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Abstract

Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal 

hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle 

erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics 

underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could 

inform personalized therapeutics, and might help the discovery of new “druggable” 

pathophysiologic targets. Genotype-phenotype association studies have been used to identify 

novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering 

hitherto unsuspected variants could add to our understanding of the genetic modifiers of this 

disease.

Introduction

Sickle hemoglobinopathies are a related group of common and rare hemoglobin genotypes 

where all affected individuals are either homozygotes for the sickle hemoglobin (HbS) 

mutation (HBB; glu(E)6val(A); GAG-GTG; rs334) or compound heterozygotes for the HbS 

and another globin gene mutation. Homozygosity for HbS, or sickle cell anemia, is the most 

common genotype. Compound heterozygotes for HbS and other hemoglobin variants, like 

HbC (HBB glu6lys; HbSC disease), or with one of the many forms of β thalassemia (HbS- β 

thalassemia), usually have milder disease than HbS homozygotes because of the reduced 

intracellular concentration of HbS.1 Vasoocclusion and hemolytic anemia are the major 

features of this Mendelian disease (for reviews see1) that is notable for its clinical and 

hematologic variability.2,3 Fetal hemoglobin (HbF) concentration and ∝ thalassemia are the 

major modifiers of disease, but are unlikely to be the only ones.4-11 The clinical features of 

the different sickle hemoglobinopathies have been reviewed many times and will not be 

discussed further. In the following sections we first discuss the effects of HbF and 

coincident α thalassemia on the subphenotypes of sickle cell anemia and conclude with 

emerging work on other genetic modifiers.
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HbF

HbS polymerization is the major driver of sickle cell disease pathophysiology, and HbF the 

most important modulator of the clinical and hematologic features of this disease because it 

is unable to enter the HbS polymer and also reduces mean corpuscular HbS concentration.12 

Both the genetic basis of hemoglobin switching–the process by which the fetal globin genes 

(HBG2 and HBG1 or HBG) are silenced and adult globin genes (HBB, HBD) are expressed–

and the effects of HbF in sickle cell anemia have been recently reviewed.13,14

Compound heterozygotes for HbS and gene deletion hereditary persistence of HbF (HPFH) 

have HbF concentrations of about 20% in each sickle erythrocyte. Carriers of this genotype 

are asymptomatic with only minor and clinically insignificant hematologic findings.15,16 

HbS-HPFH provides the best evidence that achieving high concentrations of HbF in most 

sickle erythrocytes can prevent clinically significant HbS polymerization and therefor a 

therapeutic goal to be vigorously pursued.

Effects of HbF on disease complications—Sickle cell anemia has many 

complications due to sickle vasoocclusion and hemolytic anemia and HbF affects the rate of 

some complications more than others.17 Table 1 summarizes the relationships HbF 

concentration with the common complications of disease. High HbF is strongly associated 

with a reduced rate of acute painful episodes, fewer leg ulcers, and longevity. Less 

conclusive evidence supports an association of HbF with priapism, renal functional 

impairment, cerebrovascular disease and perhaps sickle vasculopathy as estimated by 

tricuspid regurgitant velocity. Studies at variance with these observations and disparities 

among study results might be a consequence of the diligence and methods of subphenotype 

ascertainment, ethnic and age differences amongst patients, variability of sample sizes and 

analytical approaches. For example, a retrospective study of Jamaicans with steady-state 

HbF levels below 1% compared them with patients having HbF levels 2.5%-3.4% and 

4.6%-5.2%. As expected, packed cell volume and mean corpuscular volume increased with 

increasing HbF, but differences in the incidence of painful episodes and the acute chest 

syndrome were not apparent.18 Perhaps comparisons of cases with more widely separated 

levels HbF would have changed these results as the methods used in this study to measure 

very low HbF concentrations can be error prone. In another study of African Americans with 

an average age of 19.2 years and mean HbF of 12±7%, HbF was not associated with painful 

events, acute chest syndrome or survival although there was a higher risk of stroke in 

patients with lower levels of HbF.19 The reported HbF levels were much higher than those 

from other studies of a similarly aged population and the microchromatographic methods 

used to measure HbF differed from those used in most studies. Later reports by the same 

authors partially contravened their first conclusions.20 It is difficult to reconcile these 2 

reports with the wealth of biologic, laboratory and clinical data associating high HbF with a 

protective effect for many of the complications of sickle cell disease (Table 1).

Population differences in HbF and the genetic basis of HbF regulation—HbF 

levels are heritable.21-23 The normal switch from fetal to adult hemoglobin is completed 1 to 

2 months postnatally.24 Still, some normal erythroid precursors continue to express HBG.25 

In sickle cell anemia the switch from fetal to adult globin is delayed and HbF levels are 
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usually increased throughout life. Three well established quantitative trait loci (QTL), one 

cis to the HBB gene-like cluster and two in trans, are the major known modulators of HBG 

expression. Others must exist but are either rare or restricted to selected populations with 

sickle cell anemia.

Cis-acting regulation of HbF: The HbS mutation is present on 5 different HBB gene-like 

cluster haplotypes that originated in Africa, the Middle East and India (reviewed in26). From 

studying populations representing these haplotypes it has been shown that HbF levels among 

carriers of the 4 most common haplotypes vary as follows: Arab-Indian 

(AI)>Senegal>Benin>Bantu. Within any haplotype group there is considerable variation in 

HbF level. An autochthonous origin of HbS in the Middle East and India is present on an AI 

HBB-like globin gene cluster haplotype. Sickle cell anemia and HbS-β0 thalassemia in 

patients with the AI haplotype have a higher HbF concentration than comparable patients of 

African origin where the HbS gene is found with Benin, Bantu and Senegal haplotypes, 

although few HbS-β0 thalassemia cases with a Senegal haplotype have been studied.26-31 AI 

haplotype patients have mild, albeit not asymptomatic disease with frequent splenomegaly 

and osteonecrosis.32 The AI haplotype is characterized by the presence of a 5′ HBG2 Xmn1 

C-T restriction site (rs7482144), a Hinc2 restriction site 5′ to HBE1 (rs3834466) and 

insertion-deletion polymorphisms in other elements cis to HBB. In 132 untreated patients 

with sickle cell anemia and the AI haplotype, the HbF level averaged 17% (range, 

4%-32%).28,29,33 In African Americans, most of whom are compound heterozygotes or 

homozygotes for Benin and Bantu haplotypes that do not contain rs7482144, a marker of the 

Senegal haplotype, HbF levels are 5% to 8%.34,3513 A recent study examined African 

Americans with unusually high HbF concentrations.36 Compared with low HbF cases, they 

had significantly higher minor allele frequencies of the 2 known trans-acting elements 

associated with high HbF (see below), BCL11A and the intergenic interval between HBS1L 

and MYB (HMIP; 6q22-23). Individuals from the Saudi Southwestern Province with either 

sickle cell anemia or HbS-β0 thalassemia had HbF levels lower that the Eastern Province 

patients yet higher than African American sickle cell patients.37 Southwestern Province 

patients have the HbS gene on African HBB haplotypes, usually the Benin type; in contrast 

to African Americans, they rarely have priapism or leg ulcers.38

Reduced expression of HBB, as in the case of HbS-β0 thalassemia, and cis-acting 

elementsthat minimize HBG silencing might also influence HbF. Among the cis-acting 

elements that could act synergistically to enhance HBG expression are unknown loci tagged 

by rs7482144, elements within the HBD-HBG1 intergenic region, the HBB locus control 

region (LCR) HS-2 core and AT repeats ~530 bp 5′ to HBB. A similar putative mechanism 

of increased HBG expression combined with HBB suppression was described in Corfu δ0β+ 

thalassemia where HbF is very high in homozygotes.39 A candidate within this region is a 

3.5 kb element near the 5’ portion of HBD. The HBG silencer BCL11A binds within this 

region that also has GATA-1 and HDAC1 sites40 and its deletion delayed HBG to HBB 

switching. A high HbF phenotype might also be conditional on the presence of hemolysis 

causing erythroid marrow expansion as in carriers of the Corfu deletion and in HbS with the 

AI haplotype, HbF levels are normal.
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In a genome-wide association study (GWAS) of black patients with sickle cell anemia using 

a discovery set of 848 cases and a replication set of 305 cases, with additional studies in 

Thai and Chinese individuals with β-thalassemia trait, a region on chromosome 11 

containing olfactory receptor genes OR51B5 and OR51B6 was identified.41 Elements within 

the olfactory receptor gene cluster might play a regulatory role in HBG expression.42

The Senegal haplotype is also marked by rs7482144. Homozygous and heterozygous 

carriers of this haplotype have high Gγ-globin levels compared with other African-origin 

haplotypes and might have higher HbF.31 Eighty-seven kb within the HBB gene-like cluster 

were sequenced in patients of African origin and rs1012856 was in linkage disequilibrium 

(LD) with rs7482144 and more strongly associated with HbF than rs7482144. This SNP had 

an effect on HbF independent of rs7482144; rs7482144 had no effect on HbF independent of 

rs10128556.43 Additionally, the association of olfactory receptor genes with HbF were not 

significant after conditioning in this SNP. The functional elements linked to the HBB gene-

like cluster and tagged by these rs10128566 and other SNPs are unknown.

Trans-acting elements modulating HbF: Carriers of any HbS haplotype have considerable 

variance in HbF levels suggesting the importance of trans-acting QTL that modulate HBG 

expression. Two QTL in trans to HBG are HMIP and BCL11A (2p16.1). Polymorphisms in 

HMIP were associated with F-cell levels, accounted for 19.4% of the F-cell variance in 

normal Europeans and were distributed in 3 LD blocks. Overexpression of MYB in K562 

cells inhibited HBG expression.44 Low levels of MYB were associated with reduced cell 

expansion and accelerated erythroid differentiation, suggesting that variation in the intrinsic 

levels of MYB might affect HbF by its effect on the cell cycle. Rare MYB variants were 

associated with HbF.43 Among individuals with 1 of 3 rare missense variants in MYB, HbF 

was 7.5% compared with 6.1% in cases without such a variant. Overexpression of 

microRNA-15a and -16-1 down-regulated MYB in CD34+ erythroid progenitors and 

increased HbF.45

The most significant motif accounting for HMIP modulation of HbF is a 3 bp deletion 

polymorphism in complete LD with SNP rs9399137. This SNP was shown in several 

GWAS to be highly associated with HbF in multiple populations.46-49 It is located near the 

erythroid-specific DNase I hypersensitive site 2 within the HMIP block 2, 42.6 kb upstream 

of HBS1L and 83.8 kb upstream of MYB. In close proximity to this deletion polymorphism 

are binding sites for TAL1, E47, GATA2, and RUNX1, all erythropoiesis-related 

transcription factors. Furthermore, the short DNA fragment encompassing the 3 bp deletion 

polymorphism appears to have enhancer-like activity based on in vitro transient transfection 

experiments.47 The HMIP polymorphism is also associated with HbF among sickle cell 

anemia patients of African descent 41,48,50,51 though less significantly when compared with 

Europeans or Chinese due to a much lower minor allele frequency.47 It is rare in AI 

haplotype Saudi patients and therefore not associated with HbF in this group (Bae et al, 

unpublished data). Other HMIP variants might be not tracked well by SNP rs9399137 so the 

role this locus plays in certain populations is still unknown.43

The consistent agreement of the HMIP association results across multiple populations where 

its minor allele frequency is high, in conjunction with erythropoiesis-related transcription 
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factor binding studies, phylogenetic conservation, and in vitro enhancer-like activity 

suggests that in many, but not all populations, the 3 bp deletion polymorphism is probably 

the most significant functional variant within this region accounting for its association with 

HbF level. In one study, expression of HBS1L was associated with HbF.52

The singular successes of GWAS in sickle cell anemia was the seminal and serendipitous 

discovery of BCL11A as a major regulator of hemoglobin gene switching and HbF.53 This 

discovery was possible because of an experimental design that dichotomized the very 

highest (>95th percentile) and very lowest (<5th percentile) F-cell levels in a very small 

number of individuals and the large effect of this locus on HbF. In addition to BCL11A 

GWAS in sickle cell anemia have found the upstream olfactory receptor gene cluster41 and a 

SNP on chr17p13.3, GLP2R, a glucagon-like peptide 2 receptor expressed in the gut to be 

associated with HbF. In a sex-stratified analysis, one intronic SNP (rs12103880) in GLP2R 

was associated with F-cells only in males.54 Curiously, other GWAS using much larger 

numbers of patients did not find this gene associated with HbF. It is unclear why this 

association was only seen in males–higher HbF in females is presumably an X-linked 

function–and other HbF GWAS studies have adjusted for gender.41 Perhaps F-cells are a 

different phenotype than HbF, although they are highly correlated55, and F-cells were used 

as a phenotype in other GWAS.47,53 More likely, the association of GLP2R with HbF is a 

false-positive result.

BCL11A, a developmentally regulated zinc finger protein gene and silencer of HBG 

expression was strongly associated with HbF concentrations in normal individuals and 

several different populations of patients with β thalassemia and with sickle cell anemia 

including AI haplotype Saudi patients (Bae H et al, personal communication). By its effects 

on HbF concentration, BCL11A modified the features of both diseases.41,50,53,56,57 Binding 

sites for BCL11A have been described in HS-3 of the LCR and the Aγ-δ intragenic region 

using chromosome immunoprecipitation assays, and in a GGCCGG motif in the proximal 

promoter of HBG. Polymorphism within the 14 kb intron 2 of BCL11A correlated with HbF-

cell numbers in several different populations. Individual variants and haplotypes at this locus 

accounted for up to 18% of HbF variance sickle cell anemia.58 By studying ethnically 

distinct populations with sickle cell disease and β thalassemia it was suggested that possible 

functional motifs responsible for modulating HbF level or F-cell numbers might reside 

within or immediately adjacent to a 3 kb region bounded by rs1427407 (position 

60,629,694) and rs4671393 (position 60,632,602) in intron 2 of BCL11A.53,56,57

Complexes of BCL11A with other proteins might mediate the suppressive effects of 

BCL11A on HBG expression. KLF1, an activator of BCL11A, plays an important role in 

hemoglobin switching and selected polymorphisms have been associated with the HPFH 

phenotype.59,60 Associations of SNPs in KLF1 with HbF in sickle cell anemia have not yet 

been reported but “functional” SNPs seem rare in AI haplotype patients and African 

Americans with very high HbF (Bae et al, Personal communication). SNPs in QTLs on 

chr11p16.1, chr2p16 and 6q22-23 explain about one third to one half of HbF variation in 

sickle cell anemia leaving much of the variance in HbF level unexplained. Other variants are 

likely to explain this “missing” heritability but are difficult to detect using GWAS, which in 

the case of sickle cell disease have examined relatively small samples.
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HbF response to hydroxyurea—Hydroxyurea reduces the morbidity and mortality of 

sickle cell anemia, an effect mediated primarily, although probably not exclusively by its 

induction of HbF.61-63 The HbF response to hydroxyurea is variable and some patients do 

not respond to treatment. Like baseline HbF levels, the HbF response to hydroxyurea is also 

heritable.64 Changes of HbF induced by hydroxyurea can be substantial. In subjects who 

start with baseline HbF values between 5% and 10% increases can be 2 to 3 fold; subjects 

with very low baseline HbF can have 10-fold increases. These observations suggest that 

genetic modifiers could have large effects and be discoverable even with limited sample 

sizes.

The data available on the genetic basis of HbF response to hydroxyurea are not definitive 

and have yet to be replicated. In one study, 320 tag SNPs in 29 candidate loci within the 

6q22.3–q23.2, 8q11–q12 and Xp22.2–p22.3 linkage peaks, in genes involved in the 

metabolism of hydroxyurea and in genes related to erythroid progenitor proliferation were 

studied in 137 sickle cell anemia patients. This work was done prior to the discovery of the 

association of BCL11A with HBG expression. SNPs in genes within the 6q and 8q linkage 

peaks, and also the ARG2, FLT1, HAO2 and NOS1 genes were associated with the HbF 

response to hydroxyurea.65

The failure of HbF to modulate uniformly all complications of sickle cell disease might be 

related to the heterogeneous distribution of HbF among sickle erythrocytes at both the 

baseline state and in response to hydroxyurea treatment and the premature destruction of 

erythrocytes that contain little HbF.13 Many epidemiological studies suggested that disease 

complications most closely linked to sickle vasoocclusion and blood viscosity were robustly 

related to HbF concentration while complications associated with the intensity of hemolysis 

were less affected (reviewed in17,66). The weak or absent association of HbF with 

osteonecrosis, as exemplified in Saudi patients, suggests that increased blood viscosity 

associated with improved red cell survival due to high HbF and ∝ thalassemia that is 

common in in the Saudi population might dominate the reduction in HbS polymerization 

tendency.

∝Thalassemia

More than 30% of most populations with sickle cell anemia carry one or more determinants 

for ∝ thalassemia. In people of African descent this is usually heterozygosity or 

homozygosity for the −3.7∝-globin gene deletion. α Thalassemia modulates sickle cell 

anemia by reducing the intracellular concentration of HbS that in turn decreases HbS 

polymer-induced cellular damage, which ameliorates hemolysis.4

The hematologic and laboratory changes in sickle cell anemia-∝ thalassemia include: higher 

hemoglobin concentration, lower MCV, higher HbA2, lower reticulocyte count, lower 

bilirubin level, lower LDH, fewer dense and irreversibly sickled cells, increased erythrocyte 

lifespan; HbF concentration changed little. The magnitude of these changes is related to the 

number of deleted ∝-globin genes.4

Table 2 summarizes the effects of ∝ thalassemia on the common subphenotypes of sickle 

cell anemia. Heterogeneity among populations of patients with sickle cell anemia, the study 
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of small patient samples, inhomogeneity of the cohorts that sometimes include individuals 

with HbSC disease and HbS-β+ thalassemia, and age differences among subjects in different 

studies have resulted in some reports that diverge from the majority conclusions that are 

cited in this table. As ∝ thalassemia is an important determinant of hemolysis, its presence is 

usually associated with fewer complications, like stroke, priapism and leg ulcers that have 

been closely associated with hemolysis.67 Paradoxically, patients with sickle cell anemia-∝ 

thalassemia do not have a reduction and might have an increase in complications like painful 

episodes, acute chest syndrome or osteonecrosis, and this has been ascribed to increased 

blood viscosity that results from the higher PCV in sickle cell anemia patients with ∝ 

thalassemia.

Other genetic modifiers

Discovering genetic modifiers of disease depends in part on the heritability of the trait. The 

stroke subphenotype of sickle cell anemia is heritable and therefore genetically 

modifiable.68 Other subphenotypes, for example, acute chest syndrome and painful 

episodes, although likely to have some genetic basis 69,70 are more obviously influenced by 

environmental factors. It was suggested that the environment can change the epigenome and 

modulate gene expression without changing the genetic code.11,71,72

Genotype-phenotype association studies compare the odds of a selected subphenotype 

occurring in carriers of genetic variant compared with non-carriers. Alternatively, when the 

phenotype is quantifiable–HbF for example–the totality of data in a sample can be used for 

analysis, an advantage in a rare disease where accumulating sufficient patient samples for a 

case-control or dichotomized analysis is difficult. The prerequisites for any genetic 

association study are evidence that the phenotype examined is heritable and reproducible, a 

clear distinction between “cases” and “controls,” or sufficient variability of the quantitative 

trait, adequate patient numbers allowing robust statistical analysis and replication in groups 

of similar genetic ancestry, In the past 10 years both candidate gene association studies and 

GWAS been completed for many subphenotypes of sickle cell anemia. Almost uniformly 

the functional SNP or a putative mechanism whereby the disease is modified is unknown.

Candidate Gene Association Studies—Most candidate gene association studies were 

characterized by small sample sizes and no requirement to replicate the findings in other 

studies. This approach often lead to contradictory results when studies are compared. Table 

3 provides a reasonably complete summary of candidate gene associations with common 

subphenotypes of sickle cell anemia. The following discussion focuses on the disease 

subphenotypes most rigorously studied and on results or polymorphisms that have been 

replicated.

Stroke, trans-cranial Doppler flow velocity, silent cerebral infarction: Non-hemorrhagic 

stroke is clinically important, can be definitively ascertained and, notwithstanding issues of 

large vs. small vessel disease, silent vs. clinical stroke and relative rarity compared with 

some other subphenotypes, has been the subphenotype most closely examined (Table 3). 

Using the resources of a study of hydroxyurea for secondary stroke prevention ((SWiTCH, 

#NCT00122980), 38 SNPs in 22 genes were genotyped in 130 well-documented stroke 
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patients and 103 non-stroke children with sickle cell anemia.73 These SNPs were chosen 

based on previous candidate gene studies cited in Table 3. In addition to the known 

association of ∝ thalassemia with a reduced risk of stroke, 4 of the 38 SNPs tested were 

significantly associated with stroke risk, all with the same effect on stroke as previously 

published. ANXA2 (rs11853426),TEK (rs489347), and TGFBR3 (rs284875) variants were 

associated with increased stroke risk while ADCY9 (rs2238432) was associated with 

decreased stroke risk. These observations confirmed prior work using Bayesian network 

modeling that tested 108 SNPs in 39 candidate genes and found a network of 31 SNPs in 12 

genes that modulated the risk of stroke.74 Although most other SNPs associated with stroke 

in the studies cited in Table 3 were tested, none could be replicated. Stroke is a complex 

trait, unlikely to be modulated by a single gene. Validated results of genetic associations 

might make it possible to add genetic tests to predictive modeling and improve the selection 

of patients for preventive treatments that have intrinsic liabilities, like chronic transfusion 

and hydroxyurea.

The TGF-β/Smad/BMP pathway: One of the surprises of candidate gene association 

studies is the consistent association of SNPs in the TGF-β (transforming growth factor-β) /

Smad/BMP (bone morphogenetic protein) pathway with multiple subphenotypes of disease 

reported by 3 groups of independent investigators who studied different patient populations. 

In some instances the same SNP in the same gene has been associated with the same 

subphenotype. These associations are summarized in Tables 2 and 3 of reference.10

The TGF-β /Smad/BMP signaling pathway regulates diverse cellular processes. It signals 

through membrane-bound receptors, downstream Smad proteins and other signaling 

mediators and plays roles in inflammation, fibrosis, cell proliferation and hematopoiesis, 

osteogenesis, angiogenesis, nephropathy, wound healing and the immune response. The 

many complications of sickle cell anemia are effected by most of these processes so it is not 

unreasonable to suspect that perturbations of this pathway would modulate their 

development, progression and resolution.

GWAS—Thousands of disease-causing genes have been identified in Mendelian disorders 

by studying well characterized phenotypes and by using gene mapping techniques. However 

the same approach has not been as successful in identifying the genetic modifiers of 

common multigenic diseases like hypertension, diabetes, cardiovascular disease and 

dementia that do not follow Mendelian laws of inheritance. Sickle cell anemia is a classical 

Mendelian disorder but with a multigenic phenotype. Candidate gene-based association 

studies cannot find hitherto unsuspected novel genetic regions. GWAS have propelled us 

toward this goal but in rare diseases have progressed slowly because of the large sample 

sizes required to detect associations with small effect sizes that meet the stringent 

significance levels needed when hundreds of thousands of comparisons are being made. The 

role of GWAS in complex traits, using examples from work in sickle cell anemia, has been 

reviewed and discussed the issues of studying rare diseases.75

Studies of quantitative phenotypes other than HbF are just beginning to appear. Serum 

bilirubin levels have been associated with dinucleotide repeat polymorphisms in the 

UGT1A1 promoter in normal populations and in patients with sickle cell anemia (Table 3). 
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When hemolysis occurs circulating heme increases, leading to elevated unconjugated 

bilirubin levels and an increased incidence of cholelithiasis. In a GWAS of bilirubin levels 

and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients, 15 SNPs 

were associated with total bilirubin levels at the genome-wide significance level (5×10−8). 

SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10 were identified (most 

significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 

independent sets of more than 3,000 sickle cell anemia patients. A significant association 

was also noted when these SNPs were tested for their association with cholelithiasis (most 

significant p value 1.15× 10−4). These results confirm that the UGT1A region is the major 

regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to 

what is observed in other ethnicities.76 In this analysis there was no association between 

UGT1A1 SNPs and LDH, hemoglobin concentration and reticulocyte count.

In work published in abstract form (Milton JN, et al. Clinical and genetic variability of red 

blood cell hemolysis in sickle cell disease. Blood 2011;118.) a hemolytic score derived by 

principal component analysis77 was heritable (Fig. 1A, B) and used as a subphenotype in a 

GWAS (Fig. 1C). The top SNP associated with hemolysis (p=6.04×10−07) was in NPRL3 

(rs7203560; chr16p13.3) a gene a gene harboring the major ∝-globin gene regulatory loci, 

HS-33, HS-40 and HS-48, within its other introns.78 Rs7203560 is in perfect LD with 

rs2238368 and in strong LD with rs 2541612 (D′=0.89) and rs13331107 (D′=0.61) in the 

HS-33 to HS-40. When adjusted for HbF and ∝ thalassemia the association with NPRL3 

was weaker but still significant. A significant association between the hemolytic score and 

HbF was present after adjusting for age, sex, and ∝ thalassemia. Although both HbF and ∝ 

thalassemia are the major determinants of hemolysis in sickle cell anemia the hemolytic 

score was independently associated with rs7203560 in NPRL3. The functional basis for this 

association is unknown but the LD pattern within this region suggests that variation in the 

major ∝-globin gene regulatory loci could play a role.

TRV is likely to be a heritable trait, is a mortality risk factor in sickle cell disease and can be 

used as a marker of sickle vasculopathy.79 In a GWAS published in abstract form (Bae H, et 

al. An elevated tricuspid regurgitant jet velocity in sickle cell disease is associated with 

polymorphisms in genes impacting innate immunity Blood 2011;118:514a.), 4 SNPs in 

CSMD1 (CUB and Sushi multiple domains 1, a gene that inhibits the classical pathway of 

complement activation and complement-mediated hemolysis in sheep erythrocytes80 were 

associated with TRV in 340 patients and replicated in 56 independent cases. No SNP 

reached genome-wide significance. Inflammation is a mediator of vascular biology in sickle 

cell disease and also a known modulator of idiopathic pulmonary hypertension. CSMD1 

mutations may alter the immune response.

Median lifespan for patients with sickle cell anemia in the United States was in the fifth 

decade.81 To predict mortality in sickle cell disease a Bayesian network modeled 24 clinical 

events and laboratory tests to estimate disease severity represented by a score that predicted 

near-term mortality. The reliability of the model was supported by analysis of 2 independent 

patient groups.82 In 1,265 patients with either “severe” or “mild” disease based on this 

network model of disease severity, a GWAS discovered 40 SNPs that were strongly 

associated with sickle cell severity (odds for association >1,000); of the 32 SNPs that could 
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be analyzed in an independent set of 163 patients, 5 replicated, 8 showed consistent effects 

although failed to reach statistical significance, whereas 19 did not show any convincing 

association. Among the replicated associations are SNPs in KCNK6 a potassium channel 

gene. Using an analytical method that examined genetic regions, 27 genes with a strong 

enrichment of significant SNPs (P <10−6) were present and 20 were replicated with varying 

degrees of confidence. Among the novel genes identified by this analysis was the telomere 

length regulator gene TNKS.83 These studies were the first to use GWAS to understand the 

genetic diversity that accounts the phenotypic heterogeneity of sickle cell anemia as 

estimated by an integrated model of severity. Both genetics and environment affect 

longevity, and although clearly a heritable trait in other populations84, survival in sickle cell 

anemia is likely to be driven by the adverse effects of the disease rather than “longevity 

genes.” Given the widespread use of hydroxyurea and its major effect on morbidity, 

mortality and laboratory tests in sickle cell anemia–the original network model used data 

that antedated the clinical use of hydroxyurea–it is unlikely that an analysis of the genetic 

associations with “untreated” sickle cell anemia in developed countries can be repeated.

Conclusions

Many of the subphenotypes of sickle cell anemia are heritable and likely to be influenced by 

networks of interacting genes but also by the environment. Genetic polymorphisms that 

affect the course of sickle cell anemia and its clinical and laboratory subphenotypes are 

potentially useful as prognostic markers, could guide personalized therapeutics and might 

suggest new “druggable” targets. The next phase of genetic association studies will be the 

application of whole genome sequencing with its promise of discovering new variants that 

point to novel disease-impacting pathways. For success in this quest, rigorous 

subphenotyping, careful case selection, avoiding sequencing errors, validation of new 

candidates in large populations and functional and mechanistic studies will be critical.
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Genetic modifiers of sickle cell disease
Heritability of hemolytic score. The scatter plot in panel (A) shows hemolytic score of sib 

pairs (r = 0.24, p = 0.02) while panel (B) shows HbF of pairs of unrelated subjects (r = 

0.001, p = 0.52). (C) Manhattan plot summarizing the results of GWAS of hemolytic score. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]

Steinberg and Sebastiani Page 19

Am J Hematol. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wileyonlinelibrary.com


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Steinberg and Sebastiani Page 20

Table 1

Relationship of HbF to common clinical and hematologic features of sickle cell disease.

Disease Sub-phenotype Effects of HbF References

Survival High HbF prolongs survival in most untreated and hydroxyurea-treated 
cases

62,81,85-87

Painful episodes/dactylitis High HbF reduces incidence 88,89

Acute chest syndrome High HbF reduces rate 89,90

Leg ulcers High HbF protective 91-93

Osteonecrosis Equivocal evidence for a protective effect 32,94-98

Priapism Little or no evidence of a protective effect 99,100

Renal function/albuminuria Little or no evidence of a protective effect 101-106

Stroke, increased trans cranial Doppler velocity/ 
silent infarction

Equivocal or no evidence of a protective effect in infants; some evidence 
of protection in adults

107-111

Splenic sequestration/splenic function Low HbF increases risk of sequestration and is associated with earlier loss 
of function. High HbF protective.

32,89,112

Bacteremia Little or no evidence of a protective effect 113

Cholelithiasis High HbF protective 97,114

Retinopathy Low HbF possibly increases capillary occlusion 115

Sickle vasculopathy/TRJ velocity Little or no evidence of a protective effect 79,116-119

Pregnancy/perinatal death Decreased risk 120

Erythrocyte survival High MC(HbF)C increases RBC lifespan 121

Hemoglobin level High HbF associated with increased level 122

For nearly every disease subphenotype it is possible to find contradicting evidence. The studies cited contain the largest sample size and the most 
rigorous experimental design but no attempt was made to be exhaustive. For most subphenotypes, both children and adults are included. Portions of 

the Table were derived from.123
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Table 2

Relationship of ∝ thalassemia to common clinical features of sickle cell disease.

Disease Sub-phenotype Effects of ∝ thalassemia References

Overall severity Probably little effect 5

Stroke, silent infarction, TCD velocity Reduces risk 73,74,110,124-126

Painful episodes Increases risk 124,127

Acute chest syndrome Reduces risk 124

Bacteremia No effect 124

Osteonecrosis Increases risk 128

Priapism Reduces risk 99

Leg ulcers Reduces risk 91

Sickle vasculopathy/TRJ velocity Equivocal 129

Splenic sequestration/function Reduces risk 130

Cholelithiasis Reduces risk 131,132

Renal function/albuminuria/glomerular hyperfiltration Reduces risk 106,133-135

Retinopathy Possibly reduces capillary occlusion 136

(Modified from 5 with additional references)
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Table 3

Candidate genes associated with subphenotypes of sickle cell anemia.

Disease Sub-phenotype Genes involved and effect References

Survival Multiple including TGFBR3 137

Stroke, silent infarction, TCD velocity Multiple gene identified, VCAM1, ILR4, ADBR2, HLA, LDLR, but 
few have been validated (see text)

73,74,138,139

Painful episodes GCH1-results reported in abstract only. Biologically plausible.
MBL2-in children, low expression associated with increased pain

70,140-142

Acute chest syndrome Many genes have been “identified” but no study has been 
validated.

69,94,143,144

Bacteremia/Infection MBL2-contradictory evidence in different populations that that low 
level protective.
Other genes include CCL5, various HLA alleles, IGF1R, TGF-β/
SMAD/BMP pathway

113,145,146

Osteonecrosis Little evidence for MTHFR; BMP6-results validated in 2 different 
populations

94,147-149

Priapism KL, TEK, TGFBR3, AQP1 150-152

Leg ulcers TGF-β/SMAD/BMP pathway, KL, possibly HLA alleles 91,152,153

Sickle vasculopathy/TRJ velocity BMP6, TGFBR3, ACVR1, BMP2 154

Cholelithiasis Promoter repeats in UGT1A1 associated with serum bilirubin 155,156

Renal function/albuminuria/glomerular hyperfiltration DARC FY- associated with proteinuria, TGF-β/Smad/BMP 
pathway, MYH9, APOL1

157-159

Multiple subphenotypes Duffy antigen receptor (DARC) No relationship to leg ulcers, 
nephropathy, priapism, osteonecrosis, response to opioids

160,161
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