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Background. The aims of this study were (1) to examine the renoprotective effects of alogliptin and (2) to establish urinary
angiotensinogen (AGT) as a prognostic marker of renoprotective effects of alogliptin in patients with type 2 diabetes (T2D).
Methods. In 43 patients with T2D (18 women, 66.1 ± 1.71 years), 25mg/day of alogliptin was added to the traditional hypoglycemic
agents and/or nondrug treatments. Urinary concentrations of albumin (Alb) and AGT, normalized by urinary concentrations of
creatinine (Cr) (UAlbCR and UAGTCR, respectively), were measured before and after the 12-week alogliptin treatment. Results.
Alogliptin treatment tended to decrease UAlbCR (99.6 ± 26.8 versus 114.6 ± 36.0mg/g Cr, 𝑃 = 0.198). Based on % change in
UAlbCR, patients were divided into two groups, responders (< −25%) and nonresponders (≥ −25%), and a logistic analysis of
UAGTCR before treatment showed cutoff value of 20.8 𝜇g/g Cr. When all patients were redivided into two groups, those with
higher values of UAGTCR before the treatment (Group H, 𝑛 = 20) and those with lower values (Group L), Group H showed
significantly decreased UAlbCR in response to alogliptin (−14.6 ± 8.6 versus +22.8 ± 16.8%, 𝑃 = 0.033). Conclusion. Urinary AGT
could be a prognostic marker of renoprotective effects of alogliptin in patients with T2D.

1. Introduction

Diabetic nephropathy is one of the greatest primary diseases
necessitating hemodialysis in patients with end-stage renal
disease. It is very important to control the development
of symptoms and progress of nephropathy in the medical
treatment of diabetes. However, the detailed mechanisms of
the development and progression of diabetic nephropathy are
still unknown.

There are many reports indicating that the increase of
intrarenal angiotensinogen (AGT) and the activation of the
renin-angiotensin system (RAS) are involved in diabetic
nephropathy [1–6].

On the other hand, it is reported that medicines asso-
ciated with incretin, such as dipeptidyl peptidase- (DPP-) 4

inhibitors and glucagon like peptide-1, have a renoprotective
effect in addition to improving glycemic control [7–10]. How-
ever, there are few reports about the relationship between
DPP-4 inhibitors andRAS in the kidneys. It has been reported
that urinary AGT is a usefulmarker of intrarenal RAS activity
[11] in patients with chronic kidney disease [12, 13] as well as
in patients with diabetes [14–17]. Therefore, this study was
performed to demonstrate that urinary AGT may serve as
a prognostic marker of the renoprotective effect of DPP-4
inhibitors.

2. Materials and Methods

2.1. Patients and Protocols. This experimental protocol
was approved by the institutional review board of Social
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Insurance Miyazaki Konan Hospital (Miyazaki, Japan).
Patients with type 2 diabetes (T2D) were recruited from
Miyazaki University affiliated hospitals from August 2011 to
June 2012, andwritten informed consentswere obtained. T2D
was defined as fasting blood glucose ≥126mg/dL, glycated
hemoglobin (HbA1c) ≥6.5%, according to the guidelines of
the American Diabetes Association, or receiving treatments
with oral hypoglycemic agents. Patients whose HbA1c levels
were ≥6.1% for at least 3 months, in spite of nondrug
treatments (i.e., exercise, diet, and lifestyle modification) or
medications with a stable dose of oral hypoglycemic agents
(except DPP-4 inhibitors), were included. Patients (1) with
administration of insulin; (2) with hepatic or renal impair-
ment (aspartate aminotransferase or alanine aminotrans-
ferase ≥2.5 × upper limit of normal or serum creatinine (Cr)
≥2mg/dL); (3) with cardiovascular disease within 6 months
(i.e., myocardial infarction or stroke); (4) taking a moderate
or high dose of glimepiride (i.e., >3mg/day); (5) and taking
sulfonylureas other than glimepiride were excluded. Other
antihyperglycemic and antihypertensive medications were
not changed during this study.

2.2. Measurements. The patients took 25mg alogliptin once
daily for 12 weeks, and serum HbA1c, serum Cr, urinary
albumin (Alb), urinary AGT, and urinary Cr were measured,
at baseline and after 12 weeks.

HbA1c concentration, determined using a latex agglu-
tination immunoassay, was estimated as a National Gly-
cohemoglobin Standardization Program (NGSP) equivalent
value calculated with the following formula: HbAlc (NGSP,
%) = HbAlc (Japan Diabetes Society, %) + 0.4. To esti-
mate renal function, the estimated glomerular filtration rate
(eGFR) derived using the following equation was used:
eGFR (mL/min/1.73m2) = 194 × age (years)−0.287 × serumCr
(mg/dL)−1.094 (if women × 0.739) [18]. The urinary concen-
trations of Alb were measured using an immune-turbidity kit
(AutoWako Microalbumin; Wako Pure Chemical Industries,
Ltd., Osaka, Japan) and expressed as a Cr ratio (UAlbCR,
mg/g Cr) by spot urine. The intra-assay and interassay
coefficients of the Alb measurements were all <10%. Urinary
AGT was measured using the Human Total AGT ELISA Kit
(Immuno-Biological Laboratories Co. Ltd., Takasaki, Japan)
according to the manufacturer’s instructions as previously
described [19] by spot urine and also normalized by urinary
concentrations of Cr (UAGTCR, 𝜇g/g Cr). The intra-assay
and interassay coefficients of the AGTmeasurements were all
<10% [19].

2.3. Statistical Analysis. All statistical analyses were per-
formed with JMP software version 10 (SAS Institute Inc.,
Tokyo, Japan). Age, body mass index (BMI), and treatment
duration of T2D were expressed as means ± standard error
(SE). UAlbCR, UAGTCR, HbA1c, eGFR, systolic blood pres-
sure (SBP), and diastolic blood pressure (DBP) before and
after treatment by alogliptin were expressed as means ± SE
and were compared using a paired t-test. Logistic analysis of
UAGTCR before treatment was conducted whether UAlbCR
decreased more than 25% after alogliptin treatment or not.

Table 1: Patient profiles.

𝑁 43
Men/women 25/18
Age (years) 66.1 ± 1.71
BMI (kg/m2) 24.8 ± 0.5
Treatment duration of T2D (years) 7.1 ± 1.18
Medications
ARB 23 (53.5%)
𝛼-GI 8 (18.6%)
TZD 5 (11.6%)

ARB: angiotensin II receptor blockers, 𝛼-GI: 𝛼-glucosidase inhibitors, and
TZD: thiazolidines.

Table 2: Laboratory data of before and after treatment by alogliptin.

Before After 𝑃 value
UAlbCR (mg/g Cr) 114.6 ± 36.0 99.6 ± 26.8 𝑃 = 0.198
UAGTCR (𝜇g/g Cr) 27.2 ± 4.2 29.9 ± 8.0 𝑃 = 0.628
HbA1c (NGSP) (%) 7.2 ± 0.1 7.0 ± 0.1 𝑃 = 0.005∗

eGFR (mL/min/1.73m2) 74.3 ± 3.1 72.2 ± 3.0 𝑃 = 0.067
Systolic blood pressure
(mmHg) 140.5 ± 2.9 138.3 ± 2.9 𝑃 = 0.130

Diastolic blood pressure
(mmHg) 77.8 ± 1.7 78.7 ± 1.6 𝑃 = 0.763

∗
𝑃 value < 0.05.

We developed a receiver operator characteristic (ROC) curve;
the area under the curve (AUC) was calculated and the
optimal cutoff value was determined.

Based on this cutoff value of UAGTCR before the treat-
ment, we divided all patients into 2 groups. We compared %
change inUAlbCR andΔUAlbCR between the 2 groups using
an unpaired t-test. 𝑃 value < 0.05 was defined as statistically
significant.

3. Results

3.1. Baseline Patients Profiles. 43 patients (18 women and 25
men, 66.1 ± 1.71 years) were assigned to treatment. The
patients’ clinical characteristics and laboratory data before
and after treatment by alogliptin are summarized in Tables
1 and 2, respectively. There are significant changes in HbA1c,
but there is no significant change in other parameters before
and after the treatment.

3.2. UAlbCRbefore and after the Treatments byAlogliptin. The
alogliptin treatment tended to decrease UAlbCR (99.6 ± 26.8
versus 114.6 ± 36.0mg/g Cr) with no statistically significant
changes (𝑃 = 0.1976, Figure 1(a)). We also showed UAlbCR
of each participant before and after treatment by alogliptin in
Figure 1(b).

3.3. Logistic Analysis of UAGTCR before the Treatments.
Patients were divided into two groups: those for whom
UAlbCR decreased less than 25% and those for whom it
decreased more than 25%. A logistic analysis of UAGTCR
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Figure 1: (a) Urinary concentrations of Alb normalized by urinary concentrations of creatinine (UAlbCR) before and 12-week after treatment
with alogliptin. Alogliptin treatment tended to decrease UAlbCR (99.6 ± 26.8 versus 114.6 ± 36.0mg/g Cr, 𝑃 = 0.1976). (b) UAlbCR of each
participant before and 12-week after treatment with alogliptin.
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Figure 2: Logistic analysis of urinary concentrations of angiotensinogen normalized by urinary concentrations of creatinine (UAGTCR)
before treatment. Good responders to the alogliptin treatment were defined in terms of % change in urinary concentrations of Alb normalized
by urinary concentrations of creatinine less than −25% after the 12-week treatment, and a logistic analysis of UAGTCR before treatment
showed the area under the curve as 0.644.When we set the cutoff value of UAGTCR as 20.8 𝜇g/g Cr, the maximum specificity (17/27 = 63.0%)
and sensitivity (10/16 = 62.5%) were obtained (Youden index = 0.255).

before treatment showed AUC as 0.644. When we set the
cutoff value of UAGTCR as 20.8𝜇g/g Cr, the maximum
specificity (17/27 = 63.0%) and sensitivity (10/16 = 62.5%)
were obtained (Youden index = 0.255, Figures 2(a) and 2(b)).

3.4. Clinical Characteristics and Baseline LaboratoryData Par-
titioned by the Cutoff Value of UAGTCR before the Treatments.
Based on this cutoff value of UAGTCR (i.e., ≥20.8𝜇g/g Cr or
<20.8𝜇g/g Cr), we divided all patients into 2 groups: higher
(Group H, 𝑛 = 20) and lower (Group L) values of UAGTCR
at baseline. Clinical characteristics (Table 3) and baseline
laboratory data (gender, age, BMI, treatment duration of T2D,
HbA1c (NGSP), eGFR, SBP, DBP, and medications) (Table 4)

were not significantly different between Group H and Group
L. However, ΔUAlbCR was significantly lower in Group H
than in Group L (−46.3 ± 32.5 versus +12.2 ± 14.9mg/g Cr,
𝑃 = 0.0474, Figure 3).

In addition, % change in UAlbCR was significantly lower
inGroupH than inGroup L (−14.6±8.6 versus+22.8±16.8%,
𝑃 = 0.0327, Figure 4).

4. Discussion

Recently, there has been increased emphasis on the role
of the local/tissue RAS in specific tissues in organ injury.
The importance of the tissue RAS was demonstrated in
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Table 3: Patient profiles partitioned by the cutoff value of UAGTCR
before treatments.

Group High Low 𝑃 value
𝑁 20 23
Men/women 11/9 14/9 𝑃 = 0.76
Age (years) 67.0 ± 2.5 65.4 ± 2.4 𝑃 = 0.66
BMI (kg/m2) 24.1 ± 0.7 25.4 ± 0.7 𝑃 = 0.19
Treatment duration of T2D
(years) 6.9 ± 1.8 7.4 ± 1.6 𝑃 = 0.82

Medications
ARB 12 (60.0%) 11 (47.8%) 𝑃 = 0.54
𝛼-GI 4 (20.0%) 4 (17.4%) 𝑃 = 1.00
TZD 1 (5.00%) 4 (17.4%) 𝑃 = 0.35

ARB: angiotensin II receptor blockers, 𝛼-GI: 𝛼-glucosidase inhibitors, and
TZD: thiazolidines.

Table 4: Laboratory data at the entry partitioned by the cutoff value
of UAGTCR before treatments.

Group High Low 𝑃 value
HbA1c (NGSP) (%) 7.26 ± 0.15 7.23 ± 0.14 𝑃 = 0.89
eGFR (mL/min/1.73m2) 76.6 ± 4.6 72.3 ± 4.3 𝑃 = 0.50
Systolic blood pressure
(mmHg) 143.6 ± 4.3 137.9 ± 4.0 𝑃 = 0.33

Diastolic blood pressure
(mmHg) 77.0 ± 2.5 78.4 ± 2.4 𝑃 = 0.68

the brain, heart, adrenal glands, vasculature, and kidneys
[1]. In the kidneys, there are AGT [20], renin [21, 22], and
angiotensin-converting enzyme [23] in the proximal and
distal tubular cells, and they were converted to angiotensin
II. Once angiotensin II concentration increases within the
kidneys, AGT, which is the substrate of angiotensin II, will
be increased further [20]. In terms of the origin of the
intrarenal AGT and angiotensin II, Matsusaka et al. reported
that liver AGT is the primary source of renal angiotensin
II [24, 25]. Meanwhile, Nakano et al. suggest that the vast
majority of urinary AGT originates from the tubules rather
than glomerular filtration [26].These papers seem to provide
conflicting findings. Further investigations are still needed to
address this important issue.

The intrarenal RAS is involved in the development and
progression of renal damage [11–13]. In rat glomerular cells,
increasing angiotensin II causes an increase of transforming
growth factor 𝛽1, and causes renal damage by hypertrophy
and fibrosis [27, 28]. Activation of the intrarenal RAS was
also involved in diabetic nephropathy, and urinary AGT was
increased in T2D model rat [3].

The underlying mechanisms of the development and
progression of diabetic nephropathy are still under investi-
gation. Diabetic nephropathy is associated with the increased
reactive oxygen species (ROS) and involves various mecha-
nisms, including hyperglycemia, activation of the intrarenal
RAS, and high blood pressure. Hyperglycemia induces acyl
glycerol and activates protein kinase C. Glomerular injury is
caused by the generation of ROS or the peroxidation of lipids
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Figure 3: ΔUrinary concentrations of Alb normalized by urinary
concentrations of creatinine (UAlbCR) defined by the cutoff value
of urinary concentrations of angiotensinogen normalized by urinary
concentrations of creatinine (UAGTCR) before treatment. When all
patientswere redivided into two groups, thosewith higherUAGTCR
levels before treatment (Group H, 𝑛 = 20) and those with lower
levels (Group L), ΔUAlbCR was significantly lower in Group H than
in Group L (−46.3 ± 32.5 versus +12.2 ± 14.9mg/g Cr, 𝑃 = 0.0474).
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Figure 4: % change in urinary concentrations of Alb normalized by
urinary concentrations of creatinine (UAlbCR) defined by the cutoff
value of urinary concentrations of angiotensinogen normalized by
urinary concentrations of creatinine (UAGTCR) before treatment.
When all patients were redivided into two groups, those with higher
UAGTCR levels before treatment (Group H, 𝑛 = 20) and those with
lower levels (Group L), % change in UAlbCR was significantly lower
in Group H than in Group L (−14.6 ± 8.6% versus +22.8 ± 16.8%,
𝑃 = 0.0327).

[29]. Hyperglycemia produces ROS as a result of the self-
oxidation of glucose, metabolism, or formation of advanced
glycation end-product [30].

In terms of activation of the intrarenal RAS, it has
been demonstrated that ROS and intrarenal AGT levels
increase in diabetic rats [4, 5] and humans [6] before
generating renal damage.Moreover, Ogawa et al. [31] demon-
strated that angiotensin II receptor blocker (ARB) treatment
reduces urinary Alb levels at the stage of microalbuminuria
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underlying diabetic nephropathy when the urinary oxidative
stress marker and AGT are high. The activation of the
RAS is thought to be strongly associated with the increase
in production of ROS. In the stage of microalbuminuria,
urinary Alb is decreased along with decreasing production
of intrarenal ROS and controlling the activity of the RAS
by ARB treatments. There is a complex relationship between
Alb reabsorption and the production of ROS and AGT.
Unfortunately, however, the samples were not remaining
anymore and it is impossible for us to measure urinary
markers of oxidative stress in this study.

This study focused on the effects of a DPP-4 inhibitor on
urinaryAGT in patientswith diabetes. Even thoughARBmay
affect AGT synthesis [3] and urinary AGT [12, 15], the effects
of ARB on urinary AGT in patients with diabetes are beyond
the scope of this study, and we need another study to address
this issue. However, the important point is that patients on
ARB medication were 12 (60.0%) in Group H and 11 (47.8%)
in Group L, and there are no significant differences between
Group H and Group L (𝑃 = 0.54, Table 3). Therefore, this
issue did not affect the results so much in this study.

It is assumed that the increase in intrarenal AGT and
ROS formation underlying T2D [15, 31] is associated with the
onset of diabetic nephropathy [1, 2, 14]. It has been reported
that DPP-4 inhibitor medications improved the marker of
oxidative stress in the kidney and had a renoprotective effect
[7–10]. These mechanisms may be achieved by the direct
action of DPP-4 inhibitors or by the indirect action of DPP-4
inhibitors through the improvement of hyperglycemia [7–10].

In the RENAAL study [32], it is reported that losartan,
an ARB, reduced the risk of end-stage renal disease by 28%
in patients with T2D and nephropathy (incidence: 147/751
= 19.6% in the losartan group versus 194/762 = 25.5% in
the placebo group).This investigator-initiated, multinational,
double-blind, randomized, placebo-controlled study has a
significant impact demonstrating that ARB exerts renopro-
tective effect in patients with T2D. However, this study also
suggested that 19.6% of patients with T2D undergo end-stage
renal disease even though they are treated with losartan.This
indicated that there are responders and nonresponders for
losartan. If we are able to predict the response of losartan
by some biomarkers before patients receive the treatment
by losartan, we may be able to increase the responders to
losartan.Thismay increase the clinical impact and reduce the
medical cost on patients with T2D. In this regard, we believe
that our approach is valid and makes an important step to
lead to the tailor-maid medicine. In this study, responders
who showed a decreased UAlbCR by 25% or more are 16
patients, and nonresponders are 27 patients.Therefore, 37.2%
(16/43) of all patients in this study are responders. Based on
the cutoff value of UAGTCR before the treatment, we divided
all patients into 2 groups: higher (Group H, 𝑛 = 20) and
lower (Group L) values of UAGTCR at baseline. In group H,
10 patients (50%) are responders. In this way, we may be able
to increase the number of responders to a DPP-4 inhibitor.
If we are able to predict the renoprotective effect of a DPP-
4 inhibitor by some biomarkers before the treatment, this
has a clinical impact and a possibility to reduce the medical
costs on patients with T2D. UAGTCR is a useful biomarker

to predict the renoprotective effect of a DPP-4 inhibitor, as
demonstrated in this study.

We chose UAGTCR as biomarker not UAlbCR. Urinary
AGT shows a positive correlation with urinary Alb in this
study as well as in other studies. However, an increase in
urinary AGT appears earlier than an increase in urinary Alb
in diabetes. Others [33] and we [16] previously reported that
an increase in urinaryAGT is observed in normoalbuminuric
children with type 1 diabetes. In addition, we reported that an
increase in urinary AGT precedes an increase in urinary Alb
in experimental type 1 diabetes [34]. These data suggest that
urinary AGT and urinary Alb were not identical.

In this study, not only the amount of change but also the
rate of change in urinary Alb displayed a larger drop in the
higher urinary AGT group. An amount of change will tend to
be largerwhen one starts with higher levels.However, a rate of
changewill tend to be largerwhen one starts with lower levels.
Because both the amount of change and the rate of change
in urinary Alb significantly decreased in the higher urinary
AGT group, these results in this study were very important.

In this study, UAlbCR tended to fall after treatment
with DPP-4 inhibitor and possibly exerted a renoprotective
effect.However, the differencewas not statistically significant,
possibly due to the small sample size. In this study, there is
also a restriction of the amount of samples.Therefore, the data
addressing the underlying mechanism cannot be measured
in this study. Further studies will be required to address
this issue. We are now planning a multicenter randomized
prospective study on urinary AGT as a prognostic marker
of renoprotective effects of DPP-4 inhibitors in patients with
T2D.

In conclusion, treatments of alogliptin in patients with
T2D may protect kidney function in some patients. Urinary
AGT could be a prognostic marker of renoprotective effects
of alogliptin in patients with T2D.
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