-octadecenic acid (9,10-EpOME)], which are
metabolized via sEH activity to form dihydroxy FAs (e.g.,
9,10-dihydroxy-octadecenoic acid) (58). Further, LA can be
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converted to trihydroxy FAs (e.g., 9,10,13-trihydroxy-octadecenoic
acid) potentially by sequential metabolism of LOX and
epoxygenase activity and/or auto-oxidation (59). Several
other LA oxylipins also can be produced nonenzymatically
(e.g., 9-HODE) (60). There also are reports that the forma-
tion of a small amount of the LA oxylipins may be mediated
via COX (e.g., 9-HODE) (27, 61) or CYP bisallylic hydroxyl-
ation (e.g., 17-HODE) (50–52) activity; the relative impor-
tance of these pathways remains to be elucidated.

g-Linolenic acid. GLA can be converted via LOX to 10- and
13-hydroxy-octadecatrienoic acid(g) [13-HOTrE(g)] (62) in
human platelets and via CYP to g-6,7-, g-9,10-, and g-12,13-
epoxy-octadecadienoic acid by human CYP enzymes in vitro
(63). Other oxylipins derived from GLA (e.g., 6-HOTrEg)
have been reported to be synthesized in vitro in a patent appli-
cation (64). Note that oxylipins derived from GLA are distin-
guished from ALA oxylipins with the use of the g notation.

Dihomo-g-linolenic acid. DGLA (Figure 3) can be con-
verted via COX to 1-series PGs (e.g., PGI1) and thrombox-
anes (e.g., thromboxane A1) (22, 65, 66) via LOX to yield
hydroperoxy (e.g., 15-hydroperoxy-eicosatrienoic acid) and
hydroxy FAs [e.g., 15-hydroxy-eicosatrienoic acid (15-
HETrE)] (67–72), and via CYP epoxygenase and sEH to
epoxy-eicosadienoic acid (e.g., 8,9-epoxy-eicosadienoic

acid) and dihydroxy-eicosadienoic acid (e.g., 8,9- dihydroxy-
eicosadienoic acid) (68, 69, 73).

Adrenic acid. AdA (Figure 4) can be metabolized by COX
into dihomo-prostaglandins such as dihomo-PGE2, dihomo-
thromboxane B2, and dihomo-PGI2 (74–79). Metabolism
via the LOX pathway generates hydroxy-docosatetraenoic
acids (also referred to as dihomo-HETE) such as 17-hydroxy-
docosatetraenoic acid (dihomo-17-HETE), which can
be further converted to dihydroxy compounds (e.g.,
dihomo-10,17-DiHETE) (76–78), and via the CYP path-
way to dihomo-EpETrE (epoxy-docosatrienoic acids)
such as dihomo-16,17-EpETrE, which can be further
converted to their respective dihydroxy compounds e.g.,
(dihomo-16,17-DiHETrE) (76).

n–3 PUFAs
a-Linolenic acid. ALA produces oxylipins (Figure 5) via
the LOX pathway, resulting in hydroxy FAs (e.g., 9-HOTrE),
which can be further metabolized to keto FAs (e.g., 9-oxo-
octadecatrienoic acid) (80). As with LA, there are reports
that indicate that HOTrE may be formed via COX activity,
but the importance of this pathway in vivo remains to
be determined (27). ALA also can be metabolized via
CYP epoxygenase activity, resulting in epoxygenated FAs,
(e.g., 12,13-epoxy-octadecadienoic acid) (63), which can be

FIGURE 1 Arachidonic
acid–derived oxylipins.
There is also evidence for
thromboxane synthase–
independent production of
HHTrE (416). 11-HETE and
15-HETE are also produced
via the COX pathway (24,
25). ASA, acetylsalicylic
acid; COX, cyclooxygenase;
CYP, cytochrome P450;
DiHETE, dihydroxy-
eicosatetraenoic acid;
DiHETrE, dihydroxy-
eicosatrienoic acid; EpETrE,
epoxy-eicosatrienoic acid;
Ex, eoxin; HETE, hydroxy-
eicosatetraenoic acid;
HHTrE, hydroxy-
heptadecatrienoic acid;
HpETE, hydroperoxy-
eicosatetraenoic acid; Hx,
hepoxilin; LOX,
lipoxygenase; Lt,
Leukotriene; Lx, lipoxin;
oxo-ETE, oxo-
eicosatetraenoic acid;
PGEM, prostaglandin E
metabolite; Trx, trioxilin; Tx,
thromboxane.
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further converted to dihydroxy FAs (e.g., 12,13-dihydroxy-
octadecadienoic acid) via sEH activity (54). Other ALA me-
tabolites that have been reported include 18-HOTrE from
ALA via CYP activity (18), 9,16-dihydroxy-octadecatrienoic
acid via LOX activity (80), and 12-HOTrE via COX2 activ-
ity (27).

Stearidonic acid. Oxylipins derived from stearidonic acid
(e.g., 13-hydroxy-octadecatetraenoic acid) have been re-
ported to be produced in vitro in a patent application (64).

Eicosapentaenoic acid. Similarly to AA, EPA produces
oxylipins (Figure 6) via the COX pathway, yielding 3-series
PGs (e.g., PGE3) and thromboxanes (e.g., thromboxane
A3) (23). Compared with AA, EPA is generally a poorer
substrate for COX, particularly for the COX1 isoform
(81). EPA can produce hydroperoxy FAs (e.g., 5-hydroperoxy-
eicosapentaenoic acid), which can be further converted to
hydroxy FAs (e.g., 5-HEPE) by LOX activity (23, 82, 83),
and 5-series leukotrienes (e.g., leukotriene B5) via com-
bined 5-LOX and FLAP activity (83, 84). HEPE such as
5-HEPE also can be metabolized to dihydroxy-eicosapentaenoic
acids such as 5,12-dihydroxy-eicosapentaenoic acid (85) or
to keto FAs such as 5-oxo-eicosapentaenoic acid (86). Me-
tabolites of other HEPE isomers are likely to be present, but
few have been identified. Hydroxy FAs from EPA with hy-
droxy groups on the 18–20-carbon positions also are

formed via v-hydroxylase activity of the CYP pathway
(e.g., 18-HEPE) (87, 89). The 18-HEPE formed via this
pathway (as well as by acetylated COX2) can be further
converted to the E-series resolvins (e.g., resolvin E1) via
5-LOX activity (40, 43, 89). EPA can also produce epoxy
FAs (e.g., 14,15-EpETE) via CYP epoxygenase activity
(90), which can be further converted to dihydroxy
FAs (e.g., 14,15-DiHETE) by sEH (91). As with AA and
LA, bisallylic hydroxylation of EPA can also yield HEPEs,
such as 10-HEPE (92).

Docosahexaenoic acid. DHA (Figure 7) can be metabo-
lized via the LOX pathway to hydroxy FAs (e.g., 4-HDoHE)
with a hydroperoxy intermediate [e.g., 4-hydroperoxy-
docosahexaenoic acid (4-HpDoHE) (93)]. 14-HpDoHE
can be further metabolized to form maresins (e.g., maresin
1) (94), and 17-HpDoHE can be metabolized to 17-HDoHE,
or to resolvins (e.g., resolvin D1) and protectins (e.g., protec-
tin D1) via further LOX and epoxygenation steps. Protectin
D1 is produced via LOX, epoxide formation from the hydro-
peroxide product, and epoxide hydrolase activity (95) while
protectin DX is formed via double LOX activity (96). 17-
HpDoHE derived from DHA also can be produced via
aspirin-acetylated COX2, yielding the aspirin-triggered
resolvins (e.g., aspirin-triggered resolvin D1) and aspirin-
triggered protectins (e.g., aspirin-triggered protectin D1)
(26, 97, 98). DHA also has been shown to yield hydroxy

FIGURE 3 Dihomo-g-linolenic acid–derived
oxylipins. COX, cyclooxygenase; CYP,
cytochrome P450; DiHEDE, dihydroxy-
eicosadienoic acid; EpEDE, epoxy-
eicosadienoic acid; HETrE,
hydroxy-eicosatrienoic acid; HpETrE,
hydroperoxy-eicosatrienoic acid; LOX,
lipoxygenase; Tx, thromboxane.

FIGURE 2 Linoleic acid–derived oxylipins. 9-
HODE and 13-HODE are also produced via the
COX pathway (27, 61). COX, cyclooxygenase;
CYP, cytochrome P450; DiHOME, dihydroxy-
octadecenoic acid; EpOME, epoxy-
octadecenoic acid; HODE,
hydroxy-octadecadienoic acid; HpODE,
hydroperoxy-octadecadienoic acid; LOX,
lipoxygenase; oxo-ODE, oxo-octadecadienoic
acid; TriHOME, trihydroxy-octadecenoic acid.
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FAs nonenzymatically (e.g., 8-HDoHE) (99, 100), and 13-
HDoHE can be formed via COX2 (26). Recent studies
provide evidence that HDoHE also can be metabolized
to dihydroxy-docosahexaenoic acid (DiHDoHE) (e.g., 14,20-
DiHDoHE) (101) and keto FAs (e.g., 7-oxo-docosahexaenoic
acid) (102), with more likely to be demonstrated in the
future. Oxylipins can be produced from DHA via CYP
epoxygenase activity, yielding epoxy FAs (e.g., 16,17-
EpDPE) (90, 93), which can be converted to dihydroxy FAs
(16,17-dihydroxy-docosapentaenoic acid) via sEH (91).
CYP v-hydroxylase activity produces HDoHE with hydroxy
groups near the methyl end of DHA (e.g., 21-HDoHE) (93).

Oxylipin Functions
Oxylipins have a wide range of functions, many of which are
still being elucidated. In addition, oxylipins derived from
different pathways, as well as different substrate PUFAs,

can have similar or opposing effects, necessitating knowl-
edge of the overall oxylipin profile in order to understand
their overall biological effects. Their functions are many,
including apoptosis, tissue repair, blood clotting, cell pro-
liferation, blood vessel permeability, pain, inflammation,
immune actions, and blood pressure regulation (11, 87).
General functions of oxylipins are described below and ex-
amples of functions are provided in Tables 1–7.

n–6 PUFA oxylipin functions
COX oxylipins. The most well known oxylipins are eicosa-
noids derived from the n–6 PUFA AA (Table 1). COX-
derived prostanoids are involved in the regulation of blood
pressure, reproduction, diuresis, blood platelet aggregation,
modulation of the immune and nervous systems, gastric se-
cretions, cancer, inflammation, and the stimulation of

FIGURE 4 Adrenic acid–
derived oxylipins. Dihomo-
7,14-DiHETE and
dihomo-7,17-DiHETE also
can be formed from
dihomo-7-HETE (76). COX,
cyclooxygenase; CYP,
cytochrome P450; DiHETE,
dihydroxy-eicosatetraenoic
acid; DiHETrE, dihydroxy-
eicosatrienoic acid; EpETrE,
epoxy-eicosatrienoic acid;
HETE, hydroxy-
eicosatetraenoic acid;
HpETE, hydroperoxy-
eicosatetraenoic acid; LOX,
lipoxygenase; Tx,
thromboxane.

FIGURE 5 a-Linolenic
acid–derived oxylipins. CYP,
cytochrome P450; DiHODE,
dihydroxy-octadecadienoic
acid; DiHOTrE, dihydroxy-
octadecatrienoic acid;
EpODE, epoxy-
octadecadienoic acid; HOTrE,
hydroxy-octadecatrienoic
acid; HpOTrE, hydroperoxy-
octadecatrienoic acid; LOX,
lipoxygenase; oxo-OTrE, oxo-
octadecatrienoic acid.
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smooth muscle contraction, among other effects, as re-
viewed in several articles (10, 12, 338–340). Within these
COX metabolites there can be similar and differing effects
on these functions. For example, PGI2 is an antiaggregatory
factor for platelets (341), whereas thromboxane A2 serves as
a proaggregatory factor (342). Another example is the vaso-
dilatory effect of PGI2 and PGE2, and the vasoconstrictory
effect of PGF2a in some vascular beds (135, 343). PGE2
also can have effects on thrombosis that vary depending

on the receptor it interacts with. For example, PGE2
can bind either the EP3 receptor, which makes PGE2 a
prothrombotic mediator, or EP4, which makes PGE2
an antithrombotic mediator (344). Similarly, PGD2 and
its metabolites can be both proinflammatory and be in-
volved in the resolution of inflammation (32). Compared
with COX products formed from AA, those derived from
DGLA (Table 3) are usually, but not always, less active or
produced less efficiently (345). For example, PGE1 is less

FIGURE 6 EPA-derived
oxylipins. ASA,
acetylsalicylic acid; COX,
cyclooxygenase; CYP,
cytochrome P450; DiHEPE,
dihydroxy-
eicosapentaenoic acid;
DiHETE, dihydroxy-
eicosatetraenoic acid;
EpETE, epoxy-
eicosatetraenoic acid;
HEPE, hydroxy-
eicosapentaenoic acid;
HpEPE, hydroperoxy-
eicosapentaenoic acid;
LOX, lipoxygenase; Lt,
Leukotriene; Lx, lipoxin;
oxo-EPE, oxo-
eicosapentaenoic acid; Rv,
resolvin; Tx, thromboxane.

FIGURE 7 DHA-derived
oxylipins. 13-HDoHE
also is produced
via the COX pathway
(26). 14,21-DiHDoHE
also may be formed
from 21-HDoHE (313,
314). ASA, acetylsalicylic
acid; AT, aspirin-
triggered; COX,
cyclooxygenase;
CYP, cytochrome
P450; DiHDoHE,
dihydroxy-
docosahexaenoic
acid; DiHDPE, dihydroxy-
docosapentaenoic
acid; EpDPE, epoxy-
docosapentaenoic
acid; HDoHE, hydroxy-
docosahexaenoic

acid; HpDoHE, hydroperoxy-docosahexaenoic acid; LOX, lipoxygenase; MaR, maresin; oxo-DoHE, oxo-docosahexaenoic acid; PD,
protectin; Rv, resolvin.
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TABLE 1 Examples of arachidonic acid–derived oxylipin functions1

Arachidonic acid–derived oxylipin functions

COX oxylipins
PGA2 Contributes along with PGE2 to the development of Th1-type immune responses, with PGE2 being more potent in

human monocyte–derived dendritic cells (103)
Inhibits Ca2+-stimulated ATPase activity of Walker-256 tumor microsomal membranes (104)
Represses insulin-like growth factor I gene expression in C6 rat glioma cells (105)

PGB2 Mediates mesenteric vascular dose-dependent vasodilatory and vasoconstrictory effects in animal models (106)
Elevates blood pressure, tracheal segment pressure, and bronchial resistance in guinea pigs (107)

PGD2 Inhibits induced apoptosis in human articular chondrocytes (108)
Inhibits murine lung inflammation (109)
Promotes sleeping behavior (110)
Regulates body temperature in rodent models (111, 112)
Inhibits tumor cell proliferation in human cells and rodent model (113)
Modulates synaptic transmission via D-type prostanoid receptor (116)
Proinflammatory at nanomolar concentrations and anti-inflammatory at micromolar concentrations [reviewed in

(34)]
Inhibits human neutrophil activation in vitro (115, 116)
Causes apoptosis of human eosinophils (117)
Activates human eosinophils (118)
Inhibits human platelet aggregation (119, 120)

PGE2 Vasodilates cat cerebral arterioles (121)
Potentiates human platelet aggregation at lower concentrations and inhibits aggregation at a higher concentrations

(122)
Induces human colon cancer cell growth (123)
Stimulates IL-10 production in bone marrow–derived dendritic cells in murine model (124)
Mediates lung inflammation in human cells (125)

15-keto-PGE2 Activates PPARg to enhance adipogenesis of murine 3T3-L1 cells (126)
6-keto-PGF1a Stable degradation product of PGI2 and useful marker of PGI2 in humans (127, 128)
9a,11β-PGF2 Activates murine eosinophils (129)
PGF2a Mediates inflammatory tachycardia in the mouse (130)

Initiates parturition in the mouse (131)
Vasoconstricts rat brain arterioles (132)

13,14-dihydro-15-keto-PGF2a Reflects in vitro PGF2a biosynthesis and is the main inactive degradation product of PGF2a in humans (133)
PGI2 Inhibits ADP-induced hamster platelet aggregation (134)

Induces coronary vasodilation in dogs (135)
Inhibits adhesion of human eosinophils to lung endothelial monolayers and transendothelial migration (136)
Inhibits erythrocyte adhesion to bovine aortic endothelial cells (137)

PGJ2 Causes apoptosis of human eosinophils (117)
Induces respiratory burst in human eosinophils (118)

D12-PGJ2 Releases eosinophils from guinea pig bone marrow and induces respiratory burst in human eosinophils (118)
Causes apoptosis of human eosinophils and neutrophils (117)

15-deoxy- D12,14-PGJ2 Inhibits induced apoptosis in human articular chondrocytes (108)
Anti-inflammatory via inhibition of NF-kB activation in human and monkey cell culture (138)
Causes apoptosis of human eosinophils and neutrophils (117)
Induces respiratory burst in human eosinophils (118)
Reduces apoptosis in activated human and murine T-lymphocytes (139)

TxA2 Mediates inflammatory tachycardia in the mouse (130)
Causes irreversible platelet aggregation in human platelet-rich plasma (140)
Stimulates mitogenesis of coronary artery smooth muscle cells in guinea pig model (141)
Mediates hypertension in hypertensive rats (142)
Vasoconstricts rabbit aorta (143)

TxB2 Has a weak bronchoactive effect in guinea pigs and dogs (144)
Increases systemic vascular resistance but does not cause platelet aggregation in dogs (145)
Chemotactic in human peripheral PMN (146)

2,3-dinor-TxB2 Marker of thromboxane synthesis in urine of rats (147, 148)
Possible urinary marker of acute myocardial infarction in humans (149)
Urinary marker for platelet activation (152)

11-dehydro- TxB2 Plasma and urinary marker of thromboxane synthesis in human and rabbit models (35, 153, 154)
Possible urinary marker of acute myocardial infarction in humans (149)

LOX oxylipins
5,15-DiHETE Possesses weak human neutrophil and eosinophil chemotactic activity (153, 154)
8,15-DiHETE Possesses weak human eosinophil chemotactic activity (153)

Exhibits chemotactic activity comparable to that of LtB4 for human PMN (155)
12,20-DiHETE Activates cholesterol ester hydrolysis in human vasculature (156)
Eoxins Eoxin C4, D4 and E4 all increase permeability of endothelial cell monolayer from human eosinophils and mast cells in

vitro (28)

(Continued)
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TABLE 1 (Continued )

Arachidonic acid–derived oxylipin functions

5-HETE Inhibits the clonal proliferation of chick embryo fibroblasts and granulocytic progenitors (157)
Stimulates human eosinophil chemotaxis and chemokinesis (158)
Stimulates human neutrophil chemokinesis and enhances chemotactic responses (159, 160)
Induces human neutrophil degranulation (161)
Inhibits PGI2 production in porcine coronary artery endothelial cells (162)
Inhibit selenium-induced apoptosis in human prostate cancer cells; 12- and 15-HETE have no effect (163)
Stimulates proliferation of human cancer cells at low concentrations (164)
Promotes bovine neutrophil chemotaxis in vitro more potently than 5-HEPE (165)

5-HpETE Inhibits human platelet aggregation similarly to 5-HpEPE, but less potently than 12- or 15-HpETE (166)
5-oxo-ETE Stimulates human neutrophils and eosinophils (86, 167)

Inhibits selenium-induced apoptosis in human prostate cancer cells, with one-half the potency of 5-HETE (163)
Stimulates proliferation of human cancer cells in low concentrations and inhibits proliferation at higher concen-

trations (164)
Promotes chemotaxis and raises cytosolic calcium concentrations in human neutrophils; more potent than 5-HETE,

15-oxo-ETE, and 5,15-DiHETE (154)
Stimulates human neutrophils more potently than 5-HETE (168)
Does not inhibit LOX enzyme activity (compared to 12- and 15-oxo-ETE) in vitro (169)

8-HETE Stimulates human neutrophil chemokinesis and enhances chemotactic responses (159)
Promotes wound healing via epithelial cell migration in rat cornea (36)
Induces differentiation of murine 3T3-L1 preadipocytes (170)

9-HETE Stimulates human eosinophil chemotaxis and chemokinesis (158)
Stimulates human neutrophil chemokinesis and enhances chemotactic responses (159)

11-HETE Stimulates human eosinophil chemotaxis and chemokinesis (158)
Stimulates human neutrophil chemokinesis and enhances chemotactic responses (159, 160)
Inhibits human vascular smooth muscle cell proliferation (171)

11-oxo-ETE Inhibits human colorectal adenocarcinoma epithelial and umbilical vein endothelial cell proliferation in culture (172)
12-HETE Stimulates human neutrophil chemokinesis and enhances chemotactic responses (159)

Induces human neutrophil degranulation (161)
Increases rat heart mitochondrial calcium and nitric oxide, leading to oxidative stress and apoptosis (173)
Increases monocyte adhesion to human endothelial cells leading to aortic fatty streak formation (174, 175)
Enhances tumor cell adhesion to endothelial cells in mice (176)
Enhances thrombin-induced aggregation (177), but suppresses collagen-induced aggregation of bovine platelets

(178)
Inhibits U-46619–induced aggregation of human platelets (179, 180)
Reduces ADP-induced aggregation of mouse platelets (181)
Stimulates erythrocyte adhesion to bovine aortic endothelial cells (137)

12-HpETE Inhibits human platelet aggregation similarly to 12-HpEPE, and more potently than 5- or 15-HpETE (166, 182)
12-oxo-ETE Selectively inhibits LOX enzyme activity in vitro (169)

Activates human neutrophils (183)
15-HETE Exhibits vasodilation or vasoconstriction in isolated arteries from the guinea pig, rabbit, rat, and human, depending

on species and conditions (184)
Activates PPARg in human and PPARβ/d in mouse (185, 186)
Inhibits human PMN migration across cytokine-activated endothelium in vitro (187)
Inhibits degranulation and superoxide production in stimulated human PMN (188)
Mediates hypoxia-induced rabbit pulmonary hypertension (189)
Enhances thrombin-induced human platelet aggregation (190)
Stimulates erythrocyte adhesion to bovine aortic endothelial cells (137)

15-HpETE Exhibits vasodilation or vasoconstriction in isolated arteries from the guinea pig, rabbit, rat, and human, depending
on species and conditions (184)

Stimulates erythrocyte adhesion to bovine aortic endothelial cells (137)
Induces migration of monocyte-like HL-60 cells across a human endothelial cell monolayer (191)
Induces loss of rat cardiomyocyte membrane integrity (192)
Inhibits human platelet aggregation similarly to 15-HpEPE, but less potently than 12-HpETE (166)

15-oxo-ETE Selectively inhibits human LOX enzyme activity in vitro (169)
Inhibits human vascular vein endothelial cell proliferation (193)
Prevents apoptosis of rat pulmonary arterial smooth muscle cells (194)

HxA3 Activates human neutrophils (195)
Recruits human PMN to the site of inflammation (196)
Promotes murine 3T3-L1 preadipocyte differentiation (197)

HxB3 Promotes murine 3T3-L1 preadipocyte differentiation (197)

(Continued)
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TABLE 1 (Continued )

Arachidonic acid–derived oxylipin functions

LtB4 Releases human PMN lysosomal enzymes (198)
Induces human PMN chemotaxis and aggregation (199, 200)
Stimulates guinea pig lung strip contraction, but less potently than LtC4 (201)
Promotes chemotaxis of bovine neutrophils more potently than LtB5 (165)

20-OH-LtB4 Stimulates human neutrophil migration, but less potently than LtB4 (202)
Stimulates guinea pig lung strip contraction, but less potently than LtC4 (201)

20-COOH-LtB4 Stimulates human neutrophil migration, but less potently than LtB4 (203)
Stimulates guinea pig lung strip contraction, but less potently than LtC4 (201)

LtC4 Causes guinea pig uterine and lung contractions (203)
Stimulates guinea pig lung strip contraction more potently than LtB4 (201)
Mediates human skin inflammation (204)
Increases permeability of endothelial cell monolayers from human eosinophils and mast cells in vitro (28)
Contracts guinea pig lung parenchymal strips and ileal tissues, with similar potency to LtC5 (205)

LtD4 Enhances responsiveness to histamine in bovine airway smooth muscle (206)
Causes guinea pig uterine and lung contraction (203)
Mediates human skin inflammation (204)
Increases permeability of endothelial cell monolayers from human eosinophils and mast cells in vitro (28)

LtE4 Causes guinea pig uterine and lung contraction (203)
Coronary constrictor in the in situ pig heart (207)

LtF4 Induces bronchoconstriction in the guinea pig, but less actively than LtD4 (208)
LxA4 Inhibits LtB4-induced human PMN activation (209)

Stimulates human monocyte migration and adhesion (210)
Inhibits zymosan A–induced peritonitis in mice (211)
Promotes corneal epithelial cell wound healing in mice (212)
Increases renal plasma flow and glomerular filtration rate in the rat (213)
Stimulates phospholipid remodeling without causing aggregation in human neutrophils (214)
Antagonizes LtD4-induced lowering of glomerular filtration rate in the rat (215)
Induces contraction of isolated guinea pig pulmonary smooth muscle (similar to LxA5 and LxB4 effects), and vaso-

relaxation of rat or guinea pig aortic rings (similar to LxB4) (216)
Inhibits proliferation of human A549 cells, but less potently than 15-epi LxA4, 15-epi LxB4 or LxB4 (45)

LxB4 Stimulates human monocyte migration and adhesion (210)
Decreases renal plasma flow and glomerular filtration rate in the rat (213)
Inhibits zymosan A-induced peritonitis in mice (211)
Stimulates phospholipid remodeling without causing aggregation in human neutrophils (214)
Induces contraction of isolated guinea pig pulmonary smooth muscle (similar to LxA4 and LxA5 effects), and vaso-

relaxation of rat or guinea pig aortic rings (similar to LxA4) (216)
Inhibits proliferation of human A549 cells, but less potently than 15-epi LxB5 (45)

15-epi LxA4 Inhibits leukocyte-endothelium interactions in mice (217)
Blocks reactive oxygen species generation in human endothelial cells (218)
Stimulates human monocyte chemotaxis (219)
Inhibits proliferation of human A549 cells, but less potently than 15-epi LxB5 (45)

15-epi LxB4 Inhibits proliferation of human A549 cells more potently than 15-epi LxA4 or LxB4 (45)
CYP oxylipins
5,6-DiHETrE Vasodilates pre-constricted pressurized mouse arteries more potently than its EpETrE isomer (220)

Hyperpolarizes rat vascular smooth muscle from rat small coronary arteries by activating BK channels (221)
8,9-DiHETrE Vasodilates pre-constricted pressurized mouse arteries more potently than its EpETrE isomer (220)

Vasodilates isolated canine coronary arterioles more potently than EpETrE isomers (222)
Hyperpolarizes rat vascular smooth muscle from rat small coronary arteries by activating BK channels (221)

11,12-DiHETrE Vasodilates pre-constricted pressurized mouse arteries more potently than its EpETrE isomer (220)
Vasodilates isolated canine coronary arterioles more potently than EpETrE isomers (222)
Hyperpolarizes rat vascular smooth muscle from rat small coronary arteries by activating BK channels (221)
Relaxes porcine coronary artery with similar potency as its EpETrE isomer (223)

14,15-DiHETrE Vasodilates preconstricted pressurized mouse arteries more potently than its EpETrE isomer (220)
Vasodilates isolated canine coronary arterioles more potently than EpETrE isomers (222)
Hyperpolarizes rat vascular smooth muscle from rat small coronary arteries by activating BK channels (221)
Most potent PPARa activator in a monkey COS-7 cell expression system when compared to other DiHETrE and

EpETrE isomers (224)
Stimulates metastasis and escape from tumor dormancy in several murine tumor models (225)

5,6-EpETrE Vasodilatory effects in intestinal microcirculation in rat model (226)
Promotes angiogenesis by stimulating endothelial cell proliferation in vitro and angiogenesis in vivo in murine

model (227)
Vasodilates isolated canine coronary arterioles less potently than DiHETrE isomers (222)
Vasodilates pre-constricted pressurized mouse arteries less potently than its DiHETrE isomer (220)

(Continued)

522 Gabbs et al.



stimulatory of aortic smooth muscle cell proliferation than
PGE2 (346). The AdA metabolites (Table 4) dihomo-PGE2
and dihomo-PGI2 also are inactive or much less active
compared with their AA analogs with respect to their plate-
let aggregating activity and contractile properties in both
vascular and nonvascular smooth muscle (77, 347).

LOX oxylipins. LOX products such as 5-, 12-, and 15-HETE
derived from AA and secreted by epithelial cells and leuko-
cytes are involved inmany chronic diseases such as inflamma-
tion, obesity, cardiovascular disease, kidney disease, and
cancer (348–352) (Table 1). As is the case with COX metab-
olites, AA-derived LOX products can have effects that are
both similar to and differing from each other, as well as
from those derived via the COX and CYP pathways. For
example, 12-HETE has been shown to have both pro-
and antithrombotic effects (179, 353, 354), whereas
thromboxane A2 is prothrombotic (342) and PGI2 is

antithrombotic (341). LOX-derived HETEs and their oxo-
ETE metabolites appear to be primarily proinflammatory;
e.g., 5-HETE has chemotactic roles in polymorphonuclear
leukocytes (PMNs) and rabbit alveolar macrophages (162,
355, 356) and stimulates specific granule release from human
neutrophils (161). Both 5-oxo-ETE and 12-oxo-ETE also can
stimulate eosinophils and neutrophils, but appear to have less
activity than their corresponding HETEs (154, 357). 5-HETE
can also be further converted to 4-series leukotrienes (e.g.,
leukotriene C4) that play an important role in inflammation,
asthma, and allergies (358). Eoxins formed from 15-HpETE
also have proinflammatory effects (28), and hepoxilins and
their metabolites (trioxilins) are another group of oxylipins
derived from 12-HpETE that are involved in neutrophil mi-
gration and intracellular calcium release (195, 196).

It is important to note, however, that some AA-derived
oxylipins also display anti-inflammatory and anticancer ac-
tivity. For example, 15-HETE can inhibit degranulation of

TABLE 1 (Continued )

Arachidonic acid–derived oxylipin functions

8,9-EpETrE Promotes angiogenesis by stimulating endothelial cell proliferation in vitro and angiogenesis in vivo (227)
Dilates coronary microvessels with similar potency to other EpETrE isomers as well as EpETE and EpDPE isomers in

canine and porcine models (228)
Attenuates cell apoptosis in rat heart myocytes after hypoxia and reoxygenation (229)
Vasodilates isolated canine coronary arterioles less potently than DiHETrE isomers (222)
Vasodilates preconstricted pressurized mouse arteries less potently than its DiHETrE isomer (220)

11,12-EpETrE Vasodilatory effects in intestinal microcirculation (226)
Dilates coronary microvessels with similar potency to other EpETrE isomers as well as EpETE and EpDPE isomers in

canine and porcine models (228)
Inhibits vascular inflammation distinct from its vasodilatory effects by inhibiting NF-kB and inhibitor of k B kinase in

murine model (230)
Attenuates cell apoptosis in rat heart myocytes after hypoxia and reoxygenation (229)
Vasodilates isolated canine coronary arterioles less potently than DiHETrE isomers (222)
Vasodilates preconstricted pressurized mouse arteries less potently than its DiHETrE isomer (220)
Relaxes porcine coronary artery with similar potency as its DiHETrE isomer (223)
Enhances angiogenesis and tumor progression in murine model (231)

14,15-EpETrE Dilates coronary microvessels with similar potency to other EpETrE isomers as well as EpETE and EpDPE isomers in
canine and porcine model (228)

Attenuates cell apoptosis in rat heart myocytes after hypoxia and reoxygenation (229)
Vasodilates U-46619–preconstricted bovine coronary artery rings more potently than 14,15-DiHETrE (232)
Vasodilates isolated canine coronary arterioles less potently than DiHETrE isomers (222)
Vasodilates preconstricted pressurized mouse arteries less potently than its DiHETrE isomer (220)
Antinociceptive effect in thermally produced tail-flick response in rats, whereas other regioisomers were not effective

at same dose (233)
Enhances angiogenesis and tumor progression (231)

16-HETE Induces vasodilation in isolated rabbit kidney (234)
Inhibits human leukocyte activation (235)
Decreases intracranial pressure in a rabbit model of stroke (235)

17-HETE Inhibits rabbit proximal tubule ATPase activity, but has no renal vasodilatory activity (234)
18-HETE Induces vasodilation in isolated rabbit kidney (234)
19-HETE Reduces pressure in rabbit-perfused kidneys (236)

Induces vasodilation in canine renal arteries (237)
Stimulates rat renal Na+/K+-ATPase (238)

20-HETE Reduces pressure in rabbit-perfused kidneys (236)
Induces vasoconstriction in canine renal arteries (239) and porcine coronary arteries (239)
Stimulates inflammatory cytokine production in human endothelial cells (240)
Stimulates proliferation of rat vascular smooth muscle cells (241)

1 ADP, adenosine diphosphate; ATPase, adenosine triphosphatase; BK, big potassium; COX, cyclooxygenase; CYP, cytochrome P450; DiHETE, dihydroxy-eicosatetraenoic acid;
DiHETrE, dihydroxy-eicosatrienoic acid; EpDPE, epoxy-docosapentaenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid; HEPE, hydroxy-eicosapen-
taenoic acid; HETE, hydroxy-eicosatetraenoic acid; HpEPE, hydroperoxy-eicosapentaenoic acid; HpETE, hydroperoxy-eicosatetraenoic acid; Hx, hepoxilin; LOX, lipoxygenase; Lt,
leukotriene; Lx, lipoxin; oxo-ETE, oxo-eicosatetraenoic acid; PMN, polymorphonuclear leukocyte; Th, T-helper; Tx, thromboxane.
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PMNs, superoxide production, and endothelial PMN inter-
action (187, 188). In addition, 15-HETE can be metabolized
to lipoxins, which can be synthesized by epithelial cells and
leukocytes and modulate response to injury by mediating
apoptosis and resolution of inflammation, in addition to de-
creasing pain, angiogenesis, and cell proliferation (14, 42,
359). Aspirin-triggered lipoxins (e.g., 15-epi-lipoxin A4)
are formed via aspirin-acetylated COX2 and 5-LOX and
have similar properties to the lipoxins (360, 361).

In addition to AA metabolites, LOX also metabolizes
other n–6 PUFAs, including LA, GLA, DGLA and AdA
(Tables 2–4). As with AA oxylipins, 9-HODE and 13-HODE
derived from LAmostly have been related to pathologic con-
ditions such as atherosclerosis, nonalcoholic steatohepatitis,
and Alzheimer disease (362–364), but there are also in-
stances in which HODEs and their oxo-octadecadienoic
acid metabolites are anti-inflammatory and antiproliferative
(176, 271, 365). Although no functions for GLA oxylipins
have been reported, DGLA oxylipins also tend to antagonize
the analogous LOX-derived AA oxylipins. For example,

PGE1 and 15-HETrE from DGLA have antiproliferative
effects, inhibit cancer cell growth, and inhibit bleomycin-
induced lung fibrosis (366–368), whereas 15-HETrE has
anti-inflammatory effects on skin (271). Three-series leuko-
trienes derived from DGLA may also reduce inflammation
and broncho-constriction because of their relatively lower
production compared with 4-series leukotrienes from AA
and possibly lower bioactivity (369, 370).

CYP oxylipins. Oxylipins derived via the CYP pathway
from AA include EpETrE and HETE, which have vascular,
cardiac and renal functions (13, 371, 372). The effects of
these oxylipins also are unique and can be opposing. For ex-
ample, AA-derived EpETrEs formed via CYP epoxygenase
have hypotensive effects, which is opposite to the hyperten-
sive effects of 20-HETE formed via v-hydroxylase activity
(237, 373). In addition, 16-, 18-, and 19-HETE, as well as
20-HETE metabolites (20-COOH-AA and 20-OH-PGE2),
also can promote vasodilation (234, 237, 374, 375). In
some cases, the DiHETrE metabolites of EpETrE formed

TABLE 2 Examples of linoleic acid–derived oxylipin functions1

Linoleic acid–derived oxylipin functions

LOX oxylipins
9-HODE Induces endoplasmic reticulum stress in human macrophages (242)

Inhibits proliferation and induces apoptosis in human U937 cells (243)
Proinflammatory in skin under oxidative conditions in human (244)
Induces maturation, scavenger receptor expression and activates PPARg-dependent transcription in human monocytes (245)
Does not inhibit tumor cell adhesion to endothelial cells (compared to 13-HODE) in mice (176)

9-oxo-ODE Activates PPARg-dependent transcription in human monocytes (as do 9-HODE and -HpODE) (245)
13-HODE Prevents platelets from adhering to human vascular endothelium (246)

Decreases thrombin-induced platelet adherence to other platelets and to endothelial cells in vitro (247)
Induces maturation and scavenger receptor expression and activates PPARg-dependent transcription in human monocytes (245)
Inhibits proliferation of hyperproliferative skin in guinea pigs (248)
Inhibits tumor cell adhesion to endothelial cells (176)
Inhibits the secretion and assembly of TG-rich lipoprotein particles in vitro (249)
Inhibits human neutrophil production of LtB4 in vitro (70)

13-HpODE Relaxes canine circumflex and splenic arteries, similarly to 13-HODE (250)
Relaxes human pulmonary arteries (184)

13-oxo-ODE Reduces inflammation in human colonic epithelial cells (251)
Does not inhibit tumor cell adhesion to endothelial cells (compared to 13-HODE) in mice (176)
Does not inhibit LOX enzyme activity (compared to 12- and 15-oxo-ETE) in vitro (169)
Activates PPARg-dependent transcription in human monocytes (as do 13-HODE and -HpODE) (245)

CYP oxylipins
9,10-DiHOME Decreases left ventricular–developed pressure recovery and increases coronary resistance after ischemia/reperfusion in the mouse

heart (252)
Causes mitochondrial dysfunction, leading to cell death in rabbit renal proximal tubular cells, whereas parent epoxy compound is

not toxic (253)
12,13-DiHOME Causes mitochondrial dysfunction, leading to cell death in rabbit renal proximal tubular cells, whereas parent epoxy compound is

not toxic (253)
Causes acute respiratory distress syndrome in mice; more toxic than its epoxy parent (254)
Lacks protective effect of 12,13-EpOME in rabbit renal proximal tubular cells exposed to hypoxia/reoxygenation (255)

9,10-EpOME Inhibits mitochondrial respiration in perfused rat lung (256)
Relaxes rat stomach smooth muscle and uncouples mitochondrial respiration (257)
Induces canine heart failure when injected intravenously (258)
Inhibits growth of normal and transformed human cells in culture (259)
Induces vasoconstriction in isolated perfused cat carotid arteries (260)

12,13-EpOME Pretreatment with low concentrations maintains mitochondrial respiration in rabbit renal proximal tubular cells exposed to hy-
poxia/reoxygenation; 12,13-DiHOME has no effect (255)

Induces vasoconstriction in isolated perfused cat carotid arteries (260)
Induces dysfunction in isolated rabbit renal cortical mitochondria, whereas 12,13-DiHOME does not (261)

1 CYP, cytochrome P450; DiHOME, dihydroxy-octadecenoic acid; EpOME, epoxy-octadecenoic acid; HODE, hydroxy-octadecadienoic acid; HpODE, hydroperoxy-octadecadienoic
acid; LOX, lipoxygenase; Lt, leukotriene; oxo-ETE, oxo-eicosatetraenoic acid; oxo-ODE, oxo-octadecadienoic acid.
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via sEH activity have less activity (232), but in other cases
the DiHETrE have similar or even greater potency (220,
222). Interestingly, sEH inhibitors are currently being used
to treat hypertension pharmacologically by prolonging the
effects of the epoxy FAs on vasodilation (376), but polymor-
phisms in the CYP enzymes that produce EpETrE do not
consistently correlate with effects on hypertension, as re-
viewed in Bellien and Joannides (377). In addition, EpETrEs
also play roles in many other biological functions, such as
insulin sensitivity (378), hyperalgesia (91), and tumor angi-
ogenesis and metastasis (225, 231).

CYP oxylipins formed from LA appear to have effects
similar to those derived from AA. For example, 9,10- and
12,13-EpOME derived from LA are produced by neutrophils
and macrophages, mediating inflammatory effects (379,
380) (Table 2). These oxylipins were originally referred to
as leukotoxin and isoleukotoxin, respectively, but later stud-
ies indicate that their toxic effects may be due to conversion
by sEH to their diol metabolites (381). Elevated EpOME also

has been related to extensive burns, respiratory syndrome,
and systemic organ failure in burned skin of humans and
lung (382).

n–3 PUFA oxylipin functions
In general, but not always, oxylipins formed from n–3
PUFAs have lesser biological potency when compared with
those derived from n–6 PUFAs, and often compete for the
same receptor, further dampening the biological effect
(383). In addition, because they also compete with n–6
PUFAs for the same oxylipin biosynthetic enzymes, they
may reduce biological activity by reducing the amount of
total and n–6 PUFA–derived oxylipins produced and in-
creasing concentrations of less active n–3 PUFA–derived
oxylipins (286, 384).

COX oxylipins. With respect to COX oxylipins, those de-
rived from EPA are similar to DGLA oxylipins, generally

TABLE 3 Examples of dihomo-g-linolenic acid–derived oxylipin functions1

Dihomo-g-linolenic acid–derived oxylipin functions

COX oxylipins
PGD1 Activates proinflammatory receptor chemoattractant receptor homologous molecule expressed on

T helper type 2 cells/D prostanoid receptor in human kidney cells (compared to PGE1) (262)
Inhibits human platelet aggregation, but is 1% as potent as PGD2 or PGD3 (119)

PGE1 Does not activate proinflammatory receptor CRTH2/DP2 in human kidney cells
(compared to PGD1) (262)

Reduces healing time of lower limb ulcers in human patients (263)
Alleviates neurologic deteriorations of diabetic rats (264)
Vasodilates rat coronary and systemic circulation (265)
Stimulates peripheral blood flow in humans with peripheral arterial disease (266)
Reduces pulmonary hypertension in patients with pulmonary arterial hypertension (267)
Inhibits human platelet aggregation (120, 268)

13,14-dihydro-PGE1 Inhibits human platelet aggregation with similar potency to PGE1 (268)
LOX oxylipins
12-HETrE Enhances delayed-type hypersensitivity in guinea pig model (269)

Inhibits human platelet aggregation (270)
15-HETrE Inhibits epidermal hyperproliferation in guinea pig skin (67, 271)

Inhibits formation of proinflammatory LtB4 in human neutrophils (70)
Inhibits cellular growth and AA metabolism in human prostatic adenocarcinoma cells (272)

1 AA, arachidonic acid; COX, cyclooxygenase; HETrE, hydroxy-eicosatrienoic acid; LOX, lipoxygenase; Lt, leukotriene.

TABLE 4 Examples of adrenic acid–derived oxylipin functions1

Adrenic acid–derived oxylipin functions

COX oxylipins
Dihomo-PGE2 Stimulates cAMP production in rabbit renal medullary interstitial cells more potently than dihomo-

PGI2, but 10 times less potently than PGE2 (77)
No contractile activity in vascular and nonvascular smooth muscle tissue at levels at which PGE2 had

significant activity (77)
Dihomo-PGI2 Inhibits thrombin-induced human platelet aggregation, but is 1% as potent as PGI2 (75)

Stimulates cAMP production in rabbit renal medullary interstitial cells, but 100 times less potently
than PGI2 (77)

Dihomo-TxA2 No contractile activity in rabbit aorta (79) [compared with constrictory effect of TxA2 (143)]
CYP oxylipins
Dihomo-7,8-, Dihomo-10,11-,
Dihomo-13,14-, and Dihomo-16,17-EpETrE

Induce vasorelaxation in bovine coronary arterial rings (79)
Dilate canine and porcine coronary microvessels with similar potency to other dihomo-EpETE

isomers, as well as EpETrE and EpEPE isomers (228)
Dihomo-16,17-EpETrE Causes concentration-related relaxations in preconstricted bovine adrenal cortical arteries (76)

1 COX, cyclooxygenase; CYP, cytochrome P450; EpEPE, epoxy-eicosapentaenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid; Tx, thromboxane.

Oxylipins 525



being less potent or produced less efficiently (286) than the
analogous oxylipins derived from AA (Table 6). Hence,
compared with PGE2, PGE3 binds to the EP4 receptor
with less affinity and activity in colorectal cancer cells
(383) and demonstrates less mitogenetic and inflammatory
activity in fibroblasts and monocytes (280, 383, 385). Com-
pared with thromboxane A2, thromboxin A3 is produced
less efficiently and was reported to have less vasoconstric-
tory and aggregatory activity (286), but a later study
has attributed this reduced biological effect to the pres-
ence of PGD3 in the incubations and found that throm-
boxane A2 and thromboxane A3 have similar aggregatory
activities (81). PGI3 and PGI2 also have similar vasodilatory
and antiaggregatory effects on platelets (286) and thrombox-
ane A2 and thromboxane A3 have a similar ability to elevate
plasma catecholamines in rats or to activate the thromboxane
receptor (81, 283, 286, 384).

LOX oxylipins. LOX also metabolizes the n–3 PUFAs, ALA
to HOTrE, EPA to HEPE and DHA to HDoHE, oxylipins
that also tend to have less inflammatory activity or to be
anti-inflammatory (Tables 5–7). There is very little in-
formation on ALA-derived oxylipins, but recent findings
indicate that 9,16-dihydroxy-octadecatrienoic acid has anti-
inflammatory and antiaggregatory effects by reducing PG
production (80), and that 9- and 13-HOTrE are associated
with reduced glomerular hypertrophy in obese rats (55).
An earlier paper indicates that 13-HOTrE may have anti-
inflammatory effects in chondrocytes (273), and a recent
paper showed that 13-oxo-octadecatrienoic acid can
stimulate glucose uptake and differentiation in adipocytes
(275). EPA oxylipins have been investigated much more and
are primarily anti-inflammatory; for example, 5-hydroperoxy-
eicosapentaenoic acid can be metabolized to leukotriene
B5, which has less activity and also competes with leuko-
triene B4 and therefore reduces inflammation and broncho-
constriction (386–388). 5-oxo-eicosapentaenoic acid derived
from 5-HEPE is 10% as potent in stimulating neutrophils
than the AA oxylipin (5-oxo-ETE) derived from 5-HETE
(86). 15-HEPE derived from EPA also exhibits anticancer ef-
fects. For example, in human prostatic adenocarcinoma
cells, 15-HEPE can inhibit cancer cell growth and inhibit
production of AA oxylipins (272).

DHA also is metabolized via LOX, resulting in the pro-
duction of HDoHE, which also generally exhibits beneficial
effects. For example, 4-HDoHE has been reported to in-
hibit proliferative retinopathy and retinal endothelial cell
proliferation (315) and 14-HDoHE can antagonize platelet
activation and smooth muscle constriction (180, 389). The
functions of 14-HDoHE may be mediated via maresins,
given that they have been shown to be involved in resolu-
tion of inflammation, tissue regeneration, and analgesia
(94, 390), or via other DiHDoHEs, which have similar pro-
tective effects, such as the wound healing properties of
14,21-DiHDoHE in mice (313) and the inhibition of PMN
infiltration in a mouse peritonitis model by 14,20-DiHDoHE
(101). Similarly, 17-HDoHE inhibits 5-LOX in rat leukemia
cells (82), reduces inflammation and oxidative damage in
murine hepatocyte injury (316), and has antihyperalgesic
properties in a rat model of arthritis (318). Some of these ac-
tions may be via the D-series resolvins and protectins derived
from 17-HpDoHE. Resolvins have been shown to have pro-
tective actions in inflammatory diseases (97, 391, 392),
whereas the effects of protectins vary by isomer—protectin
DX has antiaggregatory effects (326, 393) and can restore in-
sulin sensitivity in obese mice (329), but protectin D1 does
not exhibit these activities (329, 394). Both can inhibit influ-
enza virus replication (395, 396), reduce inflammation, and
accelerate the resolution of inflammation (392), with the lat-
ter study indicating that protectin D1 has greater potency in
this regard. Helpful reviews delineating differences in struc-
ture and functions of the protectins can be found in 2 articles
(18, 97).

CYP oxylipins. n–3 PUFA oxylipins derived via the CYP
pathway also have some similar and some differing effects
compared with their n–6 PUFA–derived counterparts
(Tables 5–7). EpETEs derived from EPA have vasodilatory
and anti-inflammatory effects (339, 399, 400), which is
similar to EpETrE derived from AA, with the vasodilatory
effects of EpETE possibly exceeding those of EpETrE in
some vascular beds (337, 398). In addition, several CYP
isoforms preferentially metabolize n–3 over n–6 PUFAs,
as reviewed in 2 articles (87, 399). EpETE can also inhibit
Ca2+ and isoproterenol-induced contractility of neonatal
cardiomyocytes, suggesting that they have antiarrhythmic

TABLE 5 Examples of a-linolenic acid–derived oxylipin functions1

a-Linolenic acid–derived oxylipin functions

COX oxylipins
9-HOTrE Associated with glomerular hypertrophy in obese rats (55)
9,16-diHOTrE Inhibits PG synthesis from COX1 and collagen-induced human platelet aggregation (80)
13-HOTrE Suppresses IL-1β–induced expression of matrix metalloproteinases in human chondrocytes in vitro (273)

Associated with glomerular hypertrophy in obese rats (55)
13-HpOTrE Causes moderate and reversible depression in action potential markers in rat cardiomyocytes (274)
13-oxo-OTrE Induces glucose uptake and promotes adipocyte differentiation in murine model (275)

CYP oxylipins
9,10-DiHODE Lower in blood of hyperlipidemic vs. normolipidemic persons (54)
12,13-DiHODE Lower in blood of hyperlipidemic vs. normolipidemic persons (54)

1 COX, cyclooxygenase; CYP, cytochrome P450; diHODE, dihydroxy-octadecadienoic acid; diHOTrE, dihydroxy-octadecatrienoic acid; HOTrE, hydroxy-octadecatrienoic acid;
HpOTrE, hydroperoxy-octadecatrienoic acid; oxo-OTrE, oxo-octadecatrienoic acid.
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TABLE 6 Examples of EPA-derived oxylipin functions1

EPA-derived oxylipin functions

COX oxylipins
15-deoxy-PGJ3 Increases adiponectin secretion from murine adipocytes (276)
PGD3 Lowers intraocular pressure in rabbit model (277)

Decreases peripheral vascular resistance and increases cardiac output and heart rate in dogs (278)
As potent as PGD2 in modulating sympathetic nerve transmission in the eye but less effective in activating vagally

mediated bradycardia in cat model (279)
Inhibits human platelet aggregation with similar or greater activity than PGD2 (119, 120)

PGE3 Lowers intraocular pressure but caused mild conjunctival hyperemia in rabbit model (277)
Compared with PGE2, is not mitogenic to and is less efficient in inducing COX2 gene expression in murine NIH

3T3 fibroblasts, and less efficient in inducing IL-6 synthesis in murine RAW 264.7 macrophages (280)
Inhibits proliferation of human A549 cells (281) and mouse melanoma B16 cells (282)
Less effective than PGE2 in elevating plasma noradrenaline when administered intracerebroventricularly

in rats (283)
Less potent stimulator of cAMP production than PGE2 in HEK293 human renal cells (81)

PGF3a Less protective than PGF2a on ethanol induced gastric mucosal injury in rat model (284)
PGI3 Inhibits aggregation in human and rabbit platelets (285, 286)

Promotes relaxation of bovine coronary arteries (286)
D12-PGJ3 Inhibits progression of leukemia in a mouse model (287)
TxA3 Synthesized at a much lower rate than TxA2 in human platelets (286)

Elevates catecholamines when administered intracerebroventricularly as potently as TxA2 in rats (283)
Activates human platelet aggregation with potency comparable with TxA2 (81)

LOX oxylipins
5-HEPE Enhances glucose-dependent insulin secretion in mouse MIN6 insulinoma cells and human NuTu80 intestinal

carcinoma cells (288)
Promotes bovine neutrophil chemotaxis in vitro, but less potently than 5-HETE (165)

5-HpETE Inhibits human platelet aggregation, but less effectively than 12-HpEPE (166)
5-oxo-EPE Stimulates migration of both human neutrophils and eosinophils at one-tenth the activity of 5-oxo-ETE (86)
8-HEPE Induces adipogenesis in mouse preadipocytes and glucose uptake in myoblasts via PPAR activation (2)
9-HEPE Induces adipogenesis in mouse preadipocytes and glucose uptake in myoblasts via PPAR activation (2)
12-HEPE Inhibits human platelet aggregation similarly to 12-HETE, but less effectively than 12-HpEPE or 12-HpETE (166)
12-HpEPE Inhibits human platelet aggregation similarly to 12-HpETE, and more potently than 5- or 15-HpEPE (166, 182)
15-HEPE Inhibits 5-LOX in rat basophilic leukemia cells (84)

Inhibits cellular growth and AA metabolism in human prostatic adenocarcinoma cells (272)
15-HpEPE Inhibits human platelet aggregation similarly to 15-HpETE, but less potently than 12-HpEPE (166)

Inhibits glucosamine synthetase activity in rabbit gastric mucosa (289)
Decreases rabbit renal PG synthesis (290)
Inhibits AA metabolism in rabbit platelets (291)

LtA5 Inhibits the formation of LtB4 from LtA4 by rat and human neutrophil LtA4 hydrolase (292)
LtB5 Less active than LtB4 in aggregating rat and human neutrophils (83)

Promotes chemotaxis of bovine or human neutrophils, but is much less potent than LtB4 (165, 205)
LtC5 Contracts guinea pig lung parenchymal strips and ileal tissues with potency similar to LtC4 (205)

Inhibits the anaphylactic reaction in guinea pig isolated heart, with potency similar to LtC4 (293)
Contracts guinea pig ileum but less potently than LtC4 (294)

LtD5 Inhibited IL-1β–induced COX2 expression in human pulmonary microvascular endothelial cells (295)
Stimulates volume regulation in murine Ehrlich ascites tumor cells (similar potency as LtD4) (296)

LxA5 Induces contraction of isolated guinea pig pulmonary smooth muscle (similar to LxA4 and LxB4 effects), but does
not induce vasorelaxation of rat or guinea pig aortic rings (unlike LxA4 and LxB4) (216)

Induces superoxide anion generation from canine neutrophils and contraction of rat tail arteries (297)
LxB5 Does not induce contraction of isolated guinea pig pulmonary smooth muscle (unlike LxA5, LxA4, and LxB4) or

vasorelaxation of rat or guinea pig aortic rings (unlike LxA4 and LxB4) (216)
Induces superoxide anion generation from canine neutrophils (with similar activity to 4-series Lx) (297)

CYP oxylipins
8,9-, 11,12-, 14,15-, 17,18-DiHETE Inhibit human platelet aggregation, but with much less potency than parent EpETE (298)
8,9-, 11,12-, 14,15-, 17,18-EpETE Dilate canine and porcine coronary microvessels with similar potency to other EpETE isomers as well as EpETrE

and dihomo-EpETrE isomers (228)
Inhibit human platelet aggregation and thromboxane synthesis with potency similar to other EpETE and EDPE

isomers and potency greater than EpETrE isomers (298)
17,18-EpETE Decreases human platelet aggregation (299)

Relaxing effect on human bronchi arterial and airway smooth muscles (300)
Anti-inflammatory effect in human lungs (301)
Vasodilator in rat vascular smooth muscle cells (302)

18-HEPE Inhibits macrophage-mediated inflammation in cardiac fibroblasts in culture and prevents pressure overload–
induced cardiac fibrosis and inflammation in mice (303)

Decreases LPS-induced TNFa secretion in the murine macrophage cell line (304)

(Continued)
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effects (400). EpDPE derived from DHA has anti-inflammatory,
vasodilatory, and anticancer effects, similar to EpETE (231,
299, 337). EpDPE also can inhibit angiogenesis and metas-
tasis (231), unlike the AA derived EpETrE, which promote
these functions (225). 18-HEPE derived from EPA via
v-hydroxylase also appears to have an anticancer role by
downregulating proinflammatory and pro-proliferative
factors (304), possibly via conversion to E-series resolvins. These
resolvins have effects similar to the D-series resolvins, mark-
edly reducing PMN infiltration, decreasing proinflammatory
cytokines, and enhancing the resolution of inflammation
(359, 401, 402).

In summary, oxylipins have important biological effects
that mediate normal physiology and function. However, com-
pared with oxylipins derived from n–3 PUFAs, those derived
from n–6 PUFAs have more inflammatory, vasoconstrictory,
and proliferative effects, with the exception of several
examples, such as some prostanoids and/or their metabo-
lites, lipoxins, some oxylipins from DGLA and LA, EpETrE,
and some CYP-derived HETEs. But most oxylipins derived
from n–3 PUFAs tend to have less activity or be anti-
inflammatory, proresolving, vasodilatory, and antiproliferative.
In addition, some of the anti-inflammatory and vasodilatory
CYP oxylipins derived from EPA and DHA have even greater
potency than their AA counterparts.

Future Developments in Nutrition and Oxylipin
Research
Given the vastly differing and often opposing functions, it is
critical that comprehensive analyses of the oxylipin profile
be performed in order to gain an overall understanding of
the biological effects. To date, few studies have examined
the whole range of PUFA-derived oxylipins, but the recent
development of MS-based methods is enabling this possibil-
ity (403). The number of oxylipins being measured by these
methods continues to grow (e.g., novel protectin- andmaresin-
like products from both the n–3 and n–6 docosapentaenoic
acid isomers) (18, 97). Recently, several reports have described
the oxylipin profile in human blood (53, 404) and a small
number of studies have examined the serum oxylipin profile

in response to fish oil supplementation in healthy individuals
(405–408), as well as in those who have asthma (409). These
analyses and other studies that have increased dietary LA or
ALA have revealed that the type of dietary fat significantly alters
oxylipin profiles (55, 410–412). Furthermore, these studies
have demonstrated that the oxylipins derived from LA and
ALA make up more than one-half of the total oxylipin con-
tent measured. Despite this, much less is known about
these oxylipins, and future studies characterizing concen-
trations, as well as determining their biological activities,
will greatly increase our understanding of the effects of nu-
tritional interventions in health and disease.

In this regard, there are some studies that have exam-
ined oxylipin activities side-by-side, such as for those de-
rived from EPA or DHA compared with those derived
from AA (see Tables 6 and 7), which generally, but not al-
ways, exhibit less activity in the former than the latter.
However, comparisons of the biopotencies of most of the
LA and ALA oxylipins are unknown, either to each other,
or to their elongation counterparts. These comparisons and
other studies that examine the relative biological activities
of oxylipins are needed in order to further our understanding
of the physiologic effects of the entire oxylipin profile. In ad-
dition, although some studies have compared the effects of
oxylipin stereoisomers, much more knowledge in this area
also is required. Differentiation between enzyme-mediated
and autooxidation products and their potential effects in bi-
ology will also be facilitated by these studies.

It is important to note that tissue PUFA composition can-
not be used to reliably predict the oxylipin content of tissues,
despite the fact that this has routinely been done in the past
literature. This was illustrated in a recent targeted lipidomic
analysis of renal oxylipins in obese rats, which demonstrated
that although the PUFA content generally reflected oxylipin
content, there were notable discrepancies. For example, with
9-fold differences in the amounts of LA in the diets of these
rats, the AA content of the renal phospholipid was the same,
but the concentrations of several AA-derived oxylipins were
different (55). This has important implications for the cur-
rent debate surrounding the dietary recommendations for

TABLE 6 (Continued )

EPA-derived oxylipin functions

RvE1 Reduces dermal inflammation, peritonitis, dendritic cell migration, and IL-12 production in an inflammatory
mouse model (305)

Reduces total leukocytes and PMN infiltration in murine peritonitis (306)
Reduces hepatic fibrosis in murine model of infection (307)
Promotes phagocyte removal during acute inflammation in vitro and in vivo (308)

RvE2 Stops zymogen-induced PMN leukocyte infiltration in murine peritonitis (309)
Enhances phagocytosis and anti-inflammatory cytokine production in murine peritonitis (310)
Inhibits human neutrophil infiltration and proinflammatory cytokines in an acute peritonitis (311)

RvE3 Inhibits neutrophil chemotaxis in vitro and reduces neutrophil numbers in zymosan-induced murine peritonitis
in vivo (89)

Blocks PMN infiltration in a mouse model of peritonitis (312)
1 AA, arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450; diHETE, dihydroxy-eicosatetraenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic
acid; HEPE, hydroxy-eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic acid; HpEPE, hydroperoxy-eicosapentaenoic acid; HpETE, hydroperoxy-eicosatetraenoic acid; LOX,
lipoxygenase; Lt, leukotriene; Lx, lipoxin; oxo-EPE, oxo-eicosapentaenoic acid; oxo-ETE, oxo-eicosatetraenoic acid; PMN, polymorphonuclear leukocyte; Rv, resolvin; Tx,
thromboxane.
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LA (413). Furthermore, this study indicated that PUFA con-
version to oxylipins varies by as much as 10-fold between
PUFAs, with ALA being metabolized to oxylipins at a greater
rate than LA, AA, or EPA. This may be due to differences in
incorporation and release of phospholipid FAs, as well as
differences in conversion to metabolites, which may be

less, more, or equally active. ALA also increased the concen-
tration of oxylipins derived from EPA and DHA, although
no EPA or DHA was present in the diets, demonstrating
that PUFAs also may mediate some of their effects via oxy-
lipins derived from PUFAs formed via elongation and desat-
uration of the shorter PUFAs (55). Hence, there is also a

TABLE 7 Examples of DHA-derived oxylipin functions1

DHA-derived oxylipin functions

LOX oxylipins
14,20-DiHDoHE Inhibits PMN infiltration in the mouse peritonitis model (101)
14,21-DiHDoHE Enhances wound healing in murine models (313, 314)
4-HDoHE Inhibits endothelial cell proliferation and sprouting angiogenesis in mouse model of oxygen-induced

retinopathy (315)
7-HDoHE Activates PPARg in transfected monkey kidney COS-7 cells (316)
13-HDoHE Inhibits TNFa-induced cytokine production in human microglial cells (26)
14-HDoHE Inhibits human platelet aggregation (180)
17S-HDoHE Vasodilates bovine coronary arterial smooth muscle cells (317)

Reduces genotoxic and oxidative damage in murine hepatocyte cells and TNFa release by murine
macrophages (316)

17R-HDoHE Inhibits hyperalgesia in a rat model of adjuvant-induced arthritis (318)
Has anti-inflammatory effects in a mouse model of dextran sulfate sodium-induced colitis (319)
Inhibits TNFa-induced cytokine production in human microglial cells (26)

17-HDoHE Decreases LPS-induced TNFa secretion in a murine macrophage cell line (304)
Inhibits 5-LOX in rat basophilic leukemia cells (82)

17-HpDoHE Displays cytotoxic potency in human neuroblastoma cells (320)
MaR1 Anti-inflammatory in a murine model of acute respiratory distress syndrome (321)

Reduces inflammation- and chemotherapy-induced neuropathic pain in mice (322)
Mitigates inflammatory effects of LPS-induced lung injury in mouse model (323)

PD1 Reduces genotoxic and oxidative damage in murine hepatocyte cells and TNFa release by murine
macrophages (316)

Promotes murine phagocyte removal during acute inflammation in vitro and in vivo (318)
Decreases leukocyte accumulation in a mouse model of kidney injury (324)
Protects human retinal pigment epithelial cells from apoptosis due to oxidative stress (325)
Promotes mouse corneal epithelial cell wound healing (212)

PDX Reduces inflammation in murine peritonitis and inhibits human microglial cell cytokine expression in
vitro (91)

Inhibits collagen-, AA-, and thromboxane-induced human platelet aggregation (326)
Inhibits PMN infiltration in mouse model of ischemic stroke (327)
Decreases reactive oxygen species production and COX activity in human neutrophils (328)
Improves insulin sensitivity by raising muscle IL-6 without affecting adipose tissue inflammation in a

murine model (329)
RvD1 Reduces reactivity and Ca2+ sensitivity in overactive human pulmonary artery smooth muscle cells (330)

Improves bacterial clearance and survival of mice with cecal ligation and puncture-induced sepsis (331)
RvD2 Has anti-inflammatory effects in a mouse model of dextran sulfate sodium–induced colitis (319)

Improves bacterial clearance and survival of mice with cecal ligation and puncture-induced sepsis (332)
Inhibits inflammatory pain in mice (333)
Mitigates neutrophil-mediated damage in mouse burn model (334)

RvD3 Reduces peritonitis and dermal inflammation in murine model (335)
RvD5 Enhances phagocyte containment of Escherichia coli in a mouse model (336)
AT-RvD1 Inhibits hyperalgesia in a rat model of adjuvant-induced arthritis (318)

Has anti-inflammatory effects in a mouse model of dextran sulfate sodium-induced colitis (319)
AT-RvD3 Reduces murine peritonitis and dermal inflammation with activity similar to RvD3 (335)

CYP oxylipins
7,8-, 10,11-, 13,14-, 16,17-, 19,20-DiHDPE Inhibit human platelet aggregation with moderately lower potency to EpDPE, and do not affect

thromboxane synthesis (298)
13,14-, 16,17- DiHDPE Reduce pain associated with inflammation more potently than EpETrE and EpEPE (91)
13,14-DiHDPE Markedly reduces potency to dilate porcine coronary arterioles compared with parent compound (339)
7,8-, 10,11-, 13,14-, 16,17-, 19,10-EpDPE Dilates porcine coronary arterioles (337)

Inhibits human platelet aggregation and thromboxane synthesis, with potency similar to other EpETE
and EpDPE isomers, and greater potency than EpETrE isomers (298)

16,17-, 19,20-EpDPE Inhibits Met-1 tumor angiogenesis and growth in mice (231)
19,20-EpDPE Decreases human platelet aggregation (299)

1 AA, arachidonic acid; AT, aspirin-triggered; COX, cyclooxygenase; CYP, cytochrome P450; DiHDoHE, dihydroxy-docosahexaenoic acid; DiHDPE, dihydroxy-docosapentaenoic
acid; EpDPE, epoxy-docosapentaenoic acid; EpEPE, epoxy-eicosapentaenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid; HDoHE, hydroxy-do-
cosahexaenoic acid; HpDoHE, hydroperoxy-docosahexaenoic acid; LOX, lipoxygenase; MaR, maresin; PMN, polymorphonuclear leukocyte; Rv, resolvin.
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need for kinetic analysis of oxylipin formation and turnover
[also referred to as fluxolipidomics (414, 415)], which also
will improve our understanding of the physiologic effects
of oxylipins in vivo. Comprehensive analyses that include
the LA and ALA oxylipins in differing tissues in response
to dietary interventions promises to yield significant novel
information on the large numbers of these bioactive
compounds.
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