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BACKGROUND AND PURPOSE
γ-Oryzanol, derived from unrefined rice, attenuated the preference for dietary fat in mice, by decreasing hypothalamic
endoplasmic reticulum stress. However, no peripheral mechanisms, whereby γ-oryzanol could ameliorate glucose
dyshomeostasis were explored. Dopamine D2 receptor signalling locally attenuates insulin secretion in pancreatic islets,
presumably via decreased levels of intracellular cAMP. We therefore hypothesized that γ-oryzanol would improve high-fat diet
(HFD)-induced dysfunction of islets through the suppression of local D2 receptor signalling.

EXPERIMENTAL APPROACH
Glucose metabolism and regulation of molecules involved in D2 receptor signalling in pancreatic islets were investigated in
male C57BL/6J mice, fed HFD and treated with γ-oryzanol . In isolated murine islets and the beta cell line, MIN6 , the effects
of γ-oryzanol on glucose-stimulated insulin secretion (GSIS) was analysed using siRNA for D2 receptors and a variety of
compounds which alter D2 receptor signalling.
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KEY RESULTS
In islets, γ-oryzanol enhanced GSIS via the activation of the cAMP/PKA pathway. Expression of molecules involved in D2

receptor signalling was increased in islets from HFD-fed mice, which were reciprocally decreased by γ-oryzanol. Experiments
with siRNA for D2 receptors and D2 receptor ligands in vitro suggest that γ-oryzanol suppressed D2 receptor signalling and
augmented GSIS.

CONCLUSIONS AND IMPLICATIONS
γ-Oryzanol exhibited unique anti-diabetic properties. The unexpected effects of γ-oryzanol on D2 receptor signalling in islets
may provide a novel; natural food-based, approach to anti-diabetic therapy.

Abbreviations
[Ca2+]i, cytosolic Ca2+ concentration; CCK-8, cholecystokinin-octapeptide; DAT, dopamine transporter; GLP-1,
glucagon-like peptide 1; GSIS, glucose-stimulated insulin secretion; GTT, glucose tolerance test; HFD, high-fat diet; IHC,
immunohistochemical; siRNA, small interfering RNA; TH, L-tyrosine hydroxylase; VMAT2, vesicular monoamine
transporter 2

Introduction
Dopamine is a major catecholamine neurotransmitter that
controls a wide range of biological processes important in
neurological, cardiovascular and metabolic homeostasis. Pre-
vious reports have demonstrated that in patients with Par-
kinson’s disease, glucose metabolism was markedly impaired
by treatment with L-DOPA, a dopamine precursor, in a dose-
dependent manner (Sirtori et al., 1972; Marsden and Parkes,
1977). Importantly, molecules involved in dopamine receptor
signalling are expressed in both murine and human pancre-
atic islets (Rubi et al., 2005; Simpson et al., 2012). Notably, a
recent study on isolated pancreatic islets from humans dem-
onstrated that pancreatic islet-derived dopamine did attenu-
ate insulin secretion in an autocrine or paracrine fashion via
its receptors (Simpson et al., 2012). In particular, studies in
dopamine D2 receptor knockout mice suggest a critical role
of dopaminergic suppression in function and replication
of pancreatic beta cells during development in mice
(Garcia-Tornadu et al., 2010).

It is well recognized that two distinct signalling pathways
contribute to the control of insulin secretion from pancreatic

beta cells, namely the ATP-sensitive K+ channel-dependent
pathway (triggering pathway) and the cAMP/PKA pathway
(amplifying pathway) (Henquin, 2000; Kahn et al., 2006).
Two major incretin hormones, glucagon-like peptide 1
(GLP-1) and glucose-dependent insulinotropic polypeptide,
are crucial regulators for glucose-stimulated insulin secretion
(GSIS) through an increase in intracellular cAMP level,
thereby activating the cAMP/PKA pathway. On the other
hand, dopamine is known to substantially decrease intracel-
lular cAMP level mainly via D2 receptors in striatum and
pituitary gland in the brain in rats, pigs and humans (Missale
et al., 1998; Vallone et al., 2000).

Based on the notion that chronic feeding with a high fat
diet (HFD) causes dysfunction of pancreatic islets and results
in whole body glucose dysmetabolism (Giacca et al., 2011),
we hypothesized that dopamine receptor signalling would be
activated locally in pancreatic islets from HFD-fed mice,
thereby causing dyshomeostasis of islet functions, at least
partly, through a decrease in intracellular cAMP level. On the
other hand, it has been shown that expression of genes
involved in D2 receptor signalling in the brain reward system
(e.g. striatum, ventral tegmental area) was considerably
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decreased in HFD-induced obese rodents, resulting in pro-
found addiction to fatty foods (Li et al., 2009; Johnson and
Kenny, 2010). This finding suggested that decreased local
synthesis of dopamine in the brain could be relevant to this
deviation in feeding behaviour.

γ-Oryzanol, derived from unrefined rice, is a unique bio-
active substance, consisiting of a mixture of ferulic acid esters
with phytosterols or triterpene alcohols (Lerma-Garcia et al.,
2009; Kozuka et al., 2013). An earlier study in humans
demonstrated that replacement of white rice by brown rice
reduced the incidence of type 2 diabetes mellitus (Sun et al.,
2010). Based on this report and our interventional trial assess-
ing the metabolically beneficial impact of brown rice on
pre-diabetic obese humans (Sun et al., 2010; Shimabukuro
et al., 2014), we recently reported in mouse experiments that
γ-oryzanol acted directly on the hypothalamus and attenu-
ated preference for dietary fat by decreasing hypothalamic
endoplasmic reticulum (ER) stress, thereby ameliorating HFD-
induced obesity (Kozuka et al., 2012). We also demonstrated
that long-term administration of γ-oryzanol considerably
ameliorated HFD-induced glucose dyshomeostasis, indepen-
dently of body weight and food intake (Kozuka et al., 2012).
Moreover, although γ-oryzanol (3.2 mg·g−1 body weight)
given orally to mice was distributed predominantly to the
brain (83.8 mg per 100 g tissue); it also accumulated particu-
larly in the pancreas (3.5 mg per 100 g tissue) 1 h after
supplementation (Kozuka et al., 2015). However, the full
mechanism whereby γ-oryzanol ameliorates glucose dysme-
tabolism throughout the body remained to be elucidated.

In rats, γ-oryzanol increased the dopamine content of the
medial basal hypothalamus (Ieiri et al., 1982). This effect was
suppressed by an inhibitor of L-tyrosine hydroxylase (TH),
the rate-limiting enzyme in dopamine synthesis (Ieiri et al.,
1982), suggesting a potential interaction of γ-oryzanol
between dopamine metabolism and signalling via dopamine
receptors. Based on all these findings, we tested if γ-oryzanol
would improve dysfunction of pancreatic islets through the
inhibition of D2 receptor signalling in murine experimental
models.

Methods

Animals
All animal care and experimental procedures were approved
by the Animal Experiment Ethics Committee of the Univer-
sity of the Ryukyus (Nos. 5352, 5718 and 5943). All studies
involving animals are reported in accordance with the
ARRIVE guidelines for reporting experiments involving
animals (Kilkenny et al., 2010; McGrath et al., 2010). A total
of 204 animals were used in the experiments described here.

Eight-week-old male C57BL/6J mice obtained from
Charles River Laboratories Japan, Inc. (Kanagawa, Japan) were
housed at 24°C under a 12 h/12 h light/dark cycle. The mice
were allowed free access to food and water.

Administration of γ-oryzanol
γ-Oryzanol (Wako Pure Chemical Industries, Ltd., Osaka,
Japan) was dissolved in 0.5% methyl cellulose solution.
γ-Oryzanol (20, 80 or 320 μg·g−1 body weight) was delivered

into the stomach by a gavage needle every day during feeding
with a HFD (Western Diet; Research Diets Inc., New Brun-
swick, NJ, USA) for 13 weeks. HFD and HFD containing 0.4%
γ-oryzanol were manufactured as pellets by Research Diets
(Research Diets Inc.). Daily intake of γ-oryzanol by mice, as
estimated by mean food intake, was approximately 320 μg·g−1

body weight. The doses of γ-oryzanol were determined as
described (Kozuka et al., 2012).

Metabolic parameters
Whole blood was taken from the tail vein and blood glucose
was measured using an automatic glucometer (Medisafe Mini;
Terumo, Tokyo, Japan). Occasional blood samples were taken
from the retro-orbital venous plexuses or tail vein. Plasma
insulin, glucagon and active GLP-1 levels were measured
using ELISA kits (Shibayagi Co. Ltd., Gunma, Japan; Wako Pure
Chemical Industries, Ltd.; and Morinaga Institute of Biologi-
cal Science, Inc., Tokyo, Japan). For glucose tolerance tests
(GTTs), mice were intraperitoneally injected with 2.0 g·kg−1

glucose after an 18 h fast. Blood glucose levels were measured
at the indicated times.

Sub-diaphragmatic vagotomy
Sub-diaphragmatic vagotomy, or sham surgery, was per-
formed as described earlier (Miyamoto et al., 2012) and mice
were used for experiments 2 weeks after the surgery. To test
the success of the vagotomy, we assessed the satiety induced
by CCK-8 (Bachem, Bubendorf, Switzerland), which is medi-
ated by the abdominal vagus nerves (Smith et al., 1981;
1985). Sham-treated and vagotomized mice were injected i.p.
with PBS or 8 μg·kg−1 CCK-8 after an 18 h fast.

Immunohistochemical (IHC) analyses
The pancreas was carefully dissected and fixed in 4% para-
formaldehyde, embedded in paraffin and sectioned. The
paraffin-embedded sections were stained with haematoxylin
and eosin or immunostained for insulin (A0654; Dako Japan,
Tokyo, Japan), glucagon (A0565; Dako Japan), somatostatin
(AB5495; Merck Millipore, Billerica, MA), dopamine trans-
porter (DAT) (AB1591P; Merck Millipore) and TH (AB152;
Merck Millipore). The mean size and ratio of glucagon-
positive α-cells, DAT-positive and TH-positive cell areas to the
total islet area were calculated based on >100 islets per group
using Photoshop (Adobe, San Jose, CA, USA).

Isolation of pancreatic islets and assessment
of insulin/glucagon secretion
Pancreatic islets were isolated from mice by collagenase diges-
tion (Liberase TL; Roche Diagnostics GmbH, Mannheim,
Germany) and purified on a Histopaque gradient (Histopaque
1077; Sigma-Aldrich, St Louis, MO, USA) as described by
Zmuda et al., (2011). Insulin secretion from isolated islets and
from a murine pancreatic beta cell line, MIN6 cells, (Miyazaki
et al., 1990), was measured as described earlier (Wei et al.,
2005). Briefly, the islets were incubated with or without
γ-oryzanol (0.2, 2 or 20 μg·mL−1), forskolin (10 mM), Rp-8-Br-
cAMPS (10 μM), H-89 (10 μM), haloperidol (1, 10 μM; Wako
Pure Chemical Industries, Ltd.), a D2 receptor antagonist,
10 μM L-DOPA, a dopamine precursor, or 5 μM quinpirole,
a potent D2 receptor agonist (Sigma-Aldrich), for 1 h, and
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stimulated with glucose for an additional 1 h with or without
γ-oryzanol, haloperidol, L-DOPA or quinpirole. The doses of
each compound were decided as described (Simpson et al.,
2012). MIN6 cells and an α-cell line (α-TC cells) were seeded
at a density of 2.0 × 105 cells·mL−1 on 24-well plates. After
48 h of culture, MIN6 cells were incubated with Krebs–Ringer
bicarbonate buffer (KRB; composition; 119 mM NaCl, 4.74
mM KCl, 2.54 mM CaCl2, 1.19 mM MgCl2, 1.19 mM KH2PO4,
25 mM NaHCO3, 0.5 % BSA, 25 mM HEPES, pH 7.4.) contain-
ing 2.5 mM glucose for 2 h, subsequently incubated in KRB
with or without γ-oryzanol (0.2, 2 or 10 μg·mL−1) for 1 h. The
cells were also incubated with a series of insulin secretagogues
with or without γ-oryzanol for 2 h. α-TC cells were incubated
with KRB containing 16.7 mM glucose for 1 h, subsequently
incubated with or without palmitic acid (0.25 or 0.5 mM;
Sigma-Aldrich), γ-oryzanol (2 or 10 μg·mL−1) or haloperidol
(10 μM) for 2 h. Insulin or glucagon secretion was normalized
by cellular protein content. Levels of cAMP and PKA activity
were determined by the cyclic AMP EIA Kit (Cayman Chemi-
cal, Ann Arbor, MI, USA) and PKA kinase activity kit (Enzo
Life Sciences, Farmingdale, NY, USA) respectively. To measure
insulin content of islets, 10 islets were placed in 1 mL of
acid-ethanol (90 mM HCl in 70% ethanol). Insulin was
extracted overnight at −20°C after sonication, as previously
described (Ariyama et al., 2008). The acid-ethanol extract was
neutralized with 1 M Tris (pH 7.5) and insulin levels were
measured using an ELISA kit.

Measurement of cytosolic Ca2+ concentration
([Ca2+]i) in isolated islets
[Ca2+]i in isolated islets was measured by fura-2 micro-
fluorometry as described (Nakata et al., 2010). Briefly, islets
on coverslips were incubated with 1 μM fura-2/
acetoxymethylester (Dojin Chemical Co., Kumamoto, Japan)
for 1 h at 37°C in KRB containing 2.8 mM glucose with or
without γ-oryzanol or haloperidol. Islets were subsequently
mounted in a chamber and superfused at a rate of 1 mL·min−1

at 37°C in KRB with or without γ-oryzanol or haloperidol.
Fluorescence following excitation at 340 nm (F340) and that
at 380 nm (F380) was measured, and [Ca2+]i was expressed by
the ratio (F340/F380).

RNA interference
The small interfering RNA (siRNA) for D2 receptors (the Drd2
gene) and a control scrambled siRNA were designed and pur-
chased from Sigma-Aldrich. Pancreatic islets and MIN6 cells
were transfected with each siRNA using Lipofectamine RNAi/
MAX (Life technologies, Tokyo, Japan) according to the
manufacturer’s protocol. Insulin secretion from MIN6 cells
was normalized against cellular DNA content.

Agonist activity assay
Recruitment of β-arrestin to GPCRs, induced by γ-oryzanol
was tested by the PathHunter β-Arrestin Assay obtained from
DiscoveRx (Fremont, CA, USA). Luminescence was analysed
with Envision (PerkinElmer, Waltham, MA, USA) and % activ-
ity was expressed as the relative luminescence units of 10 μM
γ-oryzanol in comparison with that of each positive ligand.
Antagonist activity (% inhibition) was measured against
approximately EC80 concentrations of agonists. Duplicate

data were obtained. The Z-factor, a parameter of quality
control in high throughput screening assays (Zhang et al.,
1999), was determined by the following equation: Z-factor =
1 − 3(SDsample + SDcontrol)/|meansample − meancontrol|. SDsample and
SDcontrol refer to standard deviation of sample and positive
control regions respectively.

Western blotting
Western blotting was performed as described (Tanaka et al.,
2007) with antibodies against D2 receptors (AB5084P; Merck
Millipore), DAT, TH and β-actin (ab6276; Abcam, Cambridge,
MA, USA).

Quantitative real-time PCR
Gene expression was examined as described (Kozuka et al.,
2012). Total RNA was extracted using Trizol reagent (Life
technologies) and cDNA was synthesized using an iScript™
cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Quantita-
tive real-time PCR was performed using a StepOnePlusTM Real-
Time PCR System and Fast SYBR Green Master Mix (Life
Technologies). The mRNA levels were normalized against
Rn18s (18S rRNA). The primer sets used for the quantitative
real-time PCR analyses are summarized in Table 1.

Table 1
The primer sets used for quantitative real-time PCR analysis

Gene
GenBank
Accession No. Primer (5′–3′)

Drd2 (D2R) NM_010077 f CCA TTG TCT GGG TCC
TGT CC

r GTG GGT ACA GTT GCC
CTT GA

Drd3 (D3R) NM_007877 f GCA GTG GTC ATG CCA
GTT CAC TAT CAG

r CCT GTT GTG TTG AAA
CCA AAG AGG AGA GG

Slc6a3 (DAT) NM_010020 f GCA CTA CTT CTT CTC
CTC CT

r CCT GAA GTC TTT ACT
CCC TTC C

Th (TH) NM_009377 f CCC TAC CAA GAT CAA
ACC TAC C

r GAG CGC ATG CAG TAG
TAA GA

Slc18a2
(VMAT2)

NM_172523 f GTC TGT CTA TGG GAG
TGT GTA T

r GGG TAC GGC TGG
ACA TTA TT

Rn18s
(18S rRNA)

NR_003278 f TTC TGG CCA ACG GTC
TAG ACA AC

r CCA GTG GTC TTG GTG
TGC TGA

Forward and reverse primers are designated by f and r respec-
tively. D2R, dopamine D2 receptor; D3R, dopamine D3 receptor.
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Data analysis
Data are expressed as the mean ± SEM from n independent
experiments. One-way ANOVA and repeated-measures ANOVA

followed by multiple comparison tests (Bonferroni/Dunn
method) were used where applicable. Student’s t-test was used
to analyse the differences between two groups. Differences
were considered significant at P < 0.05.

Results

γ-Oryzanol acts directly on pancreatic islets
and enhances GSIS in vivo
As a first step in exploring the effects of γ-oryzanol on GSIS in
chow-fed mice, the effects of a single oral dose of γ-oryzanol
(320 μg·g−1 body weight) on blood glucose and insulin levels
were examined during i.p. GTTs (ipGTTs). γ-Oryzanol aug-
mented GSIS and significantly enhanced glucose tolerance
even in normal mice (Figure 1A,B). γ-Oryzanol showed a trend
towards a decrease in the plasma GLP-1 level, but the change
was not statistically significant (P = 0.11) (Figure 1C). To see if
γ-oryzanol would enhance GSIS independently of GLP-1
receptors, we evaluated, using PathHunter β-arrestin assays,

the agonist activities of γ-oryzanol on GLP-1 receptors and on
two other GPCRs, GPR119 and GPR120, both of which
potently stimulate GLP-1 secretion from intestine (Hirasawa
et al., 2005; Chu et al., 2007; Lauffer et al., 2009). γ-Oryzanol
did not show agonist activities on these GPCRs [0% of
exendin-4, a potent GLP-1 receptor agonist, Z-factor (a param-
eter of quality control in high throughput screening assays)
(Zhang et al., 1999) was 0.81; 9% of oleoylethanolamide, a
potent GPR119 agonist, Z-factor was 0.41; −2% of GW 9508, a
potent GPR120 agonist, Z-factor was 0.75 respectively].

To exclude the possibility that γ-oryzanol augments GSIS
via a central mechanism, we carried out sub-diaphragmatic
vagotomy in mice. Cholecystokinin-octapeptide (CCK-8)
reduced the food intake in 1 h by 63% in sham-operated
mice, while sub-diaphragmatic vagotomy abolished the
satiety effect of CCK-8 (Figure 1D), indicating that the
vagotomy was successful. In both sham-operated and vagoto-
mized mice, a single oral dose of γ-oryzanol significantly
lowered the blood glucose levels and the AUC of glucose
during ipGTTs (Figure 1E). Noticeably, in both sham-operated
and vagotomized mice, γ-oryzanol markedly increased
plasma insulin levels and the AUC of insulin during ipGTTs
(Figure 1F). These results suggest that γ-oryzanol acted
directly on the pancreatic islets to enhance GSIS.
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Figure 1
γ-Oryzanol enhances GSIS in mice. (A–C, E, F) Mice on a chow diet were treated with a single oral dose of γ-oryzanol (320 μg·g−1). The
concentrations and AUCs of blood glucose (A, E), plasma insulin (B, F) and plasma active GLP-1 (C) during ipGTTs (n = 8) are shown. Chow-fed
mice (A–C) and vagotomized mice (Vag) (E, F) were analysed. (D) Satiety effects of CCK-8 were tested in sham-treated mice (Sham) and
vagotomized mice (Vag). Sub-diaphragmatic vagotomy abolished the satiety effect of CCK-8. *P < 0.05, **P < 0.01 versus unoperated or
sham-operated mice treated with vehicle (Vehicle or Sham-Veh). ††P < 0.01 versus vehicle-treated vagotomized mice (Vag-Veh). Data are
expressed as means ± SEM.
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γ-Oryzanol enhances GSIS through activation
of the cAMP/PKA pathway via the
suppression of D2 receptor signalling
In both isolated murine islets and MIN6 cells, γ-oryzanol
markedly enhanced GSIS in a dose-dependent fashion
(Figure 2A,E). Furthermore, in both cellular systems,
γ-oryzanol significantly increased intracellular cAMP levels
and PKA activity (Figure 2B,C,F,G). Similarly, augmentation
of PKA activity by γ-oryzanol was abolished by H-89, a PKA
inhibitor (Figure 2C,G). To explore the underlying mecha-
nism, isolated murine islets and MIN6 cells were exposed to
(i) forskolin, which increases intracellular cAMP level; (ii)
Rp-8-Br-cAMPS, a cAMP antagonist; or (iii) H-89 respectively.
In both cellular systems, γ-oryzanol augmented forskolin-
enhanced insulin secretion (Figure 2D,H), while both Rp-8-
Br-cAMPS and H-89 abolished such stimulatory effects of
γ-oryzanol on GSIS (Figure 2I–K). These findings suggest that
γ-oryzanol reinforces GSIS via the cAMP/PKA amplifying
pathway in pancreatic islets.

On the other hand, haloperidol, a D2 receptor antagonist,
significantly enhanced GSIS (Figure 3A) through the eleva-
tion of intracellular cAMP (Figure 3B) but γ-oryzanol showed
no additive effect with haloperidol (Figure 3C,D), supporting
the notion that γ-oryzanol increased intracellular cAMP levels
and enhanced GSIS through suppression of D2 receptor sig-
nalling. Furthermore, both L-DOPA, a dopamine precursor,
and quinpirole, a potent D2 receptor agonist, abolished
γ-oryzanol-induced enhancement of GSIS (Figure 3E–G). Of
note, the inhibition by L-DOPA and quinpirole was
concentration-dependent (Figure 3F,G). To further confirm
the involvement of D2 receptor signalling in enhancing GSIS
by γ-oryzanol, Drd2 was silenced in vitro by incubating the
tissues or cells with specific siRNA for 2 days. In both pan-
creatic islets and MIN6 cells treated with Drd2 siRNA, the
expression of Drd2 was attenuated by 71.4 ± 0.1% and 69.5 ±
0.1% compared with scrambled siRNA-treated cells respec-
tively (Figure 3H,K). There were no significant changes in the
expression of Drd3 (dopamine D3 receptor) in both systems
(Figure 3H,K). Either γ-oryzanol or haloperidol enhanced
GSIS accompanied by the elevation of intracellular cAMP
level in cells treated with the scrambled siRNA. In contrast, in
Drd2 siRNA-treated cells, γ-oryzanol and haloperidol did not
increase GSIS and intracellular cAMP level (Figure 3I,J,L).
These results suggest that γ-oryzanol augments GSIS via the
suppression of D2 receptor signalling in pancreatic beta cells.
Of note, data from the PathHunter β-arrestin assays suggested
that there was no significant agonist or antagonist activities
of γ-oryzanol for any of the dopamine receptors (Table 2).

γ-Oryzanol increases insulin biosynthesis and
[Ca2+]i in islets
Elevation of intracellular cAMP enhances the biosynthesis of
insulin (Fehmann and Habener, 1992) and insulin secretion
induced by increased [Ca2+]i in the presence of insulinotropic
glucose concentrations (Yada et al., 1993). We therefore
assessed the effect of γ-oryzanol and haloperidol on the bio-
synthesis of insulin and its secretion in response to increased
[Ca2+]i in murine-isolated islets. Both γ-oryzanol and halop-
eridol significantly increased intracellular insulin contents
and the [Ca2+]i response (Figure 4). Of note, both γ-oryzanol

and haloperidol enhanced the first phase of [Ca2+]i responses
to high glucose (Figure 4B,C). These results also reinforce the
notion that γ-oryzanol increases intracellular cAMP levels and
subsequently enhances GSIS through suppression of D2 recep-
tor signalling.

γ-Oryzanol suppresses D2 receptor signalling
in pancreatic islets from HFD-fed mice
Following treatment of γ-oryzanol (320 μg·g−1 per body
weight per day) for 13 weeks, glucose level in mice on a HFD
was 1280 ± 50 mg·L−1, which was significantly decreased
compared with those in mice on the HFD alone (1570 ±
80 mg·L−1, P < 0.01). Body weight in mice fed HFD with
γ-oryzanol was 31.7 ± 0.8 g, which was comparable to that in
mice fed HFD alone (30.4 ± 1.2 g). Areas of islet cells stained
with antibody to TH, the rate-limiting enzyme of dopamine
synthesis (Figure 5A), and antibody to DAT, which mediates
dopamine uptake (Figure 5B), were increased in pancreatic
islets from HFD-fed mice, whereas the stained areas were
markedly decreased after treatment with γ-oryzanol. Conse-
quently, the ratio of TH-positive or DAT-positive cell areas to
the total islet area was significantly increased in HFD-fed
mice, and was substantially decreased by the treatment with
γ-oryzanol (Figure 5C,D). IHC analyses suggested that TH was
localized in beta cells, while DAT was not confined to α-cells,
beta cells or δ-cells (Figure 6).

We assessed protein and mRNA expression levels of genes
involved in D2 receptor signalling including D2 receptors
(Drd2), TH (Th), DAT (Slc6a3) and the vesicular monoamine
transporter type 2 (VMAT2; Slc18a2), which transports dopa-
mine into vesicles. In pancreatic islets from HFD-fed mice,
the mRNA levels of Drd2, Th and Slc6a3 were considerably
elevated, while that of Slc18a2, also known as a functional
marker of insulin production (Harris et al., 2008), was mark-
edly decreased (Figure 5E–H). Importantly, administration of
γ-oryzanol depressed the mRNA levels of these genes
(Figure 5E–H). In parallel with mRNA levels, protein levels of
D2 receptors, TH and DAT were concomitantly decreased by
γ-oryzanol (Figure 5I–L).

γ-Oryzanol decreases glucagon secretion from
murine islets
γ-Oryzanol significantly decreased glucagon levels in plasma
of HFD-fed mice (Figure 7A) and in media of isolated islet
cultures (Figure 7B). To test the possibility that γ-oryzanol
directly acted on α-cells, a murine α-cell line, α-TC cells, was
treated with γ-oryzanol. As shown in Figure 7C, glucagon
secretion from α-TC cells was reduced, concentration-
dependently, by glucose. It should be noted that mRNA level
of Drd2 in α-TC cells was extremely low, compared with those
in isolated islets and MIN6 cells, while that of Drd3 was about
the same in the three types of cells (Figure 7D,E). In α-TC
cells, γ-oryzanol and haloperidol did not affect glucagon
secretion in both basal and palmitate-stimulated conditions
(Figure 7F,G). IHC analyses of pancreatic islets from mice on
a HFD demonstrated that γ-oryzanol augmented the intensity
of insulin staining, while attenuating the average size of
pancreatic islets, as well as the ratio of α-cells to the total islet
area (Figure 7H–J). These results raised the possibility that
γ-oryzanol reduced the increased secretion of glucagon via
mechanisms independent of α-cells.
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Figure 2
γ-Oryzanol enhances GSIS through activation of the cAMP/PKA pathway in murine isolated islets and MIN6 cells. Murine isolated islets (A–D, I)
and MIN6 cells (E–H, J, K) were treated with the indicated concentrations of γ-oryzanol (Orz; 0.2, 2, 10 or 20 μg·mL−1). (A, E) Insulin secretion
was assessed following 25 mM glucose treated in murine-isolated islets (n = 10) (A) and MIN6 cells (n = 8) (E). (B, C, F, G) γ-Oryzanol (Orz; 0.2
or 2 μg·mL−1) increased intracellular cAMP levels (B, F) and PKA activity (C, G) following 25 mM glucose in islets (n = 12) (B, C) and MIN6 cells
(n = 8) (F, G). (D, H) Effects of γ-oryzanol (Orz; 0.2 or 2 μg·mL−1) on insulin secretion enhanced by 10 μM forskolin in islets (n = 10) (D) and MIN6
cells following 2.5 mM glucose (n = 8) (H). (I–K) GSIS by 25 mM glucose was suppressed by 10 μM Rp-8-Br-cAMPS or 10 μM H-89 in islets (n =
10) (I) and MIN6 cells (n = 8) (J, K) treated with γ-oryzanol (Orz; 2 μg·mL−1). Islets used in each experiment were isolated from eight mice, and
they were pooled and divided into indicated number of groups. *P < 0.05, **P < 0.01 versus vehicle (Veh)-treated islets. ††P < 0.01 versus cells
treated with vehicle (Veh) and γ-oryzanol (2 μg·mL−1). n.s., not significant. Data are expressed as means ± SEM.
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Figure 3
γ-Oryzanol enhances GSIS through the suppression of D2 receptor signalling in murine isolated islets and MIN6 cells. (A, B) Haloperidol (1, 10 μM)
increased insulin secretion (A) and intracellular cAMP levels (B) in isolated islets following 25 mM glucose (n = 12). (C, D) γ-Oryzanol (Orz;
2 μg·mL−1) and haloperidol (10 μM) had no additive effect on insulin secretion (n = 12) (C) and intracellular cAMP levels (n = 24) (D) in isolated
islets following 25 mM glucose. Islets used in each experiment were isolated from six mice, and they were pooled and divided into indicated
number of groups. (E) Insulin secretion enhanced by the indicated concentrations of γ-oryzanol (Orz; 0.2 or 2 μg·mL−1) was suppressed by 10 μM
L-DOPA or 5 μM quinpirole and in isolated islets (n = 10; islets isolated from 12 mice were pooled and divided into indicated number of groups).
(F, G) Insulin secretion in isolated islets treated with γ-oryzanol (Orz; 2 μg·mL−1) was suppressed by the indicated concentrations of L-DOPA (0.1,
1, 10 or 100 μM) (F) or quinpirole (0.05, 0.5, 5 or 50 μM) (G) (n = 10–14; islets isolated from eight mice were pooled and divided into indicated
number of groups). *P < 0.05, **P < 0.01 versus islets treated with vehicle (Veh). †P < 0.05, ††P < 0.01 versus islets treated with vehicle (Veh) and
γ-oryzanol. (H–L) Isolated pancreatic islets (H–J) and MIN6 cells (K, L) were treated with Drd2 siRNA. (H, K) Level of mRNA expression for Drd2
and Drd3. The levels were normalized against those of Rn18s. **P < 0.01 versus scrambled siRNA-transfected islets or cells (Scr). (I, L) Insulin
secretion in siRNA-treated islets (I) and MIN6 cells (L) was not enhanced by γ-oryzanol (Orz; 2 μg·mL−1) or haloperidol (10 μM) (n = 15–20). (J)
γ-Oryzanol (Orz; 2 μg·mL−1) and haloperidol (Halo; 10 μM) had no effect on intracellular cAMP levels in siRNA-treated islets (n = 10). Islets isolated
from eight mice were pooled and divided into indicated number of groups. **P < 0.01 versus scrambled siRNA-transfected islets treated with
vehicle (Veh). n.s., not significant. Amount of insulin secretion from MIN6 cells was normalized against the cellular protein content. Data are
expressed as means ± SEM.
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Discussion and conclusions
The major findings in the present study are summarized by
the scheme shown in Figure 8. Here, we have demonstrated
that, in mice, γ-oryzanol acted directly on pancreatic islets
and enhanced GSIS in vivo and in vitro (Figures 1 and 2). Such
a reinforcement of GSIS by γ-oryzanol was mediated by the
local activation of the cAMP/PKA amplifying pathway
(Figures 2 and 4). Along with chemical agonists for a variety
of fatty acid receptors, cAMP/PKA amplifying pathways in
pancreatic beta cells are promising drug targets for the treat-
ment of type 2 diabetes (Drucker, 2006; Rayasam et al., 2007;
Ohishi and Yoshida, 2012). In this context, γ-oryzanol may be
potentially useful as an alternative or a partner of combina-
tion therapies with incretin-related drugs.

To our knowledge, the present study is the first to dem-
onstrate that protein and mRNA expression of molecules
involved in D2 receptor signalling was considerably elevated
in pancreatic islets from mice fed on a HFD. Moreover, sup-
plementation with γ-oryzanol corrected the dysregulation of
these molecules in vivo (Figure 5). As increased signal trans-
duction by D2 receptors in pancreatic beta cells suppresses
the secretion of insulin (Rubi et al., 2005; Simpson et al.,
2012), such an effect of γ-oryzanol may be beneficial for
individuals with glucose intolerance and type 2 diabetes. To
date, how transcription of Drd2 is regulated is largely unde-
fined. It is possible that consensus element of NF-κB in the
promoter region of Drd2 (Bontempi et al., 2007) is related to
the HFD-induced dysregulation of D2 receptors in isolated
islets. Apart from the direct action of γ-oryzanol on pancre-
atic islets, it is also possible that improvement of hypergly-
caemia per se may influence the expression of molecules
involved in D2 receptor signalling. In this context, further
studies are necessary to elucidate fully the molecular mecha-
nisms involved.

Intriguingly, in HFD-induced obese rodents, expression of
genes involved in D2 receptor signalling in the brain reward
system (e.g. striatum, ventral tegmental area) was clearly
decreased, resulting in a profound addiction to fatty foods (Li

et al., 2009; Johnson and Kenny, 2010). Furthermore, recent
studies in rodents demonstrated that HFD-induced decre-
ment in D2 receptor expression in the brain reward system
was closely associated with the hyper-methylation in the
promoter region of the Drd2 gene (Vucetic et al., 2012).
Studies are ongoing in our laboratory to investigate whether
there is HFD-induced epigenetic dysregulation of the D2

receptor signalling in pancreatic islets or beta cells.
In isolated islets and MIN6 cells, experiments with RNA

interference for Drd2 and with exogenous D2 receptor
ligands demonstrated that γ-oryzanol augmented GSIS via
the suppression of D2 receptor signalling (Figure 3).
Enhancement of GSIS by γ-oryzanol was suppressed by
L-DOPA (Figure 3E,F), while γ-oryzanol has neither agonist
nor antagonist activities at D2 receptors (Table 2). These
findings suggest that γ-oryzanol has inhibitory effects on
local dopamine synthesis.

In the pathophysiology of diabetes mellitus, exaggerated
secretion of glucagon from pancreatic α-cells contributes to
the vicious cycle of glucose dyshomeostasis (Holst, 2007). We
demonstrated that γ-oryzanol substantially ameliorated the
exaggerated secretion of glucagon in both HFD-fed mice and
murine-isolated islets (Figure 7). As D2 receptors are confined
to beta cells in pancreatic islets in mice (Rubi et al., 2005), our
data raise the possibility that γ-oryzanol would not directly
affect glucagon secretion from α-cells. To support this notion,
we demonstrated in an α-cell line, α-TC cells, that γ-oryzanol
and haloperidol did not affect glucagon secretion in either
basal or palmitate-stimulated conditions (Figure 7F,G). The
secretion of glucagon is known to be regulated by the central
and peripheral nervous system as well as intra-islet paracrine
factors including insulin, GABA and somatostatin (Ishihara
et al., 2003; Kawamori et al., 2009; Walker et al., 2011). For
instance, postprandial glucagon release is strongly suppressed
by GLP-1 and the effect of GLP-1 is mediated, at least partly,
by somatostatin (Holst, 2007; Seino et al., 2010). In this
context, our results raise the possibility that γ-oryzanol
may reduce increased secretion of glucagon via α-cell-
independent, intra-islet paracrine factors.

Table 2
Agonist or antagonist activities of γ-oryzanol for dopamine receptors (DRD1–DRD5)

Agonist Antagonist

% Activity Z-factor % Inhibition Z-factor

DRD1 0 0.73 10 0.84

DRD2L 1 0.79 −5 0.81

DRD2S 2 0.81 5 0.91

DRD3 13 0.48 −13 0.79

DRD4 1 0.86 −2 0.77

DRD5 −2 0.75 9 0.87

Percentage of activity in γ-oryzanol for each dopamine receptor was calculated relative to the basal or maximal agonist values of dopamine.
Percentage of inhibition by γ-oryzanol for each dopamine receptor was calculated relative to the basal or EC80 values for dopamine (antagonist
activity). GPCR targets: DRD1, dopamine D1 receptor; DRD2L, long form of the dopamine D2 receptor; DRD2S, short form of the dopamine
D2 receptor; DRD3, dopamine D3 receptor; DRD4, dopamine D4 receptor; DRD5, dopamine D5 receptor.
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Regarding the effects of γ-oryzanol on food intake in mice,
we previously reported that γ-oryzanol did not affect the total
amount of food intake (chow: 16.8 ± 0.5 g per week, HFD:
16.4 ± 0.4 g per week, HFD + γ-oryzanol: 16.2 ± 0.5 g per

week). However, γ-oryzanol does reduce the preference for
fatty foods in mice (Kozuka et al., 2012). Based on these
findings, in the current experimental settings, the insulino-
tropic effects of γ-oryzanol on pancreatic islets should be
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Figure 4
γ-Oryzanol increases intracellular insulin contents and [Ca2+]i in murine isolated islets. (A) γ-Oryzanol (Orz; 0.2, 2 or 20 μg·mL−1) and haloperidol
(Halo; 10 μM) increased intracellular insulin contents (n = 14). (B, C) The representative [Ca2+]i responses to 8.3 mM glucose in islets incubated
with γ-oryzanol or haloperidol. Both 2 μg·mL−1 γ-oryzanol (B) and 10 μM haloperidol (C) potentiated the first-phase [Ca2+]i response to 8.3 mM
glucose in murine single islet. The peak amplitude of [Ca2+]i responses was significantly enhanced by γ-oryzanol (Orz; 0.2, 0.5 or 2 μg·mL−1) (B)
(Veh, n = 8, Orz 0.2, n = 12, Orz 0.5, n = 5, Orz 2, n = 3; islets isolated from three mice were pooled and divided into indicated number of groups)
and haloperidol (C) (Veh, n = 12, Halo, n = 10; islets isolated from two mice were pooled and divided into indicated number of groups). *P < 0.05,
**P < 0.01 versus vehicle (Veh)-treated islets. Data are expressed as means ± SEM.
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largely attributed to its direct mechanism. Moreover, as
demonstrated in Figure 1, oral administration of γ-oryzanol
to mice fed chow diet did not increase plasma GLP-1
level. The results of β-arrestin assays also support the notion
that γ-oryzanol did not act as a ligand for GLP-1 receptor.
Notably, secretion of GLP-1 is controlled strongly by a
vagal nerve-mediated central mechanism (Drucker, 2006).
However, even in vagotomized mice, γ-oryzanol markedly
increased the plasma insulin levels during ipGTTs (Figure 1).
These data suggest that γ-oryzanol acts directly on pancreatic

islets and enhances GSIS independently of GLP-1 receptor
signalling. Furthermore, we recently demonstrated that
γ-oryzanol protects beta cells against ER stress-induced apop-
tosis in HFD-fed mice (Kozuka et al., 2015). Taken together,
γ-oryzanol exhibited metabolically beneficial effects on
glucose homeostasis in a GLP-1 independent, unique insuli-
notropic manner.

The present study unveiled the mechanism, at least in
part, whereby γ-oryzanol protects pancreatic islets against
HFD-induced dysfunction and augments GSIS via the

MergeDATInsulin
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Figure 6
TH was localized in beta cells, whereas DAT was not confined to α-cells, beta cells or δ-cells. IHC analyses of pancreatic islets from HFD-fed mice.
Paraffin-embedded sections were co-stained with anti-TH (red) and anti-insulin (green) (A), anti-DAT (red) and anti-insulin (green) (B), or anti-DAT
(red) and anti-glucagon (green) (C) antibodies. Scale bar, 5 μm; magnification, ×600. (D) Serial paraffin-embedded sections were stained with
anti-DAT and anti-somatostatin antibodies. Scale bar, 20 μm; magnification, ×400.
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attenuation of local D2 receptor signalling in mice. This series
of unexpected actions of γ-oryzanol may lead to a novel,
natural food-based preventive treatment for type 2 diabetes.
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