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Abbreviations

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

Cx Connexin

GJIC Gap junctional intercellular communication

IP3 Inositol triphosphate

NAD Nicotinamide dinucleotide

Panx Pannexin

UTP Uridine triphosphate

Homeostasis relies on the intimate interplay between

extracellular, intracellular and intercellular signaling net-

works. Direct communication between adjacent cells is

mediated by gap junctions [1–3]. They allow the intercel-

lular diffusion of small (i.e. less than 1 kDa) and

hydrophilic substances, including adenosine triphosphate

(ATP), cyclic adenosine monophosphate, inositol triphos-

phate, glucose, glutathione, glutamate and several ions, like

sodium, calcium and potassium (Fig. 1) [4]. This flux is

called gap junctional intercellular communication (GJIC)

and is considered as a basic mechanism in the maintenance

of tissue functioning [1–3]. Over the last decades, GJIC has

been shown indispensable for the establishment of

metabolic or electrical intercellular coupling in all vital

organs, such as the brain [5], the heart [6] and the liver [7],

to name a few.

Gap junctions arise from the head-to-head interaction of

two hemichannels of neighboring cells, which in turn are

composed of six connexin proteins. Today, more than 20

different connexins have been identified in humans and

rodents, all of which are expressed in a cell-specific way [1,

8]. They are named based upon their molecular weight as

predicted by cDNA sequencing. Thus, the most widespread

connexin species has a molecular mass of 43 kDa and

therefore is designated Cx43. Another connexin nomen-

clature system used in parallel is based upon genetic

similarity, with alpha, beta, gamma, delta and epsilon

groups, and order of discovery. According to this alterna-

tive system, Cx43 is called GJA1, whereby prefix GJ stands

for gap junction [1, 9]. Despite the multitude of connexins

presently identified, these proteins share a common

molecular structure consisting of four transmembrane

domains, two extracellular loops, one cytosolic loop, one

cytosolic aminotail and one cytosolic carboxytail. Differ-

ences between connexin family members are mainly due to

variations in the intracellular areas (Fig. 1) [1, 2].

GJIC is regulated by a plethora of mechanisms [10].

Long-term control hereby typically implies regulation of

connexin gene expression. Both ubiquitous and tissue-

specific transcription factors are in charge of the tran-

scription of connexin genes [9]. Furthermore, epigenetic

mechanisms, including histone acetylation, DNA methy-

lation and microRNA-related control, are major

determinants of connexin production at the most upstream

regulatory level [9, 11]. Short-term control of GJIC, so-

called gating, is driven by a number of factors, including

transmembrane voltage, pH and calcium ions. Of all gating
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mechanisms, connexin phosphorylation, mainly occurring

at the cytoplasmic carboxyterminal region, has gained most

attention. All connexins are phosphoproteins, with the

notable exception of Cx26. However, the regulation of

GJIC by connexin phosphorylation is quite complex, as the

outcome of this posttranslational modification, such as

effects on gap junction activity or degradation, depends on

several parameters, namely the type of connexin, the

identity of the kinase and the cellular context [10, 12].

Although considered as merely structural precursors of

gap junctions for a long time, an abundance of reports

published in the last few years show that connexin

hemichannels as such can provide a pathway for cellular

communication, albeit between the cytosol of individual

cells and their extracellular environment, and not between

adjacent cells as is the case for GJIC. The messengers that

are conveyed through connexin hemichannels are very

similar to those involved in GJIC, including ATP, nicoti-

namide dinucleotide, glutamate, glutathione,

prostaglandine, sodium and calcium ions (Fig. 1) [2, 8, 13].

Furthermore, connexin hemichannels are regulated by

mechanisms that equally affect gap junctions.

Nevertheless, an identical factor can have opposing effects

on the two channels types, such as shown for certain

inflammatory triggers [14, 15]. In line with this notion,

connexin hemichannels, unlike their full channel counter-

parts, display a low open probability. In fact, connexin

hemichannels seem to be preferably activated by patho-

logical stimuli, including ischemia/reperfusion insults and

oxidative stress, and thereby drive processes like cell death

and inflammation [2, 8, 13]. Nonetheless, compelling evi-

dence also shows physiological functions for connexin

hemichannels, including in cell cycle progression [16],

cochlear homeostasis [17], bone remodeling [18] and car-

bon dioxide sensing [19].

In 2000, a new set of connexin-like proteins was first

described, namely the so-called pannexins [20]. Thus far,

three pannexins have been identified in humans and

rodents, called Panx1, Panx2 and Panx3. Their molecular

architecture closely resembles that of connexins, yet pan-

nexins have longer extracellular loops and carboxyterminal

tails compared to connexins. As a matter of fact, the

deviating composition of the extracellular loops is thought

to underlie the observation that pannexins gather in a

gap junc�on

connexin hemichannel

connexin pannexin

pannexin channel

ATP, NAD, glutamate, glutathione, 
prostaglandine, Na+, Ca2+

ATP, UTP, glucose,
Ca2+, K+

ATP, cAMP, IP3, glucose, glutathione, 
glutamate, Na+, Ca2+, K+

Fig. 1 Structure and function of connexin-based and pannexin-based

channels. Connexins form hemichannels that convey adenosine

triphosphate (ATP), nicotinamide dinucleotide (NAD), glutamate,

glutathione, prostaglandine, sodium and calcium ions between the

cytosol and the extracellular environment. Similarly, pannexin

channels provide a pathway for extracellular communication by

controlling the flux of ATP, uridine triphosphate (UTP), glucose,

calcium and potassium ions. Connexin hemichannels of adjacent cells

can interact to form gap junctions, which control intercellular

communication by mediating the exchange of ATP, cyclic adenosine

monophosphate (cAMP), inositol triphosphate (IP3), glucose, glu-

tathione, glutamate, sodium, potassium and calcium ions. Connexins

and pannexins share a similar structure consisting of four transmem-

brane domains, two extracellular loops, one cytosolic loop, one

cytosolic aminotail and one cytosolic carboxytail. In comparison with

connexins, pannexins have longer extracellular loops and cytosolic

carboxytail
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channel configuration reminiscent of connexin hemichan-

nels, which do not dock with each other to form gap

junctions [12, 21, 22]. Hence, ‘pannexin channels’ may be

a more appropriate designation than ‘pannexin hemichan-

nels’. Like connexin hemichannels, pannexin channels

mediate the trafficking of a number of mediators between

the intracellular and extracellular compartments, such as

ATP, uridine triphosphate, glucose, calcium and potassium

ions (Fig. 1) [23]. Clear-cut functions for Panx1 channels

have now be defined in innate immunity by acting on

inflammasomes [24, 25]. Other documented roles for

pannexin channels relate to their capacity to control

extracellular ATP release, an event critical for the devel-

opment of a variety of cell types, such as keratinocytes

[26], erythrocytes [27] and chondrocytes [28]. Pannexin

channels are regulated by posttranslational modifications,

among which glycosylation is the most prominent one [12,

29].

The connexin and pannexin research field has been

surrounded by a lot of controversy in the last few years. In

particular, the concept of functional connexin hemichan-

nels has been debated heavily on several occasions [30,

31]. A major reason for this impediment is the lack of tools

and technologies to distinguish between the different

channel types, in casu between gap junctions and connexin

hemichannels on the one hand, and between connexin-

based and pannexin-based channels on the other hand [32,

33]. It should be noted that this hurdle is currently being

tackled, as the first reports describing specific connexin

hemichannel inhibitors that do not close the other channel

types have recently been published [34, 35]. However, the

picture is even more complicated by several studies

showing nonchannel functions of connexins and pannexins.

In this context, connexins, and to a lesser extent pannexins,

are able to affect tissue homeostasis by mechanisms that do

not relate to their channel-forming activities, such as by

physically interacting with regulators of the cellular life

cycle [36, 37].

This multi-author review edition of Cellular and

Molecular Life Sciences entitled ‘Connexin and pannexin

signaling in organ functionality’ focuses on the roles of

connexins and pannexins in the maintenance of home-

ostasis. In particular, state-of-the-art overviews are

provided on the multifaceted signaling capacities of con-

nexins, pannexins and their channels in organ physiology

for the most important organ systems, including the car-

diovascular system, the respiratory system, the digestive

system, the nervous system, the skeletal system, the

excretory system, the reproductive system, the immune

system, the endocrine system, the muscle system and the

integumentary system. These cutting-edge overview papers

are intended to encourage in-depth examination of the

diverse signaling roles of connexins and pannexins in organ

physiology as well as thorough exploration of their trans-

lational and clinical value in the upcoming years.
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