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Summary

A dose-schedule-finding trial is a new type of oncology trial in which investigators aim to find a 

combination of dose and treatment schedule that has a large probability of efficacy yet a relatively 

small probability of toxicity. We demonstrate that a major difference between traditional dose-

finding and dose-schedule-finding trials is that while the toxicity probabilities follow a simple 

nondecreasing order in dose-finding trials, those of dose-schedule-finding trials may adhere to a 

matrix order. We show that the success of a dose-schedule-finding method requires careful 

statistical modeling and a sensible dose-schedule allocation scheme. We propose a Bayesian 

hierarchical model that jointly models the unordered probabilities of toxicity and efficacy, and 

apply a Bayesian isotonic transformation to the posterior samples of the toxicity probabilities, so 

that the transformed posterior samples adhere to the matrix order constraints. Based on the joint 

posterior distribution of the order-constrained toxicity probabilities and the unordered efficacy 

probabilities, we develop a dose-schedule-finding algorithm that sequentially allocates patients to 

the best dose-schedule combination under certain criteria. We illustrate our methodology through 

its application to a clinical trial in leukemia, and compare it to two alternative approaches.

Keywords

Bayesian adaptive design; Efficacy; Matrix order; Minimum lower sets algorithm; Partial order; 
Toxicity

1 Introduction

In oncology, treatments are often administered under different schedules. For example, a 

patient in a certain oncology trial (further discussed in Section 5) is administered one of 

multiple doses of a kinase inhibitor under one of two schedules. The time over which 
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toxicity will be assessed lasts 42 days for both schedules. In schedule 1, the kinase inhibitor 

is given to patients as a continuous 5-day treatment regimen with two days of rest per 7-day 

cycle for six cycles. In schedule 2, it is given as a continuous 15-day treatment regimen with 

six days of rest per 21-day cycle for two cycles. The total amount of the drug administered 

during the toxicity assessment window at any given dose is the same between schedules. 

While it may not always be true that the toxicity rate increases with schedule, in this trial 

schedule 2 is considered more toxic than schedule 1 due to the known pharmacokinetics of 

the drug. As the investigators’ goal is to find a desirable dose-schedule combination of 

tolerable toxicity and high efficacy, we call trials of this type dose-schedule-finding trials. 

Investigators at M. D. Anderson Cancer Center initiated at least one such trial per month 

during the period of October 2005 to September 2006.

There is a rich body of statistical literature on dose-finding methodologies accounting for 

toxicity and efficacy [1–5]; however, all of these studies have assumed that the schedule is 

fixed. Braun et al. [6,7] proposed innovative designs for finding the maximum tolerated 

schedule, in which schedule finding corresponds to optimizing the total number of treatment 

cycles given. In contrast, the schedule finding we consider attempts to determine if one 

method of treatment administration is better than an alternative method of treatment 

administration. To our knowledge, comparing and selecting doses under qualitatively 

different schedules remains an important open problem.

For ease of exposition, we focus on a two-schedule dose-finding design, although our 

method can be easily adapted to trials with multiple schedules. Specifically, suppose D 

doses and two different schedules are under consideration, resulting in D × 2 dose-schedule 

combinations.

The toxicity probabilities are assumed to follow an order constraint both within and between 

schedules. Specifically, we assume that toxicity increases with an increasing dose given the 

same schedule, and that for a given dose, toxicity increases with schedule. Based on these 

assumptions, the toxicity probabilities follow a matrix order [8]. Denoting pjk as the 

probability of toxicity for dose j under schedule k, we have under the matrix order 

constraints that pjk ≤ pj+1,k, j = 1, …, D − 1, k = 1, 2, and pj1 ≤ pj2, j = 1, …, D, or 

equivalently, pj1 ≤ pj+1,1 ≤ pj+1,2 and pj1 ≤ pj2 ≤ pj+1,2. Note that the order between pj+1,1 and 

pj2 is not specified, leading to a partial order among (pj1, pj+1,1, pj2, pj+1,2).

The main challenge in dose-schedule finding is to model the matrix-ordered toxicity 

probabilities. Because of the matrix ordering constraints, it is not possible to combine the 

two sets of dose-schedule combinations into one completely ordered set. One intuitive way 

to model the order-constrained toxicity probabilities is to write logit(pjk) = μ+αj +βk, where 

αj and βk are constrained a priori so that αj ≤ αj+1 for j = 1, …, D − 1 and β1 ≤ β2, thus 

constraining the probability of toxicity to increase in both dose and schedule. Although this 

logit model has fewer parameters, it imposes an assumption that the effects of dose and 

schedule on the toxicity rate are additive. Furthermore, usual order-constrained priors for αj 

and βk may lead to biased posterior estimates in the small sample context [9]. Nontrivial 

calibration of this type of priors is usually required in an attempt to mitigate this bias.

Li et al. Page 2

Stat Med. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assuming nondecreasing dose toxicity probabilities, Stylianou et al. [10] have used isotonic 

regression to calculate all the toxicity probabilities to facilitate locating the target dose 

following a phase I trial. To further calculate the distribution of the estimated toxicity 

probability at the recommended dose, they proposed a bootstrap method. While their 

bootstrap method may perform well in estimating the distribution of the estimated toxicity 

probability at the target dose, computational constraints limit its use in repeated calculation 

of the distributions of the estimated toxicity probabilities at multiple dose-schedule 

combinations at every assessment point of a dose-schedule-finding trial.

A related problem to dose-schedule finding is dose finding for ordered groups [11–13]. 

While these two problems involve the same issue of modeling matrix-ordered toxicity 

probabilities, a phase I/II dose-schedule-finding design has two important distinctions from 

a dose-finding design for ordered groups. First, the goal of a dose-schedule-finding trial is to 

recommend a desirable dose-schedule combination with high efficacy and low toxicity, 

while that of a dose-finding trial with ordered groups is to identify a desirable dose within 

each group. Consequently, different decision rules are required. Second, our method 

simultaneously monitors toxicity and efficacy outcomes while [11–13] model toxicity 

outcomes alone.

Our proposed design consists of three elements: a bivariate binary model, a Bayesian 

isotonic transformation (BIT) with respect to matrix ordering, and a dose-schedule-finding 

algorithm. Specifically, to estimate the joint posterior distribution of the matrix-ordered 

toxicity probabilities and the unordered efficacy probabilities, we first implement the global 

cross-ratio model [14] for the unordered toxicity and efficacy probabilities; we then, by 

regarding the order-constrained toxicity probabilities as an isotonic transformation of the 

unordered toxicity probabilities, extend the BIT by Dunson and Neelon [9] to the case of 

matrix ordering. To compute the isotonic regression transformation for each unordered 

posterior sample of the toxicity probabilities, we use the minimum lower sets algorithm 

(MLSA) [15]. The joint posterior distribution of the order-constrained toxicity probabilities 

and the unordered efficacy probabilities is thus estimated based on these order-constrained 

posterior samples of the toxicity probabilities and the posterior samples of the remaining 

unordered parameters. With this estimated joint posterior distribution, we develop a dose-

schedule-finding algorithm to sequentially allocate patients to dose-schedule combinations 

of potential and make a final recommendation of the combination at the end of the trial.

The remainder of the article is organized as follows. In Section 2, we present the probability 

model, including the likelihood, priors and posteriors. We introduce the BIT approach in 

Section 3 and the dose-schedule-finding algorithm in Section 4. In Section 5, we introduce a 

motivating example and compare the operating characteristics of the proposed design with 

those of two alternative approaches. We provide concluding remarks in Section 6. In Section 

7, we present appendices that illustrate the MLSA and its computational aspects, and 

describe in detail two alternative designs used for comparison to our proposed design.
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2 Probability model

We assume there are D doses and that each dose may be administered under two different 

schedules. Let (j, k) represent dose j under schedule k, j = 1, …, d and k = 1, 2. Denote Xijk as 

the binary toxicity outcome for subject i administered at dose-schedule combination (j, k), 

and Yijk as the binary efficacy outcome for the same subject. We assume that Xijk = 1 with 

probability pjk and that Yijk = 1 with probability qjk. Let njk denote the number of subjects 

that have been currently treated at dose j under schedule k. We formulate the global cross-

ratio model [14] for the bivariate toxicity and efficacy outcomes as follows: Define 

, x, y = 0, 1, to be the joint probability of the toxicity and efficacy 

outcomes, and let

quantify the association between the two outcomes. Then the cell probabilities  can be 

obtained from pjk, qjk, and θjk by

(1)

where ajk = 1 + (pjk + qjk)(θjk − 1) and bjk = −4θjk(θjk − 1)pjkqjk.

We further define μjk and γjk as follows:

(2)

Denoting μ = (μ11, …, μD1, μ12, …, μD2)′, γ = (γ11, …, γD1, γ12, …, γD2)′ and θ = (θ11, …, 

θD1, θ12, …, θD2)′, the contribution of dose-schedule combination (j, k) to the likelihood is 

given as

(3)

where xijk and yijk are the observed efficacy and toxicity outcomes for the ith patient treated 

at dose j and schedule k. The full likelihood, denoted as L(μ, γ, θ), is the product of Ljk’s 

over all dose-schedule combinations that have currently been evaluated.

To specify the priors, we assume that μjk, γjk and θjk are mutually independent, and their 

priors are given by , and , where  and 

are prior variances taking large values (e.g.,  and ).
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At any point of the trial, let h1 and h2 denote the highest tried doses of schedules 1 and 2, 

respectively. The highest tried dose under a schedule refers to the highest dose at which at 

least one cohort of patients has been treated under the schedule. If no dose has been tried 

under schedule k, we then define hk = 0. We assume that the starting combination is (1, 1), 

i.e., the lowest dose under schedule 1. Therefore, we always have h1 ≥ 1 and h2 ≥ 0, if at 

least one cohort of patients has been treated. Note that only the parameters associated with 

tried dose-schedule combinations appear in the full likelihood. We therefore define μ(h1h2) = 

(μ11, …, μh11, μ12, …, μh22)′, γ(h1h2) = (γ11, …, γh11, γ12, …, γh22)′ and θ(h1h2) = (θ11, …, 

θh11, θ12, …, θh22)′. The joint posterior distribution is then given by

(4)

where π(μ(h1h2)), π(γ(h1h2)), and π(θ(h1h2)) are the prior densities for μ(h1h2), γ(h1h2), and 

θ(h1h2), respectively.

Given the joint posterior distribution, all full conditional distributions for Gibbs sampling 

can be derived in a straightforward manner. To sample from these full conditional 

distributions, we use the adaptive rejection Metropolis sampling (ARMS) algorithm [16]. 

Although it is possible to sample the toxicity and efficacy probabilities directly, the 

transformations given in (2) resulted in increased numerical stability when using the ARMS 

algorithm.

3 Bayesian isotonic transformation

The probabilities of toxicity pjk are assumed to follow the matrix ordering exemplified by pjk 

≤ pj+1,k and pjk ≤ pj,k+1, as previously discussed. Because the transformation of pjk in (2) is 

monotone, the μjk’s follow the same order

(5)

To make order-restricted inference on μ, we propose a Bayesian isotonic transformation 

(BIT) that extends the approach in the simple-order setting in Dunson and Neelon [9] to one 

that accounts for matrix ordering. Although a similar ordering assumption may be plausible 

for the efficacy probabilities, such an assumption does not always hold, especially for 

cytostatic agents. It has been documented that the efficacy probability may not increase 

beyond certain dose levels. See, e.g., [17–19]. Nevertheless, if there is strong prior 

information that efficacy increases with dose, then our method can be modified so that a BIT 

is applied to both toxicity and efficacy. We should note that such an increasing efficacy 

assumption should be used with caution since it could lead to an aggressive design by 

encouraging escalation and thus potentially exposing more patients to toxic dose-schedule 

combinations.

Let C = {(j, k) : j = 1, …, hk, k = 1, 2} be the set of all tried dose-schedule combinations. 

Define an order ⪯ on C as follows:
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(6)

It is straightforward to verify that C is a partially-ordered set (see the formal definition of a 

partial order in [15]).

Given the above definition of C with order ⪯, an unconstrained draw μ̃ of μ from its 

posterior (4) can be regarded as a real-valued function on C, and the isotonic regression μ̃* 

of μ̃ is an isotonic function that minimizes the weighted sum of squares

(7)

subject to the constraints  whenever (j1, k1) ⪯ (j2, k2). The weights {wjk, j = 1, 

…, hk, k = 1, 2} are taken to be the posterior precisions of μjk. Note Equation (7) implies that 

this isotonic regression transformation of μ is a minimal distance mapping from the 

unconstrained to the constrained parameter space.

Directly calculating the isotonic regression μ̃* using the min-max formula in [15] for a 

partially-ordered set is computationally burdensome. An improved strategy is the following 

three-step approach: first, enumerate all simple orders nested within the matrix order, then 

apply the pool-adjacent-violators algorithm (PAVA) under each simple order, and lastly, 

find the “best” estimates among them [8]. In the context of dose-schedule finding, such an 

approach is also computationally intensive due to the large number of enumerations required 

to completely order the dose-schedule combinations. We apply an alternative algorithm, the 

minimum lower sets algorithm (MLSA) [15], to compute the isotonic regression μ̃*. For a 

general description of the algorithm, see [15]. In Appendices 1 and 2, we provide a 

simplistic example to illustrate the algorithm and summarize its computational properties. 

Additional details of the algorithm specific to the matrix ordering are available from the first 

author upon request.

Overview of computational steps

To clarify our algorithm, we present the reader with an outline of the computational steps 

involved in the estimation of model parameters.

1. For each dose-schedule combination, obtain samples from the posterior 

distributions of (μjk, γjk, θjk) via the ARMS Markov chain Monte Carlo (MCMC).

2. For each realization μ̃ from the unconstrained joint posterior distribution of μ 
obtained in step 1, use the MLSA to obtain the order-restricted posterior sample μ̃*.

3. Obtain the order-restricted posterior samples of pjk by taking the transformations 

, and similarly obtain the unconstrained posterior samples of qjk and 

θjk.
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4. Obtain posterior samples of , if necessary, based on the samples of pjk, qjk and 

θjk for x = 0, 1, y = 0, 1, using (1).

As can be seen from the steps above, the isotonic regression is performed after obtaining all 

samples from the unconstrained posterior via MCMC. Because the isotonic regression as a 

minimal distance mapping is a measurable function, and a measurable function of a random 

variable is itself a random variable, the isotonically transformed sample μ̃* together with the 

untransformed samples γ̃ and θ̃ can be considered a random sample from a constrained joint 

posterior distribution of (μ, γ, θ). Using (1) and (2), Bayesian inference on the joint posterior 

distribution of the order-constrained toxicity probabilities and the unordered efficacy 

probabilities can then proceed based on these order-constrained posterior samples of μ and 

the unordered posterior samples of γ and θ.

4 Dose-schedule-finding algorithm

We propose an algorithm that sequentially allocates new patients to dose-schedule 

combinations that are safe and efficacious. The allocation scheme is based on the 

constrained joint posterior distribution of toxicity and efficacy probabilities at each dose-

schedule combination. All accumulated data are used in the estimation procedure under the 

Bayesian model.

We first define a target dose-schedule combination, i.e., a combination at which the toxicity 

probability pjk ≤ p̄ and the efficacy probability qjk ≥ q, where p̄ and q are physician-specified 

upper limit for toxicity (e.g., 0.3) and lower limit for efficacy (e.g., 0.3), respectively. Given 

this definition, we select the dose-schedule combination at the end of the trial that 

maximizes the posterior probability Pr(pjk ≤ p̄, qjk ≥ q | Data). Note that this criterion has a 

decision-theoretic justification since it is equivalent to maximizing the posterior expected 

utility with the utility function defined as I(pjk ≤ p̄, qjk ≥ q), where I(·) is an indicator 

function.

Before describing the proposed dose-schedule-finding algorithm, we categorize a dose-

schedule combination as having negligible, acceptable, or unacceptable toxicity as follows.

• A dose-schedule combination (j, k) has negligible toxicity if Pr(pjk ≤ p̄ | Data) > Pn, 

where Pn is a chosen probability cutoff with a relatively large value (say, 0.5). By 

this definition, a dose-schedule combination has negligible toxicity when there is a 

relatively large posterior probability that its toxicity probability is less than the 

upper limit p̄.

• A dose-schedule combination (j, k) has acceptable toxicity if Pr(pjk ≤ p̄|Data) > Pa, 

where Pa is a cutoff smaller than Pn (say, 0.05). Therefore, that a dose-schedule 

combination has negligible toxicity implies that it has acceptable toxicity.

• A dose-schedule combination (j, k) has unacceptable toxicity if Pr(pjk ≤ p̄| Data) ≤ 

Pa. By this definition, when there is a small posterior probability that the toxicity 

probability is less than or equal to the upper limit p̄, the dose-schedule combination 

is very likely to be highly toxic, therefore it is considered unacceptable with high 

toxicity.
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These rules for defining negligible, acceptable, and unacceptable toxicity are not standard, 

but they are consistent with the preferences of clinical investigators. Typically, investigators 

are willing to try higher dose-schedule combinations only after seeing evidence that 

previously tried lower dose-schedule combinations are safe (i.e., have negligible toxicity). 

Alternatively, they want to continue learning about the toxicity profile of dose-schedule 

combinations with acceptable toxicity.

In addition to the above categorization based on toxicity, each dose-schedule combination is 

deemed to have acceptable efficacy if the posterior probability that its efficacy probability is 

at least as large as q is greater than a certain cutoff (say, 0.02). Mathematically, if Pr(qjk ≥ q | 

Data) > Qa for some small cutoff Qa ∈ (0, 1), then the dose-schedule combination has 

acceptable efficacy. A dose-schedule combination is deemed acceptable if it has both 

acceptable toxicity and efficacy.

We propose an algorithm that finds a target dose-schedule combination with a probability of 

toxicity less than or equal to 0.3 and a probability of efficacy greater than or equal to 0.3. 

First, we introduce some notation. Let

denote the set of all acceptable dose-schedule combinations that have been tried (recall that 

h1 and h2 denote the highest tried doses in schedules 1 and 2, respectively). Let 

 be an estimate of , in which q̂jk is the posterior mean of qjk and  is 

a plug-in estimate of  (i.e., replacing pjk with the mean of its isotonically transformed 

posterior samples, and qjk and θjk with their posterior means in (1)). A large value of 

implies a large probability of efficacy and no toxicity. With the goal of finding a target dose-

schedule combination, we propose the following dose-schedule-finding algorithm:

1. As general rules, under a given schedule a dose is never skipped; in addition, for a 

fixed dose a schedule is never skipped. If the lowest combination (1, 1) has 

unacceptable toxicity, or the maximum sample size is reached, the trial is 

terminated.

2. Start treating patients at (1, 1). If (1, 1) has negligible toxicity, the next cohort of 

patients is treated at (1, 2).

3. When h1 < D and h2 < D,

a. if both (h1, 1) and (h2, 2) have negligible toxicity, the next cohort of patients 

is treated at (h1+1, 1) or (h2+1, 2), depending on which of the probabilities 

Pr(phk,k ≤ p̄| Data), k = 1, 2, is larger;

b. if only (h1, 1) has negligible toxicity, the next cohort of patients is treated at 

(h1 + 1, 1); if instead only (h2, 2) has negligible toxicity, the next cohort of 

patients is treated at (h2 + 1, 2);
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c. if neither (h1, 1) nor (h2, 2) has negligible toxicity, the next cohort of patients 

is treated at the dose-schedule combination in  that has the largest value of 

, or the trial is terminated if  is empty.

4. When h1 = D and h2 < D, if (h2, 2) has negligible toxicity, the next cohort of 

patients is treated at (h2 + 1, 2). Otherwise, the next cohort of patients is treated at 

the dose-schedule combination in  that has the largest value of , or the trial is 

terminated if  is empty.

5. When h1 = h2 = D, the next cohort of patients is treated at the dose-schedule 

combination in  that has the largest value of , or the trial is terminated if  is 

empty.

6. At the end of the trial, the dose-schedule combination in  with the largest value of 

Pr(pjk ≤ p̄, qjk ≥ q | Data) is selected as the recommended combination.

Note that the case where h1 < D and h2 = D is not discussed above. This is because dose D 

under schedule 2 cannot be tried without having first tried dose D under schedule 1, based 

on the general rules specified in step 1. In fact, based on the order assumption that schedule 

2 is at least as toxic as schedule 1 at any given dose, the estimated toxicity probability for a 

dose under schedule 1 cannot be larger than that for the same dose under schedule 2. This, 

combined with rules 2 and 3(a) in the algorithm, makes it impossible to have a larger h2 than 

h1. In other words, our algorithm will not treat patients at a dose under schedule 2, which is 

more toxic, without treating patients at the same dose under schedule 1 first.

5 Application and Simulation

Our proposed design was motivated by a clinical trial of a kinase inhibitor in patients with 

acute leukemia, myelodysplastic syndromes, or chronic myeloid leukemia in blast phase. 

These diseases have been found to be associated with unregulated kinase activity. Thus, the 

kinase inhibitors are an important set of treatment options for hematologic malignancies. 

The goal of this trial was to assess five doses of a kinase inhibitor administered under two 

different treatment schedules, a continuous 5-day administration with a 2-day rest per week 

for six weeks (schedule 1), and a continuous 15-day administration with a 6-day rest per 21-

day cycle for two cycles (schedule 2).

Based on this trial, we constructed 12 scenarios with different true probabilities of toxicity 

and efficacy across the dose-schedule combinations (Figure 1). The toxicity and efficacy 

outcomes were assumed to be independent. Therefore, for example, the joint probability of 

efficacy and no toxicity is the product of the marginal probability of efficacy and (1 − the 

marginal probability of toxicity). The maximum sample size chosen for the simulations was 

60. The toxicity upper limit and efficacy lower limit were taken to be p̄ = q = 0.3, and the 

chosen cutoff probabilities were Pn = 0.5, Pa = 0.05 and Qa = 0.02. Under each scenario, we 

simulated 1,000 trials.

After obtaining 6,000 Gibbs samples from the posterior density (4), we discarded the first 

1,000 samples (burn-in), recorded every fifth subsequent sample to reduce the 
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autocorrelation in the Markov chain, applied the isotonic transformations to the samples of 

μjk, and then implemented the proposed dose-schedule-finding algorithm. The Markov 

chains converged fast and mixed well.

For comparison purposes, we implemented two alternative designs. The first method 

performs dose finding independently under each schedule based on efficacy and toxicity 

responses, using a Bayesian isotonic transformation (BIT) for toxicity. We call this design 

the one-dimensional BIT design, and accordingly, we call our proposed design the two-

dimensional BIT design. Details of the one-dimensional BIT design are given in Appendix 

3.

The second method is a two-stage design in which we use the Continual Reassessment 

Method (CRM, [20]) in the first stage to independently locate the MTD under each 

schedule, and then adaptively randomize (AR) patients over all dose-schedule combinations 

at or below the MTDs in the second stage. We name this method the CRM + AR design. We 

use rule 6 of the dose-schedule-finding algorithm in Section 4 for the final selection of a 

dose-schedule combination. Details of the CRM + AR design are given in Appendix 4.

We summarize the operating characteristics of all three designs under the 12 scenarios in 

Table 1, which is organized in scenario sections. For each scenario section, the first and 

sixth rows detail the pair of true marginal probabilities of toxicity and efficacy (multiplied 

by 100) for schedules 1 and 2, respectively; the second and seventh rows detail the true joint 

probabilities of efficacy and no toxicity; the third and eighth rows detail the selection 

percentages of the doses in schedules 1 and 2 using the two-dimensional BIT design 

(BIT-2d), with the average numbers of patients treated at each dose-schedule combination 

given in parentheses; the fourth and ninth rows and the fifth and 10th rows are analogous to 

the results presented in the third and eighth rows, differing only in that they summarize the 

operating characteristics of the one-dimensional BIT design (BIT-1d) and the CRM+AR 

design, respectively. The columns labeled “Sce” and “Sch” indicate the scenarios and 

schedules, respectively. The “None” column represents the percentages of the 1,000 

simulated trials in which no dose-schedule combinations were selected due to either 

excessive toxicity or a lack of response, i.e., inconclusive trials. The last two columns give 

the observed toxicity and efficacy percentages out of the 1,000 simulated trials.

For ease of exposition, we provide summary plots of the main simulation results in Figure 2. 

Table 1 and Figure 2 suggest that the one-dimensional BIT design and the CRM + AR 

design both perform comparably to the two-dimensional BIT design in terms of the 

percentage of selecting the target dose-schedule combinations. The main advantage of the 

two-dimensional BIT design is that it assigns more patients to the target dose-schedule 

combinations than the other two methods. The one- and two-dimensional BIT designs are 

comparable in terms of the overall toxicity rates. Both designs yield slightly lower toxicity 

rates than the CRM + AR design. Finally, the two-dimensional BIT design has the highest 

overall response rates among all three designs.

We also evaluated the operating characteristics of three alternative designs. The first design 

used the model proposed by Yin et al. [5] (YLJ design) independently for each schedule (in 
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a manner similar to the one-dimensional BIT design). The second and third designs were 

similar to the two stage CRM + AR design, in which we used either the CRM or the 3+3 

algorithm [21] during the first stage while during the second stage we replaced the adaptive 

randomization with equal randomization at the MTDs. None of these designs performed as 

well as the one-dimensional, two-dimensional BIT design, or the CRM + AR design. 

Therefore, we did not include comparison results to these methods.

Because independence was assumed in our simulation scenarios, we performed additional 

simulations assuming different levels of (positive) correlation (odds ratio = 5 or 2.5) 

between the efficacy and toxicity outcomes in our simulation scenarios. The results from 

these simulations were not appreciably different from the results summarized above and are 

available from the first author upon request.

6 Discussion

We have proposed a Bayesian adaptive design for finding a desirable dose-schedule 

combination by jointly modeling binary toxicity and efficacy outcomes. To our knowledge, 

this is the first application of a Bayesian isotonic transformation (BIT) to the calculation of 

posterior distributions of partially-ordered toxicity probabilities in a dose-finding setting. 

The proposed two-dimensional BIT design performs better than the one-dimensional BIT 

design and the various two-stage designs we have explored.

Instead of performing an isotonic regression on samples drawn from the posterior 

distribution of the unconstrained toxicity probabilities, we implemented the isotonic 

transformation on the posterior means of the unconstrained toxicity probabilities and 

obtained considerably worse operating characteristics (results not shown). This suggests the 

advantage of transforming the draws from the unconstrained posterior density in small 

sample settings such as phase I/II oncology trials.

In applying our method, considerations should be given to the choice of the maximum 

sample size. In general the maximum number of patients in a dose-schedule-finding trial is a 

function of the number of doses and schedules examined. A rule of thumb in phase I studies 

is to use approximately six patients per dose studied (by which we arrived at 60 patients for 

the leukemia trial since we had 10 dose-schedule combinations). In addition, the operating 

characteristics achieved in our simulation studies further justified the use of this sample size. 

We recommend using the above rule of thumb as an initial guess in designing a dose-

schedule-finding trial, and then further identifying an appropriate maximum sample size to 

achieve desirable operating characteristics via simulations, in conjunction with the 

calibration of the tuning parameters Pn, Pa and Qa.

The proposed design can be directly applied to a two-agent trial where only two dose levels 

are under consideration for one of the agents. In this case, the model, algorithm, and matrix-

order constraints can be used without modification. Although we assumed the same number 

of doses between schedules, the proposed design is also applicable to cases in which the 

number of doses between schedules is different. In addition, the proposed design is 

applicable to dose-finding trials in which both single and combination therapies are under 

investigation. For example, the investigator in an oncology trial may be interested in 
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studying a range of chemotherapy doses with or without radiation therapy at a fixed dose. 

The goal of such a study is to determine the best combination of treatment options (i.e., dose 

of chemotherapy and radiation versus no radiation). The radiation therapy above can also be 

replaced with a second chemotherapy at a fixed dose. In these cases, the toxicity matrix 

ordering assumption across combinations of treatment options remains plausible, thus 

allowing the application of the proposed BIT design.

The proposed design can be extended to accommodate different order constraints than the 

matrix ordering among the toxicity and efficacy probabilities, such as increasing or umbrella 

ordering [22] for efficacy. In these cases, the minimum lower sets algorithm (MLSA) 

remains applicable, and the dose-schedule-finding algorithm can be modified accordingly.

Extension of the proposed design to trials with more than two schedules is straightforward. 

The MLSA can be implemented in a manner similar to the implementation described for the 

two-schedule case. Computational intensity will increase with the number of schedules. For 

example, when the number of schedules is three and the number of doses for each schedule 

is five, the maximum possible number of weighted averages to be calculated in each step of 

the MLSA is  [15]. Since in practice it is uncommon that the number of 

schedules under consideration exceeds 3, the efficiency of the proposed dose-schedule-

finding algorithm is adequate.

As an alternative, one may model the toxicity and efficacy outcomes independently. 

Specifically, one could proceed by specifying independent beta priors for the toxicity and 

efficacy probabilities at each dose-schedule combination (hence resulting in beta posteriors) 

and order the posterior draws of the toxicity probabilities using the MLSA. This would 

reduce the complexity of the model considerably although it might potentially lead to less 

reliable estimates of the joint probabilities of toxicity and efficacy. Furthermore, under such 

an independence model, one would need to modify the proposed decision rules since rules 

3–6 in our dose-schedule-finding algorithm depend on the joint posterior probabilities of 

toxicity and efficacy.

In our trial example, six cycles of treatment were administered under schedule 1 while two 

cycles of treatment were administered under schedule 2. Treating these as nested schedules, 

one can extend the dose-schedule-finding method of Braun et al. [7]. Specifically, one 

would need to model both toxicity and efficacy, and to find the best dose per treatment 

administration, the optimal number of treatment cycles, and the best qualitative schedule.

The decision rules in our design are based on posterior probabilities (computed using 

transformed posterior samples) which explicitly take into account the variability in the 

posterior distribution. Moreover, when performing the BIT, dose-schedule combinations 

with less information are assigned less weights. In exploring alternative decision rules, we 

found that our rules, which incorporate posterior probabilities, tend to perform better than 

those based solely on posterior means. Ivanova and Wang [13] proposed a practical and 

novel approach based on a bivariate isotonic regression of the toxicity estimates. While 

easier to implement, their decision rules do not take into account the variability in the 
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parameter estimates. A potential area of future research would be to explore the utility of the 

simple bivariate isotonic regression in the context of dose-schedule finding. Such an 

implementation would require defining a suitable model and decision rules.
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7 Appendices

1. An example of applying the minimum lower sets algorithm (MLSA)

We give a simplistic example of how the MLSA is carried out in obtaining the isotonically 

transformed sample μ̃*.

Suppose doses 3 and 2 are the highest tried doses in schedules 1 and 2, respectively. We 

assume an untransformed sample μ̃ with weights wjk as follows (taken from a similar 

simulation realization):

These μ̃
jk correspond to the unordered toxicity probabilities p̃jk as follows:

The partial order is violated between (p̃11, p̃12) and p̃13, between p̃11 and p̃21, and between 

p̃12 and p̃22. The weights wjk (as precisions) are positively correlated with the sample sizes at 

the corresponding dose-schedule combinations. That is, with a given toxicity probability, the 

larger the sample size, the larger the weight. To calculate μ̃*, the MLSA proceeds as 

follows.

• Step 1: All possible nonempty lower sets can be found as {(1, 1)}, {(1, 1), (1, 2)}, 

{(1, 1), (1, 2), (1, 3)}, {(1, 1), (2, 1)}, {(1, 1), (1, 2), (2, 1)}, {(1, 1), (1, 2), (2, 1), 

(2, 2)}, {(1, 1), (1, 2), (1, 3), (2, 1)}, and {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}. For 

definitions of lower and level sets, see [15]. Also, contact the first author for the 

closed-form expressions of the nonempty lower sets in the matrix ordering case.

The MLSA computes the weighted average of the μ̃
jk’s on each of the above lower 

sets and finds the minimum average value, which is −1.44, and the corresponding 

lower set (also level set) of the largest size, which is {(1, 1), (1, 2), (1, 3), (2, 1)}. 

Hence we obtain .

• Step 2: Consider all the nonempty level sets of the form L ∩{(1, 1), (1, 2), (1, 3), 

(2, 1)}c, where L is any nonempty lower set (listed in Step 1), i.e., level sets 

consisting of lower sets with {(1, 1), (1, 2), (1, 3), (2, 1)} subtracted. There is only 

one such level set, which is {(2, 2)}. The minimum weighted average, which is 
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simply the weighted average of μ̃
jk on the level set {(2, 2)}, is μ̃

22 = −1.4. Hence we 

have .

The isotonically transformed μ̃* thus is

and the corresponding toxicity probabilities that satisfy the specified partial order 

constraints, denoted as , are

2. Computational aspects

Computing

Suppose  are M thinned, unconstrained posterior samples of μjk from the 

Gibbs sampler. Then each weight wjk (required to calculate the weighted average of μjk) as 

the inverse variance of the samples  is computed only once. Given the weights 

wjk, the calculation of the weighted average is simple arithmetic and the amount of 

calculation depends mainly on the number of μjk belonging to a level set, which is always a 

subset of the largest possible lower set. In fact, one can derive a formula for the upper bound 

of the size of the largest possible lower set (not shown). In particular, when two schedules 

and five doses under each schedule are under investigation, at most 20 weighted averages 

are to be calculated in each step of the MLSA. Furthermore, such calculation will be reduced 

considerably and adaptively while the trial proceeds because of the reduced sizes of the level 

sets. In sum, calculations using the MLSA in dose-schedule-finding settings compare 

favorably in efficiency with other general algorithms given in [15].

Programming

Due to the relatively simple form of the lower and level sets (not shown), the programming 

of the MLSA is straightforward. A C++ function for this algorithm is available from the first 

author upon request. We are also in the process of making R code available.

3. Details of the one-dimensional BIT design

In the one-dimensional BIT design, we start a phase I/II trial under schedule 1 assuming a 

maximum of 30 patients will be enrolled at this schedule. We apply the Bayesian isotonic 

transformation approach in which we order-transform the unconstrained posterior MCMC 

draws of the toxicity probabilities using the PAVA. We use the PAVA because of the simple 

toxicity probability ordering. Dose assignments follow the same principles in the two-
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dimensional BIT design, modified to allow only within-schedule dose escalation. Once a 

maximum of 30 patients have been evaluated under schedule 1, we choose a target dose 

under this schedule that has the largest posterior probability of {p ≤ .3, q ≥ .3} and then 

begin enrolling a maximum of (60 - the number treated under schedule 1) patients under 

schedule 2. Once all patients have been evaluated under schedule 2, we select a target dose 

that has the largest posterior probability of {p ≤ .3, q ≥ .3}. For this dose-schedule-finding 

design, there are three possibilities for selecting target doses under the two schedules: 1) No 

target dose is selected for either schedule. In this case we will not select a final dose-

schedule combination; 2) Only one target dose is selected. Then this dose-schedule 

combination is selected as the final dose-schedule combination; 3) For each schedule, one 

target dose is selected. In this case the dose-schedule combination with a larger posterior 

probability of {p ≤ .3, q ≥ .3} (out of the two selected) is chosen as the final dose-schedule 

combination. In those rare cases when the two selected doses have the same posterior 

probability of {p ≤ .3, q ≥ .3}, we select the dose under schedule 1 as the final dose-schedule 

combination (alternatively, one could also select the other combination or randomly select 

from these two).

4. Details of the CRM + AR design

In the CRM + AR design a total of 60 patients will be allocated to dose-schedule 

combinations in order to find the best combination. In the first stage of the design, we 

employ the CRM under each schedule to locate the within-schedule MTD. We set a 

maximum number of 18 patients per schedule for the CRM in the first stage.

For the CRM, the model parameters within the kth schedule are (p̂1k, …, p̂Dk, α) such that 

the probability of toxicity at dose level j under schedule k equal to . Each p̂jk is fixed with 

0 < p̂1k < p̂2k <···< p̂Dk < 1, and α a priori follows an exponential distribution with mean 1. 

For the simulations described in Section 5, we use (p̂1k, p̂2k, …, p̂Dk) = (0.05, 0.15, 0.20, 

0.30, 0.45), k = 1, 2. The CRM proceeds by sequentially selecting a dose under a given 

schedule that minimizes | |. To ensure a fair comparison, we use a version of 

the CRM which stops early for excessive toxicity within a schedule, since our proposed 

method can stop at anytime due to excessive toxicity. The additional rule is to terminate the 

trial if . Note that it is possible that two MTDs are selected, only one 

MTD is selected (in cases where the CRM indicates that all doses under a particular 

schedule are overly toxic), or no MTD is selected (in cases where the CRM indicates that all 

doses under both schedules are overly toxic). When no MTD is selected in the first stage, the 

trial is terminated. Below, we assume an MTD is selected for at least one schedule.

Denote n1 the total number of patients allocated to both schedules by the CRM. After the 

MTDs under both schedules have been selected, in the second stage we adaptively 

randomize the remaining (60 − n1) patients to the set of doses at or below the MTDs. Based 

on a simple model to be described below, we use the probability 

 for adaptive randomization, such that the next patient to 

enroll in the trial during the second stage is assigned to the jth dose and kth schedule with 

probability
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The above posterior probability is computed under a simple Bayesian model, which we now 

describe. Using the notation introduced in this paper, we assume that the joint toxicity and 

efficacy response at any dose-schedule combination (j, k) follows a multinomial distribution, 

which leads to the same likelihood function given by (3). In addition, we assume that the 

joint probabilities of toxicity and efficacy, given in the vector 

, follows a vague Dirichlet prior Dir(.25, .25, .25, .25). 

Under the multinomial likelihood function (3), the posterior of π(jk) is also a Dirichlet. Then 

the AR probability above can be easily computed using this Dirchlet posterior since 

 and .

In addition to the adaptive randomization scheme described above, efficacy is monitored 

according to the probability rule: P(qjk < q | Data) > 0.95, where q = 0.3 is the target 

efficacy probability. Similarly, toxicity is monitored according to the probability statement: 

P(pjk > p̄ | Data) > 0.95 where p̄ = 0.3 is the target toxicity probability. Specifically, if at any 

point during the course of the trial either of the above two inequalities is satisfied, patients 

will no longer be randomized to that dose-schedule combination. At the end of the trial the 

dose with the largest Pr(pjk ≤ p̄, qjk ≥ q| Data) is selected as the recommended dose-schedule 

combination.

Li et al. Page 17

Stat Med. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Scenarios in the simulation study for the leukemia trial: —— schedule 1; . . . . . . schedule 2. 

There are five doses (horizontal axis) in each schedule. The vertical axis is the joint 

probability of efficacy without toxicity. Points marked by black triangles correspond to the 

target dose-schedule combinations, at which the probability of toxicity does not exceed 0.3 

and the probability of efficacy is at least 0.3.
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Figure 2. 
Summary operating characteristics based on the simulations: —— two-dimensional BIT 

design . . . . . . one-dimensional BIT design – – – CRM+AR design. The top two plots are 

the selection percentages of the target dose-schedule combinations and the numbers of 

patients treated (averaged across 1000 simulated trials) at these combinations. The bottom 

two plots are the overall observed toxicity and response rates, calculated by dividing the 

total numbers of patients who experienced toxicity and efficacy, respectively, by the total 

numbers of patients treated in the 1000 simulated trials.
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