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Abstract

N -Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; ‘Ecstasy’; 1) and its β-keto 

analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-

expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-

aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to 

examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine 

(NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in 

potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold 

more potent than its R(−) enantiomer at SERT, DAT, and NET, respectively. Overall, in the 

absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better 

accommodated at SERT than at DAT and NET.

1. Introduction

The phenylalkylamine N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (1; Figure 1), 

a compound commonly known as MDMA, “Ecstasy” or “Molly”, is a popular “recreational 

drug” and a U.S. Schedule I controlled substance. Its pharmacology and mechanism of 

action have been extensively investigated [1–4]. For example, MDMA (1) is considered an 

“empathogen” to distinguish its subjective effects in humans from those of classical 

phenylalkylamine hallucinogens and phenylalkylamine central stimulants [5] – even though 
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MDMA, and its individual optical isomers, display some degree of stimulant character [e.g. 

6]. MDMA’s actions are associated with its non-selective neurotransmitter releasing effects 

at the membrane transporters for 5-HT, dopamine, and norepinephrine (i.e., SERT, DAT, 

and NET, respectively) [7,8]. Accordingly, pretreatment with medications that block the 

transmitter-releasing effects of MDMA at SERT, DAT, and NET can significantly reduce 

the subjective and cardiovascular actions of MDMA (1) in human subjects under controlled 

laboratory conditions [9,10].

The methylenedioxy substituent of MDMA (1) is common to a number of other 

“clandestine” and U.S. Schedule I phenylalkylamine substances, including certain “bath 

salts” constituents or synthetic cathinones [4,11,12]. One of the better recognized of the 

original bath salts constituents is the β-keto analog of MDMA (i.e., MDMC, methylone, bk-

MDMA; 2) (Figure 1) [13]. MDMC (2) produces MDMA-like neurochemical and 

behavioral effects in rodents and acts as a neurotransmitter releaser at the three transporters 

mentioned above [14,15]. Despite the scheduling of MDMC (2) to ban its sale and use in the 

U.S., the drug continues to be confiscated by law enforcement personnel, often in tablets 

being sold as Ecstasy [16].

Expansion of the methylenedioxy ring of MDMA (1) and MDMC (2) to their larger 

ethylenedioxy (i.e., 1,4-dioxane) homologs affords N-methyl-1-(3,4-

ethylenedioxyphenyl)-2-aminopropane (i.e., 3,4-ethylenedioxymethamphetamine, EDMA; 

3) and 3,4-ethylenedioxymethcathinone (EDMC; 4) (Figure 1). Relatively little is known 

about the pharmacology of EDMA (3) and its individual optical isomers have not been 

reported. Likewise, EDMC (4) has not been previously investigated.

Given the growing interest in phenylalkylamine analogs as potential drugs of abuse 

[reviewed 11,12,17], the Drug Enforcement Administration (DEA) has solicited information 

on phenylalkylamines that are not yet controlled as Schedule I substances [18]. Specifically 

listed among these agents are some ethylenedioxy analogs, including EDMA (3). Hence, we 

prepared and examined EDMA (3), its individual optical isomers, and its β-keto (or 

methcathinone) analog 4, for comparison with MDMA (1) and MDMC (2), to function as 

substrates (i.e., as releasers) at SERT, DAT, and NET.

2. Chemistry

Compounds (±)1 and (±)2 as their hydrochloride (HCl) salts were on hand from previous 

studies in our laboratory. Compound (±)3 was synthesized from 1-(3,4-

ethylenedioxyphenyl)-2-aminopropane hydrochloride [19], by converting it into its 

carbamate analog followed by reduction using LiAlH4. Compound (±)4 was synthesized by 

a nucleophilic substitution reaction using 1-(3,4-ethylenedioxyphenyl)-2-bromo-1-

propanone [20] and N-methylamine. Both of these reaction sequences are shown in the 

Supporting Information section.

Compounds S(+)3 and R(−)3 were prepared as shown in Scheme 1; this is similar to a 

literature procedure reported for related phenylalkylamine optical isomers [21]. Reduction of 

nitroalkene 5 [19] with iron powder followed by heating an aqueous mixture gave the 
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intermediate ketone 6. The crucial step for this synthesis was the reductive amination using 

either S(−)- or R(+)-α-methylbenzylamine and sodium triacetoxyborohydride; this reaction 

selectively afforded S,S(−)7 and R,R(+)7, whose hydrogenation at 50 p.s.i. using 10% Pd/C 

as catalyst led to the enantiomers S(+)8 and R(−)8, respectively. Acylation with di-tert-butyl 

dicarbonate to the N-Boc intermediates S(−)9 and R(+)9, followed by reduction with LiAlH4 

afforded the desired enantiomers S(+)3 and R(−)3, respectively.

The enantiomeric purity of the isomers of 3, determined by 1H NMR spectrometry in the 

presence of the chiral shift reagent S(+)-2,2,2-trifluoro-1-(9-anthryl)ethanol, was found to be 

>98% (detection limit) for both enantiomers. In fact, the 1H NMR spectrum of the racemate 

[i.e., (±)3] showed two singlets: one at δ 4.27 and another at δ 4.24 for the methylene 

protons of the benzodioxane nucleus, whereas only one singlet was observed for S(+)3 and 

R(−)3 at δ 4.27 and δ 4.24, respectively.

The S absolute configuration of the enantiomer (+)3, suggested by analogy to earlier studies 

[20], was also determined by comparing the sign of its optical rotation with that of S(+)3 
obtained by stereoselective synthesis starting from the known S(+)1-(3,4-

dihydroxyphenyl)-2-propanamine [S(+)10] [22], as shown in Scheme 2. After protecting the 

amine function with a Boc group, affording S(−)11, treatment with 1,2-dibromoethane 

furnished the 1,4-benzodioxane derivative S(−)9, whose reduction with LiAlH4 gave the 

desired enantiomer S(+)3.

3. Results and Discussion

The potency of (±)EDMA (3) to release [3H]5-HT (EC50 = 117 nM) at SERT was 

approximately six times and three times greater than its potency to release [3H]MPP+ at 

DAT and NET (EC50 = 597 and 325 nM, respectively; Table 1). By contrast (±)MDMA (1), 

investigated as a comparator compound, was nearly equipotent as a releaser at all three 

neurotransmitter transporters (Table 1). The present findings with MDMA are consistent 

with our previous data [15,17] and those reported by Simmler et al. [4] and Eshleman et al. 

[23] who examined the effects of MDMA and related drugs in human embryonic kidney 

(HEK) cells transfected with human SERT, DAT and NET. Thus, the molecular mechanism 

of action for MDMA at monoamine transporters is similar in rats and humans. On the other 

hand, the potency of (±)MDMA for releasing monoamines in rat brain synaptosomes shown 

here (i.e., 60–70 nM) is greater than its potency in transfected HEK cells (i.e., 1–20 μM). 

Such discrepancies in absolute potency could be related to species differences in drug 

responsiveness, differences in release assay methods employed, or the absence of important 

neuronal membrane proteins in non-neuronal HEK cells.

The data depicted in Table 1 and Figure 2 demonstrate that (±)EDMA (3) exhibited 

approximately half the potency of (±)MDMA (1) as a releaser at SERT, but was 8-fold and 

4.5-fold less potent as a releaser at DAT and NET, respectively. Thus, (±)EDMA (3) was 

slightly more selective for SERT over DAT and NET.

As shown in Figure 2, the S(+) isomer of EDMA [S(+3)] was the more potent of the two 

optical isomers, being about 6-fold, 50-fold, and 8-fold more potent than its R-enantiomer at 
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SERT, DAT, and NET, respectively. It has been reported previously that S(+)MDMA is 

more potent than R(−)MDMA at all three transporters, so the present data with EDMA 

support the general concept that the S-isomers of ring-substituted phenylalkylamines (i.e., 

amphetamine-related compounds) are more potent than their R-enantiomers as releasing 

agents [8]. Interestingly, R(−)EDMA was more SERT-selective when compared to its S(+)-

isomer.

(±)EDMC (4) was capable of releasing [3H]substrate at SERT, DAT, and NET (EC50 = 347, 

496, and 327 nM, respectively; Table 1). Unlike what was seen with (±)EDMA (3), 

(±)EDMC (4) displayed no transporter selectivity. Comparing the potencies of (±)EDMC (4) 

with those of (±)MDMC (2), the former was slightly less potent at each of the three 

transporters.

4. Conclusions

For the compounds examined, ring-expansion from a methylenedioxy group to an 

ethylenedioxy group resulted in a modest (<8-fold) decrease in release potency at SERT, 

DAT, and NET in the absence of the benzylic carbonyl group (i.e., comparing 1 with 3), and 

even less (about 2-fold) in its presence (i.e., comparing 2 with 4). Overall, the ethylenedioxy 

group appears to be better accommodated at SERT than at DAT or NET. The latter finding 

is consistent with a previous finding that SERT accepts larger substituents in this general 

position than DAT [24,25]. In the absence of the carbonyl group (i.e., 3), ring-expansion 

seems better tolerated at SERT than at DAT and NET, and the S(+) isomer of 3 is more 

potent than its R(−) enantiomer at all three transporters.

If the behavioral actions of EDMA (3) are related to its actions at SERT, DAT, and NET, it 

might be expected that its effects would be similar to MDMA (1), but that it would be less 

potent. Racemic MDMA is behaviorally active at a total human dose of 80–150 mg p.o. 

[26], and limited data indicate that racemic EDMA fails to produce similar effects in humans 

at 200 mg, and only a “threshold” effect at 250 mg [26].

Given the data presented here, future studies are warranted to compare the potencies of 

EDMA and EDMC to their methylenedioxy homologs in animal models of addiction and 

neurotoxicity.

5. Experimental

5.1. Chemistry

All commercially available reagents and solvents were purchased from Sigma-Aldrich Co. 

(St. Louis, MO) and Platte Valley Scientific Product List (Gothenburg, NE), and used as 

delivered. Melting points were measured in glass capillary tubes (Thomas-Hoover melting 

point apparatus) and are uncorrected. 1H NMR spectra were recorded with a Bruker 400 

MHz spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to 

tetramethylsilane as internal standard. Optical rotations were measured using a Jasco 

DIP-1000 polarimeter. Reactions and product mixtures were routinely monitored by thin-

layer chromatography (TLC) on silica gel precoated F254 Merck plates. Elemental analysis 
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for C, H, and N was performed by Atlantic Microlabs (Norcross, GA) and determined values 

were within 0.4% of theory.

5.1.1. (±)-1-(3,4-Ethylenedioxyphenyl)-N-methyl-2-aminopropane 
hydrochloride [(±)3]—Triethylamine in anhydrous Et2O (0.4 mL) and ethyl 

chloroformate (0.14 mL) in anhydrous Et2O (1 mL) were added to a suspension of 1-(3,4-

ethylenedioxyphenyl)-2-aminopropane hydrochloride [19] (0.35 g) in anhydrous Et2O (10 

mL) and stirred at room temperature under an N2 atmosphere for 1 h. Reaction mixture was 

filtered and solvent removed under reduced pressure to afford the corresponding carbamate 

as a yellow oil (0.3 g, 79%); IR (Diamond, cm−1) 3066 (NH), 1754 (N-CO-O-), 1577 (CH2 

CH2O). A solution of the above carbamate (0.30 g, 1.13 mmol) in anhydrous THF (12 mL) 

was added in a dropwise manner at 0 °C to a stirred suspension of LiAlH4 (0.13 g, 3.40 

mmol) in anhydrous THF (12 mL). The reaction mixture was heated at reflux under an N2 

atmosphere for 3 h, and then cooled at 0 °C and quenched by the dropwise addition of Et2O 

(50 mL), H2O (3 mL) and 15% NaOH (0.5 mL). The white precipitate was removed by 

filtration and the filtrate was dried (Na2SO4). The solvent was evaporated under reduced 

pressure to give a yellow oily residue that was dissolved in absolute EtOH (5 mL) and 

converted to the hydrochloride salt by the addition of saturated solution of HCl/Et2O. The 

precipitate was collected by filtration and recrystallized from iPrOH to afford 0.03 g (11%) 

of the product as a white solid: mp 150 – 151°C; 1H NMR (DMSO-d6) δ 1.25 (d, 3H, CH3), 

2.54 (s, 3H, CH3), 2.52–2.58 (m, 1H, CH), 3.08–3.13 (m, 1H CH), 3.26–3.30 (m, 1H, CH), 

4.22 (s, 4H, CH2), 6.66 (dd, J = 8.2, 1.9 Hz, 1H, ArH), 6.74 (d, J = 1.9 Hz, 1H, ArH), 6.80 

(d, J = 8.2 Hz, 1H, ArH), 7.86 (s, 3H, NH3
+). Anal. calcd for (C12H17NO2 x HCl) C, 59.14; 

H, 7.44; N, 5.74. Found: C, 58.91; H, 7.42; N, 5.53.

5.1.2. S(+)1-(3,4-Ethylenedioxyphenyl)-N-methyl-2-aminopropane 
hydrochloride [S(+)3]—A solution of S(−)9 (0.05 g, 0.17 mmol) in dry THF (2 mL) was 

added in a dropwise manner at 0 ° C to a stirred suspension of LiAlH4 (0.02 g, 0.52 mmol) 

in dry THF (5 mL). The mixture was heated at reflux under an N2 atmosphere for 4 h, 

allowed to cool, and EtOAc (5 mL) was added, followed by the addition of aqueous 20% 

NaOH (0.5 mL). The white precipitate was removed by filtration and the residue was 

washed with EtOAc (3 × 5 mL). The combined organic portion was dried (Na2SO4) and the 

solvent was evaporated under reduced pressure to give a yellow oil (0.03 g, 84%), which 

was converted to the hydrochloride salt in anhydrous Et2O by addition of HCl-saturated 

anhydrous Et2O. The precipitate was collected by filtration and recrystallized from 

iPrOH/Et2O to give S(+)3 as white crystals (72% yield); mp 192–194 ° C; [α]25
D = +14.5° 

(c 0.5, H2O); 1H NMR (CDCl3) δ 1.34 (d, 3H, CH3), 2.71 (s, 3H, CH3) 2.74 (dd, 1H, CH2), 

3.25 (dd, 1H, CH2), 3.36 (m, 1H, CH), 4.25 (s, 4H, CH2O), 6.68–6.79 (m, 3H, ArH), 9.62 

(bs, 2H, NH2
+). Anal. calcd for (C12H17NO2 x HCl) C, 59.14; H, 7.44; N, 5.74. Found: C, 

58.97; H, 7.41; N, 5.72.

5.1.3. R(−)1-(3,4-Ethylenedioxyphenyl)-N-methyl-2-aminopropane 
hydrochloride [R(−)3]—The compound was prepared from R(−)9 in the same manner as 

S(+)3: 67% yield; [α]25
D = −14.2° (c 0.5, H2O). The 1H NMR spectrum was identical to that 
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of S(+)3. Anal. calcd for (C12H17NO2 x HCl) C, 59.14; H, 7.44; N, 5.74. Found: C, 58.96; 

H, 7.46; N, 5.66.

5.1.4. (±)-1-(3,4-Ethylenedioxyphenyl)-2-(methylamino)-1-propanone hydro- 
chloride [(±)4]—Methylamine in EtOH (0.60 mL, 13.08 mmol) was added to a stirred 

solution of 1-(3,4-ethylenedioxyphenyl)-2-bromopropanone [20] (0.88 g, 3.27 mmol) in 

anhydrous benzene (12 mL) at room temperature under an N2 atmosphere in a sealed tube. 

The reaction mixture was allowed to stir at room temperature for 36 h, filtered, and the 

solvent was evaporated under reduced pressure. The residue was dissolved in Et2O (25 mL) 

and washed with H2O (3 × 5 mL). The organic portions were combined and acidified with 

2M HCl (10 mL). The aqueous portion was basified with saturated NaHCO3 (25 mL) and 

extracted with Et2O (3 × 10 mL). The combined organic portions were washed with brine (3 

× 5 mL), dried (Na2SO4), and evaporated to dryness under reduced pressure to yield a 

residue (0.15 g) as a free base that was converted to the hydrochloride salt and purified by 

recrystallization to afford 0.04 g (6%) of the product as a buff-colored powder; mp 218–219 

°C, absolute EtOH/Et2O; 1H NMR (DMSO-d6) δ 1.43 (d, 3H, CH3), 2.57 (s, 3H, CH3), 4.33 

(m, 4H, CH2O), 5.07 (m, 1H, CH), 7.05 (d, 1H, ArH), 7.56 (dd, J =5.7, 1.9 Hz, 2H, ArH), 

9.28 (s, 1H, NH+). Anal. calcd for (C12H15NO2 x HCl) C, 55.93; H, 6.26; N, 5.43. Found: 

C, 56.01; H, 6.12; N, 5.33.

5.1.5. 1-(3,4-Ethylenedioxyphenyl)propan-2-one (6)—A solution of 5 [19] (1.40 g, 

6.33 mmol) in glacial AcOH (18 mL) was added in a dropwise manner at room temperature 

to a stirred suspension of Fe powder (4.80 g, 86.40 mmol) in glacial AcOH (18 mL). The 

resulting mixture was heated at reflux for 3 h, and then cooled to room temperature. Excess 

iron was removed by filtration, and the residue was diluted with H2O (50 mL) and extracted 

with DCM (3 × 30 mL). The combined organic portion was washed with aqueous 2N NaOH 

and dried (Na2SO4). Solvent was removed under reduced pressure and the residual oil was 

chromatographed on a silica gel column (Aldrich silica gel 60) using hexanes:EtOAc (9:1) 

as eluent to give 6 as a yellow oil (78% yield); 1H NMR (CDCl3) δ 2.23 (s, 3H, CH3), 3.68 

(s, 2H, CH2), 4.27 (s, 4H, CH2O), 6.68–6.72 (m, 2H, ArH), 6.85 (s, 1H, ArH).

5.1.6. S,S(−)N-(1-Phenylethyl)-1-(3,4-ethylenedioxyphenyl)-2-aminopropane 
hydrochloride [S,S(−)7]—Glacial AcOH (0.22 g, 3.64 mmol) and NaBH(OAc)3 (1.08 g, 

5.10 mmol) were added to a stirred solution of 6 (0.70 g, 3.64 mmol) and S(−)α-

methylbenzylamine (0.44 g, 3.64 mmol) in anhydrous DCE (15 ml). The reaction mixture 

was allowed to stir at room temperature under an N2 atmosphere for 24 h and then basified 

with aqueous 1N NaOH to pH 9. The mixture was extracted with Et2O (3 × 20 mL), the 

combined organic portion was dried (Na2SO4) and solvent was evaporated to give a yellow 

oil that was converted to the hydrochloride salt in anhydrous Et2O by addition of HCl-

saturated anhydrous Et2O. The precipitate was collected by filtration and recrystallized from 

iPrOH to afford S,S(−)7 as white crystals in 50% yield; mp 180–182 °C; [α]25
D = −34.4° (c 

1.0, MeOH); 1H NMR (CDCl3) δ 1.39 (d, 3H, CH3), 1.95 (d, 3H, CH3), 2.73 (dd, 1H, CH2), 

2.95 (m, 1H, CH), 3.27 (dd, 1H, CH2), 4.20 (s, 4H, CH2O), 4.39 (m, 1H, CH), 6.45 (s, 1H, 

ArH), 6.47 (d, 1H, ArH) 6.70 (d, 1H, ArH), 7.47 (m, 3H, ArH), 7.68 (d, 2H, ArH), 9.77 (bs, 

1H, NH2
+), 10.25 (bs, 1H, NH2

+).
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5.1.7. R,R(+)N-(1-Phenylethyl)-1-(3,4-ethylenedioxyphenyl)-2-aminopropane 
hydrochloride [R,R(+)7]—The compound was prepared in the same manner as S,S(−)7 
using R(+)α-methylbenzylamine; [α]25

D = +33.6° (c 1.0, MeOH). The 1H NMR spectrum 

was identical to that of S,S(−)7.

5.1.8. S(+)1-(3,4-Ethylenedioxyphenyl)-2-aminopropane hydrochloride [S(+)8]
—Pd/C catalyst (10%, 0.35 g) was added to a solution of S,S(−)7 (0.58 g, 1,74 mmol) in 

MeOH (30 mL). The reaction mixture was hydrogenated at ca. 50 psi for 40 h and then 

filtered. The solvent was evaporated under reduced pressure and the residue was 

recrystallized from acetone to give S(+)8 as white crystals in 73% yield; mp 166–167 °C; 

[α]25
D = +30.1° (c 0.5, H2O); 1H NMR (CDCl3) δ 1.42 (d, 3H, CH3), 2.79 (dd, 1H, CH2), 

3.10 (dd, 1H, CH2), 3.53 (m, 1H, CH), 4.27 (s, 4H, CH2O), 6.74–6.86 (m, 3H, ArH), 8.43 

(bs, 3H, NH3
+).

5.1.9. S(+)1-(3,4-Ethylenedioxyphenyl)-2-aminopropane hydrochloride [R(−)8]
—The compound was prepared from R,R(+)7 in the same manner as S(+)8; [α]25

D = −30.6° 

(c 0.5, H2O). The 1H NMR spectrum was identical to that of S(+)8.

5.1.10. S(−)1-(3,4-Ethylenedioxyphenyl)propan-2-yl carbamic acid tert-butyl 
ester [S(−)9]—Method 1 (Scheme 1): A solution of S(+)8 (0.15 g, 0.65 mmol) in aqueous 

1N NaOH (15 mL) was extracted with Et2O (3 × 10 mL). The combined organic portion 

was dried (Na2SO4) and the solvent was evaporated to give the free base as a yellow oil 

(0.12 g, 0.62 mmol). Di-tert-butyl dicarbonate (0.14 g, 0.62 mmol) was added to a solution 

of the free base and NEt3 (0.10 mL, 0.62 mmol) in anhydrous DCM (5 mL) at 0 ° C under 

an N2 atmosphere. The reaction mixture was stirred at room temperature for 1 h and then 

quenched with H2O (10 mL). The mixture was extracted with DCM (3 × 10 mL) and the 

combined organic portion was dried (Na2SO4). Solvent was removed under reduced 

pressure and the residual oil was then chromatographed on a silica gel column (Aldrich 

silica gel 60) using hexanes:EtOAc (8:2) as eluent to give S(−)9 as a colorless oil in 83% 

yield.

Method 2 (Scheme 2): 1,2-Dibromoethane (0.04 mL, 0.45 mmol) was added to a stirred 

mixture of S(−)11 (0.10 g, 0.38 mmol), K2CO3 (0.16 g, 1.14 mmol) and dry DMF (5 mL). 

The reaction mixture was allowed to stir at room temperature under an N2 atmosphere for 24 

h. Water (10 mL) was added and the resulting mixture was extracted with EtOAc (3 × 10 

mL). The organic extracts were combined and dried (Na2SO4). Solvent was evaporated 

under reduced pressure and the residual oil was chromatographed on a silica gel column 

(Aldrich silica gel 60) using hexanes:EtOAc (8:2) as eluent to give S(−)9 as a colorless oil in 

45% yield; [α]25
D = −13.3° (c 0.5, CHCl3); 1H NMR (CDCl3) δ 1.09 (d, 3H, CH3), 1.44 (s, 

9H, CH3) 2.56 (dd, 1H, CH2), 2.72 (dd, 1H, CH2), 3.84 (m, 1H, CH), 4.25 (s, 4H, CH2O), 

6.66–6.77 (m, 3H, ArH).

5.1.11. R(+)1-(3,4-Ethylenedioxyphenyl)propan-2-ylcarbamic acid tert-butyl 
ester [R(+)9]—This compound was also prepared from R(−)8 in the same manner 

employed for the preparation of S(−)9 (Scheme 1); [α]25
D = +13.0° (c 0.5, CHCl3). The 1H 

NMR spectrum was identical to that of S(−)9.
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5.1.12. S(−)1-(3,4-Dihydroxyphenyl)-2-ylcarbamic acid tert-butyl ester [S(−)11]
—Sodium methoxide (0.04 g, 0.74 mmol) in dry MeOH (0.5 mL) was added to a stirred 

solution of S(+)10 [21] (0.15 g, 0.61 mmol) and di-tert-butyl dicarbonate (0.15 g, 0.69 

mmol) in MeOH (10 mL). The reaction mixture was allowed to stir at room temperature 

under an N2 atmosphere for 0.5 h. Solvent was evaporated under reduced pressure, and the 

residue was diluted with EtOAc (20 mL). The inorganic salt was removed by filtration and 

solvent was removed under reduced pressure. The residual oil was chromatographed on a 

silica gel column (Aldrich silica gel 60) using hexanes:EtOAc (7:3) as eluent to give S(−)11 
as a colorless oil in 62% yield; [α]25

D = −3.0° (c 1.0, CHCl3); 1H NMR (CDCl3) δ 1.08 (d, 

3H, CH3), 1.44 (s, 9H, CH3) 2.54 (dd, 1H, CH2), 2.65 (dd, 1H, CH2), 3.82 (m, 1H, CH), 

6.58 (dd, 1H, ArH), 6.77 (m, 2H, ArH).

5.2 In Vitro Release Assays

Subjects—Male Sprague-Dawley rats (Charles River, Wilmington, MA, USA) weighing 

250–350 g were housed three per cage with free access to food and water and maintained on 

a 12 h light/dark cycle with lights on from 7:00 a.m. to 7:00 p.m. Animal facilities were 

accredited by the Association for the Assessment and Accreditation of Laboratory Animal 

Care, and procedures were carried out in accordance with the Institutional Animal Care and 

Use Committee and the National Institutes of Health guidelines on care and use of animal 

subjects in research (National Research Council, 2011).

Procedure—Rats were euthanized by CO2 narcosis, and brains were processed to yield 

synaptosomes as previously described [27]. Whole brain minus caudate and cerebellum was 

used to prepare synaptosomes for SERT and NET assays, whereas caudate was used for 

DAT assays. One whole brain minus caudate and cerebellum (for SERT and NET assays) or 

one pair of caudates (for DAT assays) was diluted in 10 mL of ice-cold 10% sucrose 

containing 1 μM reserpine. Tissue was homogenized using a Potter-Elvehjem homogenizer, 

centrifuged at 1000 g for 10 min at 4 °C, and supernatants (i.e., synaptosomal preparations) 

were retained on ice. Supernatants were diluted with sucrose solution to yield protein 

concentrations of 900 μg/mL for SERT and NET assays and 90 μg/mL for DAT assays. In 

the release procedure, 5 nM [3H]5-HT was used as a radioligand substrate for SERT 

whereas 9 nM [3H]-1-methyl-4-phenylpyridinium ([3H]MPP+) was used as the radiolabeled 

substrate for NET and DAT. All buffers used in the release assay methods contained 1 μM 

reserpine to block vesicular uptake of substrates. The selectivity of release assays was 

optimized for a single transporter by including unlabeled blockers to prevent the uptake of 

[3H]5-HT or [3H]MPP+ by competing transporters. Synaptosomes were preloaded with 

radiolabeled substrate in Krebs-phosphate buffer for 1 h (steady state). Release assays were 

initiated by adding 850 μL of preloaded synaptosomes to 150 μL of test drug. Eight point 

dilution curves, with doses ranging from 10 to 10,000 nM, were performed in triplicate on 

three separate occasions for each test drug. Release was terminated by vacuum filtration, and 

retained radioactivity was quantified by liquid scintillation counting. The specific counts per 

minute (cpm) for each assay (i.e., total cpm – nonspecififc cpm) were 7000, 1700, and 2500 

for SERT, NET, and DAT, respectively.
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Data Analysis—Statistical analyses were carried out using GraphPad Prism (v. 6.0; 

GraphPad Scientific, San Diego, CA, USA). EC50 values and corresponding SDs for 

stimulation of release were calculated based on non-linear regression analysis. Efficacy for 

test compounds was expressed as a percentage of maximal release (i.e., % Emax), which was 

defined as the release produced by 100 μM tyramine for SERT and 10 μM tyramine for 

DAT and NET. These concentrations of tyramine induce the efflux of all ‘releasable’ tritium 

from synaptosomes under the assay conditions described.

Reagents—[3H]5-HT (specific activity = 30 Ci mmol−1) was purchased from Perkin 

Elmer (Shelton, CT, USA). [3H]MPP+ (specific activity = 85 Ci mmol−1) was purchased 

from American Radiolabeled Chemicals (St. Louis, MO, USA). All other chemicals and 

reagents were acquired from Sigma-Aldrich (St. Louis, MO, USA).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of MDMA (1), MDMC (2), and their ethylenedioxy counterparts EDMA (3) and 

EDMC (4).
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Figure 2. 
Effects of (±)EDMA and its isomers on the release of [3H]5-HT at SERT and [3H]MMP+ at 

DAT and NET. Data are % of maximal release expressed as mean ± SD for n = 3–4 separate 

experiments performed in triplicate. (±)MDMA is included as a references compound.
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Scheme 1. 
Reagents and conditions: (a) (i) Fe, AcOH, rt (ii) reflux (iii) H2O; (b) S-(−)-α-

methylbenzylamine, NaBH(OAc)3, DCE, rt; (c) R-(+)-α-methylbenzylamine, NaBH(OAc)3, 

DCE, rt; (d) H2, 10% Pd/C, 50 psi; (e) (BOC)2O, Et3N, DCM, rt; (f) (i) LiAlH4, THF, 0 °C 

(ii) reflux (iii) HCl/Et2O.
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Scheme 2. 
Reagents and conditions: (a) (BOC)2O, MeO−Na+, rt; (b) BrCH2CH2Br, K2CO3, DMF, rt; 

(c) (i) LiAlH4, THF, 0 °C (ii) reflux (iii) HCl/Et2O.
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Table 1

EC50 values for test agents to release [3H]5-HT at SERT, and [3H]MPP+ at DAT and NET.

EC50, nM (± SD)a

SERT DAT NET

(±)EDMA (3) 117 (± 17) [102± 3] 597 (± 50) [108± 3] 325 (± 61) [91± 2]

 S(+)EDMA [(S)3] 91 (± 20) [96± 5] 276 (± 28) [103± 2] 239 (± 37) [94± 3]

 R(−)EDMA [(R)3] 573 (± 108) [97± 5] 14,600 (± 2850) [106± 10] 1,952 (± 356) [85± 4]

(±)MDMA (1) 61 (± 9) [98± 2] 75 (± 5) [99± 1] 72 (± 13) [95± 3]

(±)EDMC (4) 347 (± 38) [105± 3] 496 (± 52) [105± 4] 327 (± 54) [84± 4]

(±)MDMC (2)b 242 (± 48) 133 (± 11) 152 (± 33)

a
EC50 values are mean (±SD) for n = 3–4 experiments performed in triplicate; efficacy values [in brackets] are % maximal release expressed as 

mean (±SD) as described in Methods.

b
EC50 values for MDMC (2) were reported earlier [15] and are included for comparison with EDMC (4).
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