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Heart disease is the leading cause of death worldwide. Therefore, assessing the risk of its occurrence is a crucial step in predicting
serious cardiac events. Identifying heart disease risk factors and tracking their progression is a preliminary step in heart disease
risk assessment. A large number of studies have reported the use of risk factor data collected prospectively. Electronic health record
systems are a great resource of the required risk factor data. Unfortunately, most of the valuable information on risk factor data is
buried in the form of unstructured clinical notes in electronic health records. In this study, we present an information extraction
system to extract related information on heart disease risk factors from unstructured clinical notes using a hybrid approach. The
hybrid approach employs both machine learning and rule-based clinical text mining techniques. The developed system achieved

an overall microaveraged F-score of 0.8302.

1. Introduction

Heart disease is a collective term for conditions that affect
the heart. Heart disease often leads to serious cardiovascular
events such as heart attacks and stroke. It has been observed
to be the leading cause of death worldwide in both men and
women and has become a major burden on national health-
care expenditures around the world [1, 2]. Assessment of the
risk of heart disease is very crucial in finding opportunities
for prevention. Identifying and tracking the progression of
heart disease risk factors are the basic steps in heart disease
risk assessment. A few examples of heart disease risk factors
are diabetes, coronary artery disease (CAD), hypertension,

hyperlipidemia, obesity, medications, smoking history, and
family history of premature CAD. Data for these risk factors
are often specifically collected for the purpose of studies
assessing the risk of heart disease.

The healthcare sector observed a rapid adoption of
electronic health record (EHR) systems in the past decade.
The primary purpose of EHR systems is to collect, store,
and exchange patient data. EHRs are rich sources of valuable
patient data such as comorbidities, medication history, social
history, and family history. Data gathered from EHRs can be
used as an alternative for data collected from studies specif-
ically designed for heart disease risk assessment. However,
most of these valuable patient data are buried in the form


http://dx.doi.org/10.1155/2015/636371

of unstructured format in EHRs [3, 4]. Manually extracting
these unstructured data from EHRs can be very expensive
and time consuming. Extracting unstructured data required
for risk assessments can be automatically done using clinical
text mining. This involves two major subtasks: identifying
risk factors and tracking the progression of the disease.
Automatic extraction of these heart disease risk factor data
involves developing a highly specified system and may not be
suitable for extracting risk factors for other diseases without
necessary changes.

Recently, a great increase in information extraction (IE)
systems catered for the clinical domain has been observed.
There are various open source IE systems available to extract
information from unstructured EHRs [5-12]. However, the
types of heart disease risk factor information with tem-
porality that can be extracted from these IE systems are
limited. ¢cTAKES is an open source IE system useful in
extracting disease disorders, medications, symptoms, and
anatomical locations [11]. HITEx is another clinical IE sys-
tem based on the GATE framework capable of extracting
disease disorders, medications, and smoking status [13].
MedEx is another IE system useful in extracting medication
information [12]. TEMPTING, on the other hand, is an IE
system capable of extracting temporal relations useful in
tracking the progression of the disease from patient discharge
summaries [5]. Byrd et al. developed a hybrid IE system
to extract Framingham diagnostic criteria for heart failure
with relevant disease progression information [14]. Another
example is the rule-based FRSSystem capable of extracting
Framingham risk factors used for predicting the risk of CAD
[15]. Jonnagaddala et al. developed a machine learning-based
IE system to identify disease disorder mentions [8]. The
mentioned IE systems can be reused to identify heart disease
risk factors but often require customization or addition of
new modules. Savova et al. built a machine learning-based
smoking classification module for cTAKES [16]. Goryachev
et al. developed a module for HITEx to extract family history
related information. None of these systems can identify a
comprehensive number of heart disease risk factors that can
be used for risk assessment.

In this study, we present an IE system capable of extract-
ing unstructured data from EHRs. This is specifically devel-
oped for the purpose of identifying and tracking the pro-
gression of heart disease risk factors in diabetic patients. The
system developed in this study is an extension to our baseline
system which was developed as part of our participation in
the 2014 i2b2/UTHealth shared tasks [17, 18]. The developed
system performs risk factor concept recognition and assigns
relevant time attributes to the recognized risk factors on
longitudinal EHRs. The heart disease risk factors recognized
by the system are diabetes, coronary artery disease (CAD),
hypertension, hyperlipidemia, smoking status, obesity status,
family history of premature CAD, and medications. The sys-
tem extracts the above-mentioned heart disease risk factors
and assigns an indicator attribute and a time attribute, if
applicable. The system is a hybrid system with both rule-
based and machine learning components. The evaluation of
the system shows that it achieved an overall microaveraged
F-score of 0.8302.
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2. Materials and Methods

2.1. Dataset. The authors used the 2014 i2b2/UTHealth
shared task 2 dataset in this study [18]. The dataset is a
collection of unstructured longitudinal EHRs of diabetic
patients provided by Partners Healthcare, USA. The EHRs are
deidentified and annotated according to the guidelines. The
annotations included heart disease risk factors and informa-
tion of disease progression [19]. Gold standard annotations
for this dataset were also available to evaluate the developed
IE system. The dataset included 1304 unstructured EHRs
(from here on referred to as records) from 297 patients
divided into three sets: training set 1, training set 2, and
test set. Training set 1 and training set 2 included 521 and
269 records, respectively, while the test set had 514 records.
The dataset was also stratified into three different cohorts
of diabetic patients: patients who had CAD, patients who
develop CAD, and patients who did not develop CAD over
a period of time [15]. Presence of heart risk factors and
progression of the disease were defined in the form of risk
factor, indicator attribute, and time attribute in the dataset.
An overview of risk factors and their corresponding attributes
is presented in Tablel. A sample (modified) EHR from
the dataset is also illustrated in Figure 1. Each risk factor
tag excluding family history and smoking history had time
attribute that can take values, before document creation
time (DCT), during DCT, and after DCT. The time attribute
defines when a risk factor is known to have existed. The
indicator attribute defines whether the identified risk factor
is a mention, test, or lab value.

2.2. System Description. The heart disease risk factors sys-
tem (HDRFSystem) in its current form includes three
modules (i) core NLP module, (ii) risk factor recognition
module, and (iii) attribute assignment module (Figure 2).
The core NLP module identifies sentence boundaries (sen-
tence detector), breaks sentences into tokens (tokenizer),
assigns part of speech tags (POS-tagger), and identifies
noun phrases (chunker). The core NLP module adopted
components from the OpenNLP package (v1.5.3) available at
https://opennlp.apache.org/. Processed information from the
core NLP module is then passed to the risk factor recognition
module where medications, disease disorder mentions, fam-
ily history, and smoking history are identified. The risk factor
recognition module is responsible for identifying all the heart
disease risk factors. All the identified risk factors (except
family history and smoking history) were then assigned
indicator and time attributes by the components in the
attribute assignment module. The components of the risk
factor recognition module and the time attribute assignment
module are explained in more detail in the following sections.

2.2.1. Medication Recognition. This component was used for
identification of medications and is based on MetaMap
[20, 21]. The noun phrase chunks identified by the chun-
ker component in the core NLP module were passed to
MetaMap. The component was configured to use MetaMap
with UMLS2013AB as the knowledge source and USAbase
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TaBLE 1: Overview of risk factors, indicator attribute, and time attribute.

Risk factor Indicator attribute Time attribute
. Before DCT, during DCT,
CAD > )
Mention, event, test result, and symptom and after DCT
: . . . Before DCT, during DCT,
Diabet ’ ’
iabetes Mention, high Alc, and high glucose and after DCT
Family history Present, not present Not applicable
- . . . . Before DCT, during DCT,
Hyperlipid ’ ’
yperlipidemia Mention, high cholesterol, and high LDL and after DCT
. . . Before DCT, during DCT.
H t > b
ypertension Mention, high blood pressure and after DCT
ACE inhibitors, ACE inhibitors ARBs, amylin, antidiabetes medications, aspirin,
Medicati beta-blockers, calcium-channel blockers, DPP-4 inhibitors, ezetimibe, fibrates, Before DCT, during DCT,
edication L L S . .
GLP-1 agonists, insulin, meglitinides, metformin, niacin, nitrates, obesity, statins, and after DCT
sulfonylureas, thiazide diuretics, thiazolidinediones, and thienopyridines
: . o Before DCT, during DCT,
Obesit > ’
esity Mention, BMI, and waist circumference and after DCT
Smoking history Current, past, ever, never, and unknown Not applicable
TABLE 2: Features used by smoking history, sectionizer, and time attribute assigner classifiers.
Component Classification Classifier Classes List of features
Smoking history ~ Sentence level Naive Bayes Current, past, and never ~ Bag of words, POS tags
First word uppercased, all words
- . . . uppercased, all words lowercased, dictionary
Sectionizer Sentence level Conditional random Section heading, section match, first word, second word, previous

fields

heading with text, and text

sentence features, next sentence features, full
stop, and containing colon

Time attribute

. Phrase level
assigner

Naive Bayes

Before DCT, during DCT,
after DCT, and continuing

Identified risk factor spans, previous word,
previous word POS tag, next word, next
word POS tag, section information, and
indicator attribute

as the data version and strict data model. For identifying
medications, the component was restricted to use RxNorm
terminology with a candidate score of 1000.

2.2.2. Disease Disorder Recognition. This component iden-
tifies the mentions of hypertension, hyperlipidemia, CAD,
and obesity using MetaMap. To identify disease disorder
MetaMap was configured to use SNOMEDCT_US terminol-
ogy as source with a candidate score of 1000. Rules were
developed for finding lab values such as blood pressure
values, HDL count, and glucose level. For example, this
component can identify BP value from text such as “BP:
158/72,” “blood pressure 149/96,” or “blood pressure elevated
at 188/92.” Similarly, the authors developed rules to identify
lipid levels (e.g., lipid levels: total cholesterol 164, TG 145,
HDL 33, and LDL 102) and other blood tests (e.g., BUN
is 27, creatinine is 4.7, and glucose is 79). Once values
were identified, they were filtered out based on the levels
mentioned in the annotation guidelines [19]. This component
also filters out irrelevant disease disorders which are not
considered as heart disease risk factors based on the rules
using UMLS CUI Furthermore, a custom-built dictionary
was used to find abbreviation mentions. For example, DM2,

DM Type II, and DMII refer to diabetes type 2. The rules in
this component were implemented using Apache UIMA Ruta
framework (https://uima.apache.org/ruta.html).

2.2.3. Family History and Smoking History Classifier. A rule-
based classifier was employed to identify family history of
premature CAD. This rule-based classifier identifies sen-
tences containing CAD mentions that also has mention
of familial relationships. More rules were applied to check
whether the relative died prematurely (age < 55) due to
CAD. If there are no such sentences in the document, then
the document is simply classified as unknown for family
history of premature CAD. In the dataset, smoking history
is classified at document level using five classes: “current,”
“past,” “never,” “ever,” and “unknown.” We developed Naive
Bayes algorithm-based supervised learning classifier to iden-
tify smoking history in conjunction with a few rules [22].
The Naive Bayes classifier model was built using features
illustrated in Table 2. Furthermore, we evaluated and selected
features which were highly correlated with the classifier’s
predicative performance [23]. The smoking history classifier
identifies smoking history by classifying each sentence. If
multiple instances of smoking sentences were identified, rules
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<root>
<TEXT><![CDATA[
Record date: 2097-09-09

Narrative History

hotflashes, wakes her up at night.

Problems

Hypertension
Smoking

thyroid nodule 2065, hot, follow TSH.

Medications

Vital Signs

BLOOD PRESSURE-SITTING 150/70
repeat 145/80 HR 60 reg WT 202 Ibs

]]></TEXT>
<TAGS>

<SMOKER id="DOC5" status="past"/>
</TAGS>

</root>

58 yo woman who presents for f/u Seen in Cardiac rehab locally last week.
Back to work and starting to walk. No wt loss and discouraged by this, but
just starting to exercise. No smoking for 5 months now! Still with

FH myocardial infarction mother died 66 yo

hyperlipidemia CRF mild chol, cigs, HTN, Fhx and known hx CAD in pt.
borderline diabetes mellitus 4/63 125, follow hgbaic
coronary artery disease s/p ant SEMI + stent LAD 2/67, Dr Oakley

ZESTRIL (LISINOPRIL) 40MG 1 Tablet(s) PO QD
LIPITOR (ATORVASTATIN) 10MG 1 Tablet(s) PO QD

<HYPERLIPIDEMIA id="DOCI13" time="during DCT" indicator="mention"/>
<HYPERLIPIDEMIA id="DOC25" time="after DCT" indicator="mention"/>
<HYPERLIPIDEMIA id="DOC31" time="before DCT" indicator="mention"/>
<MEDICATION id="DOCO0" time="during DCT" typel="ACE inhibitor" type2=""/>
<MEDICATION id="DOC21" time="before DCT" typel="statin" type2=""/>
<MEDICATION id="DOC22" time="during DCT" typel="statin" type2=""/>
<HYPERTENSION id="DOC6" time="during DCT" indicator="mention"/>
<HYPERTENSION id="DOC14" time="during DCT" indicator="high bp"/>
<CAD id="DOC20" time="after DCT" indicator="mention"/>

<CAD id="DOC30" time="before DCT" indicator="event"/>

<FAMILY_HIST id="DOC24" indicator="not present "/>

FIGURE 1: Sample EHR with annotations of heart disease risk factors.

were applied to select one. The training dataset was used to
build a custom dictionary of smoking terms such as smoker,
tobacco, and packs per year that can be used to identify
sentences containing any mention of smoking history. Using
this custom-built dictionary, sentences for smoking history
mention were identified and were further classified into three
classes, namely, “current,” “past,” and “never.” During the
development of classifier, it was noticed that less than 1% of
the records in the dataset belong to “ever” class. To improve
classifier performance, “ever” class was completely ignored.
If no mention of smoking terms was found in the document,
then that document was simply classified as “unknown” for
smoking history.

2.2.4. Indicator Attribute Assigner. The indicator attribute
assigner takes input from the risk factor recognition module
and assigns appropriate indicator attribute based on dataset
annotation guidelines [19]. This component was developed
by implementing various rules using Apache UIMA Ruta
framework. The rules consider factors like how the risk factor
was recognized and what the annotations made by the risk
factor module were. For example, if a record contains text
such as “type 1 diabetes,” the diabetes risk factor is recognized
by the disease disorder component, and it is assigned with
“mention” tag for the indicator attribute. Similarly, using
the same rules, if the diabetes risk factor was recognized
by Alc test values, it is assigned with “high Alc” indicator



BioMed Research International

Sentence detector

l

Tokenizer

l

Lexical variants

Medication
recognition

Disease disorder
recognition

Indicator attribute
7 assigner

‘ Sectionizer

H

Tyt generator
POS-tagger
Chunker
>
Core NLP module

Family history
and smoking
history classifier

Risk factor
recognition module

Time attribute
assigner

Attribute assignment
module

FIGURE 2: Overview of heart disease risk factor information extraction system.

attribute. Medication type was assigned using a custom-built
dictionary built from the training datasets using Wikipedia.
The final dictionary file contained medications generic names
and categories they belong to. In total, there were 474
medications in 21 categories (related to heart disease risk
factors). Overall, we developed 26 rules to assign risk factor
indicator attribute.

2.2.5. Sectionizer. Most of the EHRs in the dataset included
section headings. The section headings information was
useful in identifying family history and medication risk
factors [17, 24]. At the same time, the same information was
used as a feature for assigning time attribute to identified risk
factors. For example, medications mentioned under section
heading “medications” or “medications on admission” will
always have a time attribute as before DCT, after DCT, and
during DCT. Thus, we developed a conditional random field
(CRF) based machine learning classifier to identify section
information using features illustrated in Table 2 [25]. The
classifier classified a sentence to either “section heading” or
“section heading with text” or “text.” Section heading class
was assigned if the sentence contains only a section heading
(e.g., current medications). Section heading with text class
was assigned if the sentence contains section heading with
text (e.g., record date: 2073-12-14). Text class was assigned
if the sentence contains text only and does not include any
section headings (e.g., “s/p XRT to esophagus”).

2.2.6. Time Attribute Assigner. This component assigns time
attribute for each of the risk factors identified by earlier
components. Similar to the smoking history classifier, a
supervised learning classifier based on Naive Bayes algorithm
was developed with addition of a few rules to complete the
task [22]. We used risk factor phrases annotated by risk
factor recognition module to train the model with features
shown in Table 2. Each phrase was classified into either one of

the four classes shown in Table 2. When a phrase is classified
as continuing in the output, we assigned all three time
attributes, before DCT, after DCT, and during DCT, as per
annotation guidelines [19].

3. Results

The HDFRSystem was evaluated using macro- and microav-
eraged precision, recall, and F-score [26]. An evaluation
script provided with the dataset was used to calculate per-
formance scores. The evaluation script is capable of report-
ing system performance at many levels including specific
risk factors by indicator attribute and time attribute. The
evaluation metrics are explained in more detail elsewhere
[19]. The developed system achieved an overall microaver-
aged F-score of 0.8302 on the test set. Performance of the
developed system on the test set categorized by indicator
attribute is presented in Table 3. Every mention indicator
attribute outperformed other indicator attributes, suggesting
that our methods were effective in identifying risk factor
mentions but not so effective in inferring risk factors from
lab values or tests. A number of indicator attributes were
not recognized, specifically CAD test result, high glucose,
high cholesterol, obesity, medications, amylin, antidiabetes,
and waist circumference. The smoking history classifier also
underperformed when compared to other risk factors by
achieving 0.5 and 0.7265 microaveraged F-score for “current”
and “never” indicator attributes, respectively.

We also present the system’s performance categorized by
time attribute in Table 4. Similar to the trend noticed in
Table 3, CAD and medication risk factors underperformed
when compared to other risk factors. CAD and medication
risk factors achieved a lower recall and F-score when com-
pared to overall risk factors for all three time attributes. In
other words, our time attribute classifier did not perform well
on assigning time attributes for CAD and medication risk
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TABLE 3: Performance on test set by indicator attributes.
) Macroaveraged Microaveraged
Risk factor Precision Recall F-score Precision Recall F-score
CAD
Mention 0.3346 0.3405 0.3375 0.5029 1.0000 0.6693
Event 0.1148 0.1138 0.1143 0.8806 0.4245 0.5728
Test result 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Symptom 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes
Mention 0.6887 0.6907 0.6897 0.9219 0.9972 0.9581
High Alc 0.1109 0.106 0.1084 0.8906 0.6951 0.7808
High glucose 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Family history
Present 0.0097 0.0097 0.0097 1.0000 0.2632 0.4167
Not present 0.9630 0.9630 0.9630 0.9725 1.0000 0.9861
Hyperlipidemia
Mention 0.4436 0.4436 0.4436 0.8444 0.962 0.8994
High cholesterol 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
High LDL 0.0331 0.0331 0.0331 0.7391 0.5862 0.6538
Hypertension
Mention 0.7062 0.7101 0.7082 0.9553 0.9918 0.9732
High blood pressure 0.2996 0.2889 0.2942 0.4858 0.7897 0.6016
Medication
ACE inhibitors 0.3320 0.3482 0.3399 0.8797 0.8325 0.8555
ACE inhibitors ARBs 0.1096 0.1128 0.1112 0.8667 0.8756 0.8711
Amylin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Antidiabetes Medications 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aspirin 0.3709 0.3930 0.3817 0.9079 0.7168 0.8011
Beta-blockers 0.3891 0.4047 0.3967 0.9302 0.7186 0.8108
Calcium-channel blockers 0.2010 0.2160 0.2082 0.9064 0.8052 0.8528
DPP-4 inhibitors 0.0039 0.0039 0.0039 1.0000 1.0000 1.0000
Ezetimibe 0.0214 0.0253 0.0232 0.6471 0.9167 0.7586
Fibrates 0.0506 0.05447 0.0525 0.8966 0.8667 0.8814
GLP-1 agonists 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Insulin 0.1790 0.1887 0.1837 0.8598 0.6987 0.7709
Meglitinides 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Metformin 0.2069 0.2228 0.2145 0.8439 0.8598 0.8518
Niacin 0.0123 0.0175 0.0144 0.4524 0.7600 0.5672
Nitrates 0.1031 0.1148 0.1086 0.803 0.5867 0.6780
Obesity 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Statins 0.4617 0.4786 0.4700 0.9199 0.8715 0.8950
Sulfonylureas 0.1518 0.1595 0.1555 0.9286 0.8125 0.8667
Thiazide Diuretics 0.1226 0.1376 0.1297 0.3058 0.7441 0.4335
Thiazolidinediones 0.0396 0.04475 0.0420 0.8841 1.0000 0.9385
Thienopyridines 0.1543 0.1673 0.1606 0.8914 0.8380 0.8639
Obesity
Mention 0.1589 0.1693 0.1639 0.7632 1.0000 0.8657
BMI 0.0136 0.0123 0.0129 1.0000 0.4118 0.5833
Waist circumference 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Smoking history
Current 0.0234 0.0234 0.0234 0.8000 0.3636 0.5000
Past 0.1479 0.1479 0.1479 0.8636 0.6726 0.7562
Ever 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Never 0.1576 0.1576 0.1576 0.7864 0.6750 0.7265
Unknown 0.4728 0.4728 0.4728 0.7890 1.0000 0.8820
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TABLE 4: Performance on test set by time attributes.
Risk factor Macroaveraged Microaveraged
Precision Recall F-score Precision Recall F-score

CAD

Before DCT 0.3434 0.2628 0.2977 0.5599 0.5827 0.5711

During DCT 0.3405 0.3176 0.3286 0.5117 0.8102 0.6272

After DCT 0.3327 0.3288 0.3307 0.5000 0.9771 0.6615
Diabetes

Before DCT 0.6848 0.6683 0.6765 0.9152 0.9255 0.9203

During DCT 0.6907 0.6699 0.6801 0.9245 0.9293 0.9269

After DCT 0.6887 0.6887 0.6887 0.9219 0.9972 0.9581
Hyperlipidemia

Before DCT 0.4504 0.4429 0.4466 0.8419 0.9007 0.8703

During DCT 0.4426 0.4407 0.4416 0.8382 0.9421 0.8872

After DCT 0.4436 0.4436 0.4436 0.8444 0.962 0.8994
Hypertension

Before DCT 0.7043 0.6868 0.6954 0.9526 0.9403 0.9464

During DCT 0.644 0.7364 0.6871 0.7432 0.9557 0.8362

After DCT 0.7062 0.7062 0.7062 0.9553 0.9918 0.9732
Medication

Before DCT 0.6768 0.6600 0.6683 0.8332 0.7923 0.8122

During DCT 0.6613 0.6519 0.6565 0.8095 0.7858 0.7975

After DCT 0.6729 0.6648 0.6688 0.8200 0.7943 0.8069
Obesity

Before DCT 0.1537 0.1518 0.1527 0.7383 0.9753 0.8404

During DCT 0.1693 0.1634 0.1663 0.8246 0.9400 0.8785

After DCT 0.1537 0.1518 0.1527 0.7383 0.9753 0.8404
All risk factors

Before DCT 0.7727 0.7881 0.7803 0.8224 0.8146 0.8185

During DCT 0.7463 0.8187 0.7808 0.7835 0.8470 0.8140

After DCT 0.7706 0.8321 0.8002 0.8136 0.8688 0.8403

TABLE 5: Performance of baseline system on test set.
Risk factor Macroaveraged Microaveraged
Precision Recall F-score Precision Recall F-score

CAD 0.2135 0.2311 0.2220 0.6652 0.5599 0.6080
Diabetes 0.6576 0.6745 0.6660 0.8692 0.9517 0.9086
Family history 0.9689 0.9689 0.9689 0.9689 0.9689 0.9689
Hyperlipidemia 0.4465 0.4412 0.4439 0.8434 0.9254 0.8825
Hypertension 0.3429 0.4833 0.4012 0.5579 0.6148 0.5850
Medication 0.5486 0.6534 0.5964 0.6227 0.7409 0.6767
Obesity 0.1402 0.1419 0.141 0.8447 0.8511 0.8479
Smoking history 0.6284 0.6284 0.6284 0.6284 0.6309 0.6296
Overall 0.6954 0.7634 0.7278 0.6779 0.7566 0.7151

factors. However, our time attribute classifier performed well
for diabetes and hypertension achieving microaveraged F-
scores of 0.9203 and 0.9464, respectively.

For comparison, we present the results of a cTAKES-
based system (Table5) versus the results we obtained
(Table 6) using the test set [17]. Our system performed sig-
nificantly better than the cTAKES-based system. The system

developed in this study achieved a higher overall micro-
F-score compared to the cTAKES-based system, 0.8302
versus 0.7151. Our methods outperformed the cTAKES-based
system in all of the risk factors. Family history risk factor
achieved the highest macro- and microaveraged F-score.
All the risk factors achieved a microaveraged F-score above
0.80, except for CAD. Out of all the risk factors, CAD
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TABLE 6: Performance of HDRFSystem on test set.
Risk factor Macroaveraged Microaveraged
Precision Recall F-score Precision Recall F-score
CAD 0.3455 0.2985 0.3203 0.5261 0.7334 0.6127
Diabetes 0.6876 0.6724 0.6799 0.9202 0.9483 0.9341
Family history 0.9728 0.9728 0.9728 0.9728 0.9728 0.9728
Hyperlipidemia 0.4504 0.4451 0.4477 0.8415 0.9334 0.8851
Hypertension 0.6970 0.7375 0.7166 0.8531 0.9613 0.9040
Medication 0.6703 0.6731 0.6717 0.8209 0.7908 0.8056
Obesity 0.1589 0.1652 0.1620 0.7683 0.9618 0.8542
Smoking history 0.8113 0.8113 0.8113 0.8113 0.8145 0.8129
Overall 0.8053 0.8515 0.8277 0.8138 0.8472 0.8302
TABLE 7: Examples of rules used in HDRFSystem components.
Component Number of rules Examples
If the medication identified by MetaMap is from RxNorm terminology, assign risk
o . factor with identified medication name.
Medication recognition 12 o . . -
If the medications identified by MetaMap include abbreviations from custom
abbreviations dictionary, assign medication risk factor with full medication name.
If the disease identified by MetaMap is from SNOMED CT terminology and is
Di disord either CAD or obesity or diabetes or hypertension or hyperlipidemia, assign risk
Isease disorder 22 factor with identified disease name.
recognition o . . .
If annotated text is identified by blood pressure lab value extractor and diastolic >90
or systolic >140, assign risk factor = “hypertension.”
If a sentence contains “cad” or “coronary artery disease” and contains “father,”
Lo “mother,” or brother, assign sentence as family history sentence.
Family history 05 o . . o
If family history sentence contains age of death and age <45, assign family history =
“present” or else “unknown.”
If a sentence contains terms from custom smoking terms dictionary, assign
Smoking history 07 sentence as smoking history sentence.
If document does not contain smoking terms, assign smoking history = “unknown.”
If a sentence is classified as “text” but contains terms from custom section headings
Sectionizer 04 dictionary, asﬁsign laPel “sec‘t(ion }.1eading.’.’ . ) o
If a sentence is classified as “section heading with text” and contains “:”, extract text
before “:” to obtain section information.
If annotated text is identified by MetaMap, assign attribute = “mention.”
Indicator attribute assigner 26 If annotated text is identified by blood pressure lab value extractor and diastolic
>140 or systolic >90, assign indicator attribute = “high BP.”
Time attribute assigner o1 If time attribute assigner assigned class is “continuing,” assign time attributes =

“before DCT,” “after DCT,” and “during DCT.”

and medication risk factors achieved a lower macro- and
microaveraged precision, recall, and F-score.

4. Discussion

We performed an extensive error analysis to understand
our results in depth. Several interesting findings about the
system and the dataset, in general, were observed. A few
errors in the gold set annotations were also noticed. For
example, the smoking history did not have annotations
for all documents in the test set. Thus, being a document
level classification problem, the evaluation metrics precision,
recall, and F-score are not the same for smoking risk factor.

Previously, we believed that our methods did not recognize
amylin and antidiabetes as shown in Table 5. However, upon
further inspection, the test set did not have any entities
with amylin or antidiabetes. The training sets also had very
few negated mentions of risk factors. Moreover, we found
that there were very few instances (<1%) for “ever” smoking
history class in the training set. This created an imbalance
classification problem where the performance of classifier
may not represent the full capabilities of the classifier [27].
So we simply removed “ever” class from our classification
problem, to make it a balanced classification problem.
During the development of the system, we noticed that
by employing simple rules we can drastically improve the
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performance of the system. As a result, we implemented rules
in our components. Table 7 summarizes the number of rules
in each component with examples. From the results, it can
be interpreted that for most of the risk factors MetaMap
outperformed rule-based lab value extractor component. For
example, diabetes mention had an F-score value of 0.8897
while diabetes Alc had 0.7808. This means that the rule-based
lab value extractor was not as effective as we expected. The
lab value extractor failed to recognize values represented as
ranges. For example, the blood pressure value “120-130/88-
92” was extracted as “130/88,” and as a result it was not
detected as high blood pressure by our rules. One simple rule
applied for time attribute assignment turned to be effective
for diabetes, hypertension, hyperlipidemia, and obesity but
not for CAD and medication. We believe that the poor
performance of the time attribute assigner on the CAD and
medication risk factors is due to usage of limited features.

We formulated the time attribute assignment problem
as a classification problem and assigned one of the three
time attributes to each of the risk factors identified by
the system. Even though very few features like indicator
type, identified token, and section information were used in
building a Naive Bayes model, the classifier performed well,
achieving overall microaveraged F-scores of 0.8185, 0.814,
and 0.8403 for before DCT, during DCT, and after DCT
time attributes, respectively. At an individual risk factor level,
the time attribute assigner component performed very well
for hypertension. However, the performance for CAD risk
factor was observed to be low. We believe this is due to
the disease disorder component, which failed to recognize
CAD risk factor effectively. The performance of the time
attribute assigner component can be further improved by
adding context and negation based features [28].

We also noticed that the dataset included numerous
abbreviated disease and medication mentions. ASA (acetyl
salicylic acid), NTG (nitroglycerin), TNG (trinitroglycerin),
DM (diabetes mellitus), and HTN (hypertension) are few
examples to mention. Even though a custom abbreviations
dictionary was prepared by the authors using the training
sets, the test set included several other abbreviations which
were not included in the custom dictionary list. Employing
a more sophisticated abbreviation handling technique which
is not specific to a particular dataset will improve the
performance of system overall [29, 30]. Unified medical
language system (UMLS) should be used to disambiguate
abbreviations. We also found that there were a few mis-
spelled mentions like pravastatin which was misspelled as
“pravastain” and obese as “obeise.” Similar to abbreviations
custom dictionary, another custom list was developed for
misspellings from training sets. However, this approach is
not generic and very specific to a given dataset; employing
a generic spelling correction is necessary [31].

5. Conclusion

In summary, we described an approach to extract heart
disease risk factors in diabetic patients from longitudinal
unstructured EHRs. The approach was based on both rules
and machine learning techniques. We also described an IE

system developed using this approach followed by a compre-
hensive evaluation of the system. The system was developed
using one dataset and might not perform well on other
datasets, especially with the rules that were developed. The
limitations of the system include issues in lab value extractor
and absence of negation and context aware components. In
the future, we would like to improve the performance of
sectionizer component and also build negation components
into the system. We also would like to explore a more sophisti-
cated method to disambiguate abbreviations and handle mis-
spellings effectively. The developed system is available for free
at https://github.com/TCRNBioinformatics/HDRFSystem.
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