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Abstract

The inclusion of anatomical prior information in reconstruction algorithms can improve the 

quality of reconstructed images in near-infrared diffuse optical tomography (DOT). Prior literature 

on possible locations of human prostate cancer from trans-rectal ultrasound (TRUS), however, is 

limited, and has led to biased reconstructed DOT images. In this work, we propose a hierarchical 

clustering method (HCM) to improve the accuracy of image reconstruction with limited prior 

information. HCM reconstructs DOT images in three steps: After the initial step of reconstructing 

the human prostate, we divide the prostate region into geometric clusters to search for anomalies 

in finer clusters. The geometric segmentation is continued within found anomalies for improved 

reconstruction. We demonstrated this hierarchical clustering method using computer simulations 

and laboratory phantom experiments. Computer simulations were performed using combined 

TRUS/DOT probe geometry with a multi-layered model; experimental demonstration was 

performed with a single-layer, tissue-simulating phantom. In computer simulations, two hidden 

absorbers without prior location information were reconstructed with a recovery rate of 100% in 

their locations and 95% in their optical properties. In experiments, a hidden absorber without prior 

location information was reconstructed with a recovery rate of 100% in its location and 83% in its 

optical property.
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1. Introduction

Prostate cancer is one of the leading causes of cancer deaths in men in the United States. (1) 

Conventional methods for diagnosing prostate cancer include the PSA (prostate specific 
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antigen) blood test (2) and DRE (digital rectal examination). If the PSA level and/or DRE 

are suspicious, then in most cases the patient undergoes trans-rectal ultrasound (TRUS) 

guided biopsy. This is due to the fact that a PSA level could be misleading. PSA can be 

expressed high due to benign prostatic hyperplasia. (BPH) (3). On the other hand, men with 

a low PSA level (below 4.0 ng/ml) can still have prostate cancer (4). Despite recent 

advances in ultrasound, the grayscale-based ultrasound imaging has an accuracy only 50–

60%; diagnosis accuracy can be even less in trans-rectal ultrasound (5). This is why TRUS 

has been used only for guiding a needle biopsy, not for detection of prostate cancer. In 

recent years, researchers have made great advances in using magnetic resonance imaging 

(MRI) and magnetic resonance spectroscopy (MRS) to detect prostate cancer and/or to guide 

needle biopsy (6,7). Given MRI and MRS cost, bulkiness, requirement for body 

confinement, and limited accessibility to the general public, it is highly desirable to have a 

portable, office-based imaging tool available to clinicians for improved detection or 

screening of prostate cancer as well as for active surveillance to determine an optimal 

treatment time.

For the past two decades, diffuse optical tomography (DOT) with near-infrared (NIR) light 

has been a popular non-invasive imaging modality using non-ionizing radiation to provide 

functional maps about the tissue under study. Since cancer tissues are more vasculature than 

the surrounding tissue, hemoglobin-based absorption in tumors provides optical contrast in 

DOT. When imaged at multiple wavelengths, DOT is capable of measuring chromophore 

concentrations such as oxy-hemoglobin, deoxy-hemoglobin, and water. Usage of DOT for 

breast cancer detection and diagnosis has been extensively studied for nearly 20 years (8, 9). 

However, investigations on detection of prostate cancer using DOT have been relatively 

limited compared to those done for breast cancer detection. A previous ex-vivo study (10) 

reported differences in water content between normal and cancer human prostate tissues. A 

recent review paper (11) has provided a comprehensive summary of optical properties of 

human prostate cancer tissue at selective wavelengths. Specifically, several reports given in 

references (12–15) show that light scattering of prostate cancer tissue is higher than that of 

normal prostate tissue. Trans-rectal DOT has been also reported by several recent studies 

(16–18) as a possible imaging tool for prostate cancer detection and diagnosis.

DOT instrumentation can be divided into three categories based on the principle of 

operation: 1) time-resolved systems (19–21), 2) frequency-domain systems (22), and 3) 

continuous wave (CW) systems (23, 24). Measurements are made in transmission geometry, 

reflection geometry, or both. A time-resolved system relies on photon counting or gated 

imaging, which provides photons’ time of flight through the tissue. However, these systems 

are costly in comparison with CW systems. A frequency-domain system modulates laser 

light typically in the radio frequency range (100 MHz) and measures the amplitude and 

phase shift of the detected signal. A CW system is the simplest, fastest, and most cost-

effective system in data collection; it can also be made at a video rate for imaging. However, 

CW systems measure only the intensity of reflected/transmitted light, so they cannot 

separate the absorption property from the scattering effect of the tissue (25).

In order for trans-rectal DOT to be able to provide excellent reconstructed images for 

prostate cancer detection, we have to acknowledge our obstacles in order to find appropriate 
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solutions. One main obstacle is closely associated with the location of measurements: the 

human rectum, where we have a limited space (allowing a limited number of optodes to be 

implemented); furthermore, only reflectance geometry of DOT can be utilized. Given the 

nature of light scattering in tissues, DOT suffers from poor spatial resolution. Measurements 

taken using reflectance geometry do not normally achieve the excellent spatial resolution 

that is more commonly obtained in those taken by transmission geometry. One way to 

improve the spatial resolution is to couple DOT with other imaging techniques such as MRI 

and ultrasound. In particular, a combined TRUS and DOT probe for imaging prostate cancer 

has been studied previously (26), utilizing the anatomical information from ultrasound to 

reduce the number of unknowns in the DOT image reconstruction. As shown by Xu et al. 

(26), each anatomical region was considered to be homogenous; uniform optical properties 

were reconstructed in each respective region. While the combined TRUS-DOT method 

improves accuracy of reconstructed DOT images, it relies highly on the ability of TRUS to 

locate the prostate cancer lesion. Given the fact that TRUS has a low prostate cancer 

detection accuracy and that each region is assumed to be homogenous, the reconstructed 

DOT images of prostate cancer could be erroneous.

In order to limit the dependency of DOT image reconstruction on TRUS sensitivity, we have 

developed a hybrid reconstruction technique by combining a piecewise cluster 

reconstruction approach with hard prior anatomy of prostate available from TRUS. Our 

method utilizes a hierarchical scheme of clustering where we define a cluster as a group of 

nodes/voxels within a predefined volume. By utilizing hierarchical clustering, a region of 

interest (ROI, i.e., the prostate) can be transformed into a partially heterogeneous medium, 

within which we can search and further reconstruct potential cancer lesions. The inverse 

problem of DOT is solved in multiple steps by changing cluster sizes within the image 

domain. Multi-step reconstruction in DOT has been reported earlier (27) for breast cancer 

detection based on a frequency-domain study. It is understood according to reference (27) 

that the size and location of the absorber were partially or roughly estimated in the first step 

of reconstruction, after which more steps were utilized to further improve the quality of 

reconstructed images. In the TRUS-DOT scenario, however, a rough reconstruction of the 

first step is futile to effectively detect prostate cancer due to the multi-layer tissue 

compositions, reflectance measurement geometry, limitation in the number of 

measurements, and particularly the inability of ultrasound to identify prostate cancer lesion 

or lesions. Thus, to improve the effectiveness and accuracy of prostate cancer imaging, we 

considered piecewise division of the image domain in DOT, assuming that the domain 

consists of disjoint sub domains with different optical properties.

Specifically, in our work, we performed the piecewise division of the image domain for a 

human prostate in the inverse calculation. By doing so, we were able to combine the 

piecewise division with hard-prior anatomic information for DOT image reconstruction. In 

this paper we present detailed procedures of our proposed method and validate it by showing 

its performance with the following computer simulations: 1) one anomaly at a depth of 1 cm 

to 3 cm below the measurement surface, 2) two anomalies at 1 cm and at 2 cm, respectively, 

3) variable background absorption from 0.005 to 0.015 mm−1), 4) variable noise percentage 

from 0% to 3%. By the end, we will also validate the performance of the proposed method 

by laboratory experimental results.
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2. Methods

2.1 Forward and inverse methods in DOT

Light transport in biological tissues can be modeled by the diffusion approximation (DE) to 

the radiative transport equation (RTE), assuming that light scattering has great effects on 

light propagation in tissue. In the frequency domain, the diffusion equation is given by (28, 

29)

(1)

where Φ(r⃗,ω) is the photon density at the position r⃗, ω is the modulation frequency of light 

(in our study we use CW domain, so ω =0), Qo(r⃗,ω )represents the isotropic source, c is the 

speed of light in the medium and μa is the absorption coefficient; finally, D(r⃗) is the optical 

diffusion coefficient which is defined as

(2)

where  is the reduced scattering coefficient and is defined as . 

Here μs(r⃗) is the scattering coefficient and g is the anisotropic factor. Equation (1) can be 

solved using the finite element method (FEM) and applying Robin-type (30) (known as type 

III or mixed) boundary condition to model the refractive index mismatch at the boundary.

For a CW system, measurements are only amplitudes of light intensities and are used to 

estimate the spatial distribution of the product of μa(r⃗) and μs′(r⃗), namely, μeff(r⃗) = μa(r⃗) μs′

(r⃗), or the distribution of μa(r⃗) if μs′(r⃗) is known and homogeneous. It is known that μeff(r⃗) 

values of prostate cancer are different from those of normal prostate tissues (11, 16, 26). 

Based on previous knowledge learned from breast cancer detection and diagnosis with DOT 

(8, 9), we started this study with an assumption that light absorption μa(r⃗) is the major 

source for optical contrast between cancerous and normal prostate tissues, while changes in 

μs′(r⃗) induced by prostate cancer are much less significant. Accordingly, the aim of the DOT 

reconstruction in this paper is to recover the light absorption property, μa(r⃗), from NIR 

measurements taken on the boundaries. The objective function, Ω for this procedure can be 

written as

(3)

where y is a matrix to express all the measured data, F is the forward-calculation operator 

(or matrix) that generates diffusion-based light propagation responses,|| . ||2 is the L2 norm, λ 

is the regularization parameter and μa0 is the initial estimate of light absorption coefficient. 

Note that variables D, μa and μa0 are simplified notations for D(r⃗), μa(r⃗), and μa0(r⃗), 

respectively. By minimizing Eq. (3), which is achieved by setting the first derivative of Eq. 

(3) with respect to μa as zero following a Taylor series, and ignoring the 2nd and higher 

order terms, we arrive at the updated equation:
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(4)

where J is the Jacobian matrix, I is the identity matrix, and δμa (δμa =μa –μa0 ) is a spatial 

distribution matrix of changes in μa with respect to the initial given value. Note that μa0 is 

only the initial estimate at the first iteration. After the first iteration, μa0 is basically the 

previous estimate. Now Eq. (4) becomes Eq. (5) after we replace μa – μa0 by δμa,

(5)

As mentioned earlier, we consider changes only in μa here, because our DOT measurement 

utilizes CW NIR light with an assumption that variation in light scattering across the 

medium is minimal. Specifically, we utilized a uniform distribution of μs′(r⃗)=10 cm−1 across 

different prostate tissue regions in all simulation examples to be shown in Section 3. Then, 

we will have further discussion on how to remove or modify this assumption in Section 4.

2.2 Hierarchical clustering

In our hierarchical clustering method (HCM), the reduction of a parameter space is realized 

by segmenting the medium or region of interest (ROI) into several geometric units or 

clusters. We assumed that each of the geometric clusters was homogeneous and had the 

same optical property. In this way, the medium or image domain could be partially 

heterogeneous since the domain may contain several geometric clusters. During the DOT 

image reconstruction process, a value of μa from each cluster was updated using Eqs. (3) to 

(5). Since the size of each cluster was user-defined, the smallest could be a single FEM 

mesh node and the largest could be the entire domain region—similar to that used in the 

regular reconstruction method without any spatial prior. Specifically, the nodes in the mesh 

were tagged and separated into clusters, as indicated by c1, c2…cj with respect to each 

cluster. The Jacobian matrix in Eq. (5) was then modified to be J* as given by (27):

(6)

where matrix C had the size of NN×NC (number of nodes × number of clusters). The 

elements of matrix C were given as follows:

(7)

where i marks the number of nodes and j labels the number of clusters. By the end of each 

iteration, the solution vector of δμa was mapped back to each node using Eq. (8),

(8)

where δμa
* is the vector with optical properties in respective geometric clusters solved from 

Eq. (5). The function of matrix C is to transform the initial image domain into a new image 

domain where the inverse procedure is performed with cluster-based geometric structures. 
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Matrix C is a mediator or operator that converts the regular geometry to and from cluster-

based geometry for the reconstructed object. So, technically no inversion or transpose of C 
is directly involved.

Initially, we started with reconstructing two ROIs, such as background and an anomaly; the 

background mesh was geometrically segmented in a heterogeneous fashion. For multiple 

ROIs, we hierarchically implemented the proposed method by segmenting the region which 

was more prone to cancer, while utilizing available prior information. Specifically, we 

implemented the proposed method in four steps, as shown in Fig. 1. To image prostate 

cancer through trans-rectal DOT imaging, four types of tissues were examined: rectum wall, 

peri-prostate tissue, prostate and tumor. Each of these tissues have their own optical 

properties. When being imaged without any prior anatomic information, different types of 

tissues are highly likely to be mixed among one another because their optical contrasts are 

relatively subtle, and it is difficult to distinctly separate them. Thus, in our HCM 

methodology, it is critical for us to achieve an improved spatial resolution for prostate 

imaging.

In Step 1, we performed the reconstruction based on prostate anatomic images offered by 

TRUS and the assumption of a homogeneous prostate. With such prior spatial information, 

the reconstructed μa values in both background and prostate regions (as two ROIs) should be 

reasonably accurate with respect to the actual values, assuming that the sizes of the prostate 

tumors are much smaller than the size of the prostate. Then, the reconstructed μa values in 

available ROIs would serve as the initial guess in Step 2 and Step 3.

Step 2 of HCM was dedicated to finding the probable locations of anomalies (i.e., prostate 

tumors). To achieve this, we geometrically divided the prostate region into several clusters, 

so the prostate tissue became a heterogeneous medium. However, without prior knowledge 

of suspicious locations, dividing the prostate into several clusters or elements may result in a 

mixing of suspicious tissue with normal prostate tissue and vice versa. In order to prevent 

mixing, we took a hierarchical approach to cluster the prostate volume with different unit 

volume sizes iteratively to minimize the mixing effect of cancer and normal tissues within a 

cluster.

Specifically, we chose the initial volume of a cluster to be 1 × 1 × 1 cm3 in each of the x, y 

and z dimensions. Then, we varied the volume of the cluster by increasing the length of the 

cluster in each dimension iteratively. For example, an increase in length of 0.5 cm in only x 

direction gave rise to a unit volume of 1.5 × 1 × 1 cm3, followed by the same length increase 

in only y or only z direction. In this way, we can generate eight different unit volumes in 

three x, y, z directions, by increasing the linear length in only one dimension (x, y, z), or in 

two dimensions (xy, yz, xz), or in three dimensions (xyz) and the initial size. The procedure 

is given as follows: (1) reconstruct an initial μa image with a starting base unit size (i.e., 

1×1×1 cm3), (2) save the reconstructed image, and go back and change the unit volume size 

(e.g., 1.5 × 1 ×1 cm3 or 1.5× 1.5 ×1 cm3 or 1.5 × 1.5 × 1.5 cm3) and reconstruct the image 

again (Step 2 in Fig. 1). To be more comprehensive, we next increase our base unit volume 

from 1 × 1 × 1 cm3 to 1.5 × 1.5 × 1.5 cm3, for the latter of which the same length interval 

(0.5 cm) is applied to increase the base unit (e.g., 2 × 1.5 × 1.5 cm3, 2 × 2 × 1.5 cm3, or 2 × 
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2 × 2 cm3). In this way, we are able to generate another set of eight reconstructed images 

with varied base unit volumes resulting in an overall 15 (i=15) images (resulting from 15 

combinations) by the end of Step 2. (3) We average all of the reconstructed μa images to 

obtain the final image. (4) Next, we search for suspicious clusters that have high μa values 

with respect to the background, as an indication of cancer. The location of suspicious 

clusters was selected using full width half maximum (FWHM) of the updated μa values 

within the prostate region. If no suspicious cluster is identified, we conclude that the prostate 

has a low probability of having cancer.

In Step 3, if some suspicious clusters in Step 2 are seen, we then group all the non-

suspicious clusters as one new single cluster and subdivide the suspicious clusters into 

further smaller clusters. Now, the initial unit volume size used within the suspicious regions 

in Step 3 is set to be 0.5 × 0.5 × 0.5 cm3. The procedure explained in Step 2 is repeated here 

with a length variation of 0.25 cm in any one of three dimensions. Similar to Step 2, the final 

reconstructed image of Step 3 is an average of the eight images (j=8) obtained by varying 

the unit volume in eight different fashions. FWHM of the μa values is still used to localize 

suspicious regions for further inspection with an improved spatial resolution.

In Steps 2 and 3, we utilized a region-specific regularization parameter to favor the 

reconstruction in the prostate region using a hierarchical approach. The underlying rationale 

of this approach was previously reported in (31) where the regularization parameter controls 

the level of optical property updates at each iteration. A larger regularization parameter 

gives rise to a subtle update, while a smaller regularization parameter offers a steeper update 

with a broader solution range. In our case, a smaller regularization value applied to the 

prostate region allowed us to focus only on the prostate and to accurately update the 

reconstructed optical properties of the prostate. Finally, in Step 4, we repeated the 

reconstruction process using the suspicious regions identified in Step 3 as a hard prior 

anatomy or as given cancer regions, with a uniform initial guess as used in Step 1.

In principle, selections of regularization parameters and stopping criterion play a key role in 

any iteration-based reconstruction techniques. In HCM, we empirically determined the 

regularization parameters and the stopping criteria. For Step 1, the regularization parameter 

was 10 and the stopping criterion was when the change in projection error was less than 2% 

of that in the previous iteration. For Step 2, the regularization parameter was 0.1, and the 

stopping criterion was when the change in projection error was less than 20% of the 

previous iteration. The reason for this criterion at Step 2 was that the value of the 

regularization parameter was small so that the noise began to dominate the reconstructed 

images. For Step 3, we further decreased the regularization parameter to 0.001 while 

keeping the same stopping criterion as that in Step 2.

3. Simulation and experiment results

3.1 Trans-rectal DOT image reconstruction by HCM with limited prior information

To validate HCM, a simulated TRUS-DOT probe was used having 16 co-located or 

bifurcated optodes that served as both sources and detectors [see Fig. 2(a)]. We performed 

computer simulations by considering a FEM mesh, which was anatomically similar to a 
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TRUS image of a human prostate [see Fig. 2(b)]. It consisted of four ROIs, such as prostate 

(sky blue region), peri-prostate tissue (blue region), rectum wall (green) and prostatic tumor 

(anomaly) [see Fig. 2(c)]. The mesh used in this study was an unstructured tetrahedral mesh 

with 28,174 nodes and 156,191 elements. The thickness of the rectum wall was set to be 5 

mm with a curvature radius of 50 mm. The following optical property (i.e., absorption 

coefficient) distributions were used: 0.01 mm−1 for rectum wall, 0.002 mm−1 for 

surrounding tissue, 0.006 mm−1 for prostate, and 0.02 mm−1 for anomaly (16, 26). An 

anomaly was created at 1-cm depth from the rectum wall to test HCM. The CW mode was 

utilized in the simulations; 1% random noise was added to the data to mimic the instrument 

noise.

Simulated DOT data was computed using the diffusion forward model with FEM; 

NIRFAST (32) was used to perform the forward calculation. The procedure given in Section 

2 was used to reconstruct images from all simulated data. Specifically, Step-1 reconstruction 

was done using an initial guess of μa=0.01 mm−1 to recover the optical properties of the 

rectum wall, prostate, and surrounding tissue. Then the reconstructed data from Step 1 

served as the initial guess for Steps 2 and 3. Next, the prostate region was divided into 

several clusters [see Figure 2(d)], which had tissue volumes of 1.00 to 8 cm3. As noted 

earlier, the final image obtained after Step 2 was an average of over 15 independent 

reconstructions. In Step 3, the suspicious region identified (using FWHM) in Step 2 was 

further divided into smaller clusters (0.125 – 0.42 cm3 in volume). The final image of Step 3 

was an average over eight image reconstructions. FWHM was again used to find the 

suspicious regions, which were treated as individual regions and entered as the hard prior 

anatomy for finer reconstruction in Step 4.

Panels in Fig. 3 provide overall steps involved in HCM to perform DOT image 

reconstructions. As shown in Fig. 3(a), an anomaly was embedded at 1-cm depth from the 

surface of the rectum. Figure 3(b) demonstrates the result after Step 1 showing that the 

reconstructed image is biased with the known priori information of the prostate, peri-

prostate tissue and rectum wall. As seen in Fig. 3(c), Step 2 of HCM is able to determine a 

probable location of the anomaly inside the prostate without prior anatomical information. 

Figures 3(d) and 3(e) result from Steps 3 and 4 of HCM and clearly depict the location of 

the simulated tumor. After Step 3, while the optical properties in the anomaly region are not 

completely uniform, we can locate the absorber accurately inside the prostate. Finally by 

Step 4, the reconstructed μa value of the anomaly has been improved. For comparison, Fig. 

3(f) illustrates a recovered μa image using the given spatial prior information on the anomaly 

location. Moreover, Table 1 shows that HCM resulted in a recovery rate of 95% for the 

embedded target, without using any spatial prior information.

3.2 Investigation of HCM on depth sensitivity

In order to test depth sensitivity of HCM, an anomaly was created at depths of 1 cm, 2 cm 

and 3 cm from the surface of the rectum wall. Reconstructed images from all three locations 

were compared as shown in Fig. 4. The dotted circles in Fig. 4 indicate the actual location of 

the targeted anomaly. Figures 4(a) and 4(b) are the reconstructed images after Step 4 using 

HCM with anomaly placed at 1-cm and 2-cm depths, respectively; Figure 4(c) is the 
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reconstructed image after Step 2 using HCM with anomaly placed at 3-cm depth. The 

algorithm was stopped after Step 2 in this case because of its inability to find any absorbers. 

Figure 4(c) demonstrates that HCM is incapable of recovering the anomaly at a 3-cm depth 

because of the severe decrease in measurement sensitivity with increasing depth, the number 

of optodes used, and the absorption coefficient of the prostate. For quantitative comparison, 

Table 2 lists the actual and recovered optical property and their recovery percentage rate for 

the reconstructed absorber at the three respective depths. This simulation-based summary 

table implies that HCM has the ability to reconstruct an absorbing-anomaly within a human 

prostate at a depth of 2 cm with a possible recovery rate of 95% if 16 bifurcated optodes are 

used. Whether the detection sensitivity may go deeper than 2 cm in practice remains to be 

seen since it also depends highly on the number of optodes, the power of light sources, and 

the type of detectors used for the measurement.

3.3 Trans-rectal DOT image reconstruction by HCM with two absorbers

The capability of differentiating two absorbers by HCM is important in prostate cancer 

imaging because of the existence of multifocal cancer regions. Moreover, the results from 

Section 3.2 indicate that HCM is not able to detect an anomaly at a depth of 3 cm. So within 

the depth limit, we investigated whether HCM was able to reconstruct two absorbers in this 

sub-section. For this purpose, we performed the simulations with two cases. In Case 1, two 

anomalies of 1-cm diameter were created at the depth of 2 cm from the surface. The two 

anomalies were separated by 2 cm, as shown by dotted circles in Fig. 5(a). This test was 

useful in understanding the minimum separation between two absorbers that is required to 

recover them as two separable absorbers in reconstructed images. This test also allowed us 

to estimate the recovery of off-centered absorbers. This estimation is important because the 

sensitivity of DOT is often higher in the center of the image domain due to the number of 

overlapping measurements. In Case 2, the absorbers were created at the depths of 1 cm and 

2 cm, respectively, as drawn by dotted circles in Fig. 5(b). The separation between the two 

absorbers was increased to 4 cm. Figures 5(a) and 5(b) also show the reconstructed images 

after Step 4 using HCM, demonstrating that the locations of the anomalies were successfully 

recovered.

3.4 Investigation of HCM on effects of different background (prostate region) contrast

Further investigation of HCM on variation of background absorption in the prostate region is 

helpful for us to understand and estimate effects of the background optical properties on the 

reconstructed DOT images. As explained in Section 2, in Step 2 of HCM, the overall area of 

the anomaly was identified by selecting the full width at half maxima (FWHM) of the 

recovered optical properties. If the recovered optical properties were not much higher than 

that of the background, no probable anomaly would be identified, which is similar to the 

case shown Fig. 4(c). So, the background absorption or contrast plays an important role in 

achieving high-quality DOT images of prostate cancer. To estimate effects of the 

background optical properties, we performed 11 simulations, as listed and shown in Fig. 6, 

by varying the optical properties or μa values of the prostate (i.e., background tissue) from 

0.005 to 0.015 mm−1. The absorption coefficients for the surrounding tissue and the rectum 

wall were fixed; the anomaly contrast was set to be three times greater than the background 

(0.015 to 0.045 mm−1) in all the simulations. The reconstructed results were plotted by 
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comparing the recovered optical properties to the background in Fig. 6, which shows the 

recovered contrast from the background after Step 2 using HCM. We also calculated a 

recovery rate (RR) based on the recovered absorption (RA) versus expected absorption (EA) 

as expressed by RR = (RA/EA)*100. Specifically, our calculations gave rise to an averaged 

RR of 40% over all 11 simulations. This 40% recovery rate of the expected contrast 

indicates that variations in background optical properties would still allow us to locate the 

probable location of an anomaly in Step 2 as long as the absorption contrast between the 

anomaly and background is 3 times greater.

The reason why we stopped at Step 2 was that this stage was very crucial for the success of 

our algorithm. If we succeeded to obtain enough contrast in absorption with respect to the 

background in this step, we would be able to identify the region of interest for possible 

cancer lesions. Further steps (i.e., Steps 3 and 4) will allow us to refine the size, location, 

and optical properties to achieve final reconstructed images with high quality. If our 

algorithm failed to recover a reasonable amount of contrast in Step 2, then the algorithm 

would fail to give rise to correct results. Indeed, this is the major difference between our 

approach and those approaches of previous researchers (16, 26).

3.5 Investigation of HCM on effects of different noise levels

To further understand and support HCM, we performed another simulation with an anomaly 

placed at 2 cm below the surface of the rectum wall; the reconstructed images by HCM were 

generated while varying the noise levels at 1, 2 and 3% of measured signals. For 

comparison, we also reconstructed an image, as shown in Fig. 7(a), without any anomaly 

and with 1% noise added to the simulated data. Specifically, Fig. 7(a) was obtained after all 

the clusters were updated illustrating a uniform distribution within the prostate region. On 

the other hand, Figures 7(b), 7(c), and 7(d) are the reconstructed images after Step 2 with 

1%, 2% and 3% noise levels added to the data, respectively. From this set of figures, it is 

evident that HCM is robust if the noise level is restricted to no more than 1%. Figure 7(c) is 

slightly corrupted due to 2% noise while Fig. 7(d) is heavily corrupted due to 3% noise.

3.6 Experimental demonstration

For demonstrating HCM experimentally, we utilized a CW DOT setup as depicted in Fig. 8. 

A broadband pulsed laser source (SC-450, Fianium Inc., Eugene, Oregon) with a maximal 

output power of 40 mW (as measured at the tip of an optical fiber) was utilized as the 

illumination source. Several photodiodes (OPT 101, Burr-Brown Corp., Tucson, Arizona) 

were implemented for diffuse light detection. Although our laser had a repetition rate of 20 

MHz due to the limited response speed of the photodiodes, we still considered our system a 

CW system. As shown in Fig. 8, the laser output from the source was collimated and fed 

through a filter wheel where a desired wavelength of 780 nm was selected. In order to 

calibrate light fluctuations from the laser source, a beam splitter (BS) was utilized, and a 

small portion of the beam was fed into another photodiode (PD) for further calibration. The 

larger portion of the light was coupled into another optical fiber and fed into a multiplexor. 

The multiplexor, as controlled by a computer, was connected to eight silica optical fibers of 

600 μm in diameter for light illuminations in sequence to eight locations on an optode probe.
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For the detection electronics (see Fig. 9), the detected light was collected and converted to 

electrical signals by the photodiodes. An analog low pass filter (LPF) was employed to filter 

out unwanted higher frequencies. Next, the electrical signals were amplified using an 

operational amplifier in the inverting mode. The operational amplifier’s gain was controlled 

by changing the resistance of a feedback resistor. A digital potentiometer was utilized such 

that the gain was controlled from the computer. Then, the electrical signal was further fed 

into a buffer amplifier which itself was an operational amplifier in a non-inverting mode 

with unity gain. Finally, we utilized a National Instruments DAQ card with a 16-bit 

resolution to convert analog signals into a digital format to be transferred to and stored in the 

computer. The entire instrument control and data collection including light source switching, 

multiplexer sequencing, electrical gain selection, and data acquisition were computer-driven 

using LabVIEW software.

Although we demonstrated our HCM using a multilayered model in computer simulations, 

we utilized a single-layer phantom for experimental demonstration. We preferred a single-

layer phantom because it could serve the need or confirm HCM with a relatively simple 

tissue phantom. Using a single-layered phantom with an absorber embedded inside, we 

skipped Step 1 in HCM and directly started the reconstruction from Step 2. The reason for 

skipping Step 1 was that it involved inducing the prior information; for this particular case, 

we did not use any prior information. The phantom setup is depicted in Fig. 10(a) with a 

photograph of the actual setup shown in Fig. 10(b). A homogeneous liquid tissue-mimicking 

phantom was prepared by filling a 15 × 10 × 10 cm3 container with 1% intralipid solution 

[see Fig. 10(b)]. An appropriate amount of India ink was added to the solution to make the 

absorption coefficient of the solution to be 0.01 mm−1. This solution served as a 

homogeneous background medium with an approximate μs′ value of 1 mm−1 and μa value of 

0.01 mm−1. Two optode arrays consisting of eight source fibers and eight photodiodes were 

placed on one side surface of the container in such a dimension that both source-to-source 

and detector-to-detector intervals were 1 cm between center to center and the distance 

between the source array and detector array was 2 cm. A spherical 1-cm-diameter absorber 

with μa = 0.03 mm−1 was made and placed within the phantom solution 1.5 cm from the 

source-detector array surface. The lateral dimension of the photodiode array from end to end 

was ~8 cm, as illustrated in Fig. 10(c), with an active detection area of 0.23 × 0.23 cm2.

Panels in Fig. 11 provide overall comparisons among the reconstructed images that were 

obtained using the experimental setup given in Figs. 8–10. Figure 11(a) demonstrates the 

result obtained from the regular iterative DOT reconstruction technique. While this figure 

shows relatively good reconstruction in both location and size for the embedded absorber, 

we see very poor recovery in absorption contrast for the reconstructed object: the 

reconstructed value of μa was 0.012 mm−1 while the expected value was 0.03 mm−1. As 

seen in Fig. 11(b), Step 2 of HCM is able to determine the probable location of the absorber; 

Figs. 11(c) and 11(d) show the gradual improvement in the contrast recovery. By the end, 

both location and absorption contrast of the embedded absorber were reconstructed and 

greatly improved to meet the expected values. Moreover, Table 3 shows that HCM resulted 

in a recovery rate of 83% for the embedded target without using any spatial prior 

information.
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4. Discussion

4.1 Investigation and confirmation of HCM by simulations and phantom experiments

In this work, we have investigated the feasibility of TRUS-guided DOT imaging of human 

prostate cancer through computer simulations and laboratory phantom experiments. While a 

trans-rectal DOT-only probe can possibly image cancer lesions within a human prostate 

without ultrasound guidance, reconstructed DOT images suffer from lack of anatomical 

landmarks and poor spatial resolution as well as a possible mixing of optical contrasts 

among the prostate gland, its surrounding tissues, and cancer lesions. In general, the spatial 

resolution of DOT imaging can be improved by increasing the number of optode channels; 

however, this is not a viable solution in our case because of the limited space available on a 

trans-rectal probe. Unlike previous work reported by references (16, 26), which required 

anatomic images of prostate cancer, we proposed and investigated a DOT-based HCM to 

image prostate cancer by utilizing anatomic images of the prostate, not the images of 

prostate cancer. While anatomic images of the prostate are readily available by routine 

clinical TRUS facility, they do not have a good ability to detect or image prostate cancer.

While the combined TRUS-DOT method can improve accuracy of reconstructed DOT 

images, the problem is not completely solved since TRUS-DOT highly relies on the ability 

of TRUS to locate the prostate cancer lesion. Given the fact that TRUS has low signature for 

prostate cancer, and that each region is assumed to be homogenous, the reconstructed DOT 

images could be erroneous. Thus, we further targeted the problem by (1) utilizing the 

available prior information on the locations of prostate, peri-prostate tissue and rectum wall 

and then (2) dividing the probable location of a prostate tumor or tumors into several 

clusters. This latter step made the prostate partially heterogeneous. The dimensions of the 

clusters were iteratively changed to limit the mixing of normal tissue with cancerous tissue 

and vice versa. Our HCM approach was implemented in four steps: The location of the 

absorber was identified in Steps 2 and 3, and the optical properties were reconstructed in 

Step 4. The figures shown in Section 3.1 demonstrate excellent reconstruction results when 

HCM was used. Table 1 also reports that the recovered optical properties of the target and 

surrounding tissues were matched well with the expected values. Furthermore, the 

reconstructed images shown in Section 3.2 reveal the depth sensitivity of HCM; however 

due to the exponential decay of measurement sensitivity with depth, our method can only 

reconstruct an anomaly located not deeper than 3 cm in depth. The depth limitation is a 

problem to be solved in future research.

Moreover, Section 3.3 illustrates the ability of HCM to recover up to two anomalies located 

inside the prostate. The optical properties were overestimated when the two absorbers were 

sited at different depths. This overestimation resulted from the fact that the measurement 

sensitivity is biased toward more superficial nodes than those of deeper nodes. In Section 

3.4, HCM has been investigated using 11 simulation-based cases studying the effects of 

background absorption of the prostate tissue. The results indicate that a recovery rate of 40% 

for the target contrast could be achieved in all cases after Step 2 in HCM. Achieving a good 

contrast in a suspicious ROI after Step 2 is very crucial for the success of our algorithm. 

With a well localized target contrast after Step 2, further steps would allow us to refine the 
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size, location, and optical properties to achieve final reconstructed images with high quality. 

Last, Section 3.5 shows that noise can have a significant impact on the image quality, while 

Section 3.6 confirms the performance of HCM by performing an actual experiment with a 

liquid tissue phantom. We demonstrated that a hidden absorber without prior location 

information was reconstructed with a recovery rate of 100% in its location and 83% in its 

optical property. Overall, the results indicate that both location and absorption contrast of 

the embedded absorber could be well reconstructed to meet the expected values when HCM 

was utilized.

4.2 Potential usefulness of HCM for prostate cancer detection and diagnosis

The current diagnostic method for high-grade prostate cancer is based on needle biopsy, 

which has three major deficiencies: (1) Needle biopsy may miss cancers that are present and 

have high-grade lesions, (2) it can underestimate the severity of cancer that a biopsy misses, 

and (3) it may find only low-grade cancers that likely do not cause problems. Because of the 

uncertainty and ambiguous conclusions from needle biopsy results, current prostate cancer 

patients are either undertreated or overtreated. Undertreatments cost lives; overtreatments 

cause unnecessary impotence or incontinence or both. It is, therefore, imperative to develop 

a diagnostic imaging technique that can accurately differentiate aggressive cancer lesions 

from low-risk ones, and which is compatible with existing clinical protocol.

While the current development of HCM is not yet tested in the clinical settings by human 

prostate specimen measurements, it can be readily available for clinical investigations since 

the results from both computer simulations and laboratory experiments are supportive for 

HCM. The feasibility of implementing a TRUS-coupled DOT probe has been demonstrated 

by (26). By combining such a TRUS-DOT optical probe with HCM, we may be able to 

develop a portable, diagnostic imaging device for early screening and diagnosis of prostate 

cancer. Further testing with human prostate measurements and optimal refinements are the 

planned next steps in order to make this technology clinically useful in detection and 

diagnosis of prostate cancer.

4.3 Limitation of the method and future work

While the reported results for HCM are promising for improved detection of prostate cancer, 

we need to recognize a few weaknesses of this study in order to either improve them in the 

near future or understand the limitation of the method. First, although HCM recovered well 

the absorption properties of imaged targets with a recovering rate of 95% in simulated 

results and of 83% in experimental results, excellent recovery in the target’s shape was not 

achieved. This may be partially due to the fact that the reconstructed images were defined by 

the FWHM in Steps 2 and 3 of HCM. Also, we believe that the inability to recover the 

target’s shape resulted from the reflectance geometry of the probe setup (see Fig. 2) and the 

limited number of channels available for the measurements. It is known that a reduced 

number of source-detector channels would reduce image sensitivity and spatial resolution of 

DOT. The method proposed by (33) and (34) could afford better results in recovering the 

shape of an anomaly when using circular or cylindrical probe geometries. This is because 

such geometries allow light to penetrate or pass through more tissue volumes under study, as 

compared to reflection geometries. Thus, while our HCM approach is simpler to implement 
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than that given by (28), we are not able to recover the imaged object’s shape, partially due to 

the limited space (i.e., a human rectum) available to accommodate a fixed number of light 

sources/detectors, which are set in reflectance geometry for data acquisition. Under the same 

argument, we expect that the best spatial resolution of DOT-derived prostate cancer images 

reconstructed by HCM would be in an order of 5–8 mm.

Second, in Section 2.1 we stated the assumption of this study that variation in light 

scattering across the prostate and its surrounding tissues is minimal. This assumption was 

made due to the fact that CW-based DOT measurements cannot provide enough independent 

data quantities to uniquely solve both light scattering and absorption coefficients of the 

imaged objects. With this assumption, we were able to implement and validate HCM by 

achieving DOT reconstruction of absorption coefficients of simulated prostate cancer using 

both simulation and experimental data. We acknowledge that the assumption of constant 

light scattering across human prostate tissues may not be accurate, resulting in two negative 

impacts on our conclusion: (1) There exist variations in light scattering within the prostate 

tissue, which may create a large noise level to diminish the optical contrast between 

cancerous and normal prostate tissues. (2) Prostate cancer may result in light scattering 

changes, which may indeed be useful as an optical contrast for DOT but is ignored in the 

current HCM approach. In order to know whether or not these two negative impacts relate to 

HCM, it is necessary to perform human prostate specimen ex vivo and in vivo measurements 

with histology analysis confirmation, which is the next step in our research plan. Our 

expectation is that variations in light scattering within the prostate tissue are not large 

enough to diminish the optical contrast between cancerous and normal prostate tissues based 

on previous reports on both breast cancer (8, 9, 35) and prostate cancer studies (11, 16). If 

the variations in light scattering does affect DOT reconstruction results, we plan to modify 

Step 1 of HCM by utilizing a global algorithm to find both absorption and scattering from 

CW data. Further development to solve this problem will be reported for our future work.

It is noteworthy to point out that if prostate cancer does give rise to light-scattering changes, 

they may help enhance the optical contrast for DOT as long as cancer tissues yield an 

increase in light scattering with respect to the normal prostate tissues, which seems to be the 

case according to limited reports (12–15). The rationale of increases in light scattering 

within prostate cancer tissues is that cancer cells have enlarged nuclei with a higher and 

irregular cell density, both of which result in a significant increase in light scattering. As 

mentioned in Section 2.1, CW-based DOT are sensitive only to μeff(r ) = μa(r )μs′(r⃗) ; an 

increase in μs′(r⃗) due to prostate cancer is mathematically equivalent to an increase in optical 

contrast for reconstructed DOT images, and thus our HCM will still function well or even 

better with an increase in contrast in μeff(r ). Further experimental confirmation from human 

prostate specimens is underway in our research activities.

Conclusion

In this work we reported a method which improves the image reconstruction in the absence 

of prior information on cancer location in prostate cancer imaging with diffuse optical 

tomography. We believe that our hierarchical clustering method is able to produce good 

results for experimental data and represents a significant step towards future realization of 

Kavuri and Liu Page 14

Acad Radiol. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this method for clinical applications. Upon further validation by liquid phantoms, HCM is 

ready to be applied to prostate cancer imaging by DOT; HCM will be particularly useful for 

cases where prior location information of several cancers is not clearly available. In a more 

general sense, this research is a springboard for translating DOT for cancer detection in 

clinics.
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Fig. 1. 
Methodology showing steps through a flow chart showing HCM
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Fig. 2. 
(a) Probe geometry used in this study; each optode is bifurcated to serve as a source and 

detector. (b) Mesh (elements not highlighted) has been rotated and sliced vertically into two 

halves to show the simulation geometry. (c) A slice from the mesh cut along the longitudinal 

direction, showing simulated rectum wall (green), surrounding tissue (blue), and prostate 

(sky blue). An anomaly has been created at 1-cm depth from the rectum wall. (d) Image 

reconstruction is in progress showing clusters within the prostate region.
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Fig. 3. 
Reconstructed μa values in mm−1 using different reconstruction steps for (a) an anomaly 

located within a simulated prostate. The dotted circles indicate the real locations of the 

anomaly. Reconstructed images (b) after Step 1 of HCM, (c) after Step 2 of HCM, (d) after 

Step 3 of HCM, (e) after Step 4 of HCM; (f) reconstructed image for the same case using a 

known hard prior anatomy/condition for the inclusion.
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Fig. 4. 
Reconstructed μa values in mm−1 of the anomaly created in increasing depths. Panels (a), (b) 

and 4(c) show the reconstructed images of an anomaly located at 1 cm, 2 cm, and 3 cm, 

respectively. Dotted circles show the actual location of the anomaly.

Kavuri and Liu Page 20

Acad Radiol. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
This figure shows (a) the two anomalies separated by 2 cm and created at a depth of 2 cm, 

and (b) the two anomalies separated by 4 cm and located at depths of 1 cm and 2 cm. Dotted 

circles show the actual locations of the anomalies.
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Fig. 6. 
Comparison of absorption coefficients between the recovered anomaly and the prostate 

background after Step 2.
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Fig. 7. 
This figure shows (a) the reconstructed image with 1% noise added to the data and without 

any anomalies, while (b), (c), and (d) show the reconstructed images with 1%, 2%, and 3% 

noise levels, respectively.
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Fig. 8. 
Instrumentation and probe setup utilized for laboratory phantom experiment. Eight sources 

and detectors were used for light delivery and detection. BS: beam splitter; PD: photodiode.
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Fig. 9. 
Flow chart depicting various stages of detection electronics utilized in proposed 

instrumentation.
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Fig. 10. 
(a) Experimental setup used in this study. The probe was placed on one side of the tank to 

avoid contact with the intralipid solution. An absorber was placed 1.5 cm from the probe 

side of the tank. (b) Photograph showing the experimental setup. (c) Photograph showing the 

photodiode array.
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Fig. 11. 
Reconstructed μa values in mm−1 using (a) regular DOT iterative reconstruction and HCM 

after (b) Step 2, (c) Step 3, and (d) Step 4. The dashed circles indicate the actual location of 

the 1-cm absorber with a depth of 1.5 cm below the measurement surface.
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Table 1

Comparison of reconstructed μa values by HCM with and without prior anatomical information

Tissue type
μa (mm−1)

without prior information (%) with prior information (%)

Peri-prostate 0.002 (100) 0.002 (100)

Rectum wall 0.01 (100) 0.01 (100)

Prostate 0.006 (100) 0.006 (100)

Anomaly 0.019 (95) 0.02 (100)
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Table 2

comparison of reconstructed μa value of the target at different depths using HCM

Depth Target (mm−1) Reconstructed (mm−1) % recovered of μa

1cm 0.02 0.019 95

2cm 0.02 0.019 95

3cm 0.02 --- ---
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Table 3

comparison of reconstructed μa value between regular DOT reconstruction and HCM for experimental data

Target (mm−1) Recovered (mm−1) Recovery Percentage

DOT reconstruction 0.03 0.0115 38.3%

HCM 0.03 0.025 83.3%
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