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Abstract

Background Survival estimation guides surgical decision-

making in metastatic bone disease. Traditionally, classic

scoring systems, such as the Bauer score, provide survival

estimates based on a summary score of prognostic factors.

Identification of new factors might improve the accuracy of

these models. Additionally, the use of different algo-

rithms—nomograms or boosting algorithms—could further

improve accuracy of prognostication relative to classic

scoring systems. A nomogram is an extension of a classic

scoring system and generates a more-individualized sur-

vival probability based on a patient’s set of characteristics

using a figure. Boosting is a method that automatically trains

to classify outcomes by applying classifiers (variables) in a

sequential way and subsequently combines them. A boost-

ing algorithm provides survival probabilities based on every

possible combination of variables.

Questions/purposes We wished to (1) assess factors

independently associated with decreased survival in

patients with metastatic long bone fractures and (2) com-

pare the accuracy of a classic scoring system, nomogram,

and boosting algorithms in predicting 30-, 90-, and 365-day

survival.

Methods We included all 927 patients in our retrospec-

tive study who underwent surgery for a metastatic long

bone fracture at two institutions between January 1999 and

December 2013. We included only the first procedure if

patients underwent multiple surgical procedures or had

more than one fracture. Median followup was 8 months

(interquartile range, 3-25 months); 369 of 412 (90%)

patients who where alive at 1 year were still in followup.

Multivariable Cox regression analysis was used to identify
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clinical and laboratory factors independently associated

with decreased survival. We created a classic scoring

system, nomogram, and boosting algorithms based on

identified variables. Accuracy of the algorithms was as-

sessed using area under the curve analysis through fivefold

cross validation.

Results The following factors were associated with a

decreased likelihood of survival after surgical treatment of

a metastatic long bone fracture, after controlling for rele-

vant confounding variables: older age (hazard ratio [HR],

1.0; 95% CI, 1.0–1.0; p\ 0.001), additional comorbidity

(HR, 1.2; 95% CI, 1.0–1.4; p = 0.034), BMI less than 18.5

kg/m2 (HR, 2.0; 95% CI, 1.2–3.5; p = 0.011), tumor type

with poor prognosis (HR, 1.8; 95% CI, 1.6–2.2; p\0.001),

multiple bone metastases (HR, 1.3; 95% CI, 1.1–1.6; p =

0.008), visceral metastases (HR, 1.6; 95% CI, 1.4–1.9; p\
0.001), and lower hemoglobin level (HR, 0.91; 95% CI,

0.87–0.96; p \ 0.001). The survival estimates by the

nomogram were moderately accurate for predicting 30-day

(area under the curve [AUC], 0.72), 90-day (AUC, 0.75),

and 365-day (AUC, 0.73) survival and remained stable

after correcting for optimism through fivefold cross vali-

dation. Boosting algorithms were better predictors of

survival on the training datasets, but decreased to a per-

formance level comparable to the nomogram when applied

on testing datasets for 30-day (AUC, 0.69), 90-day (AUC,

0.75), and 365-day (AUC, 0.72) survival prediction. Per-

formance of the classic scoring system was lowest for all

prediction periods.

Conclusions Comorbidity status and BMI are newly

identified factors associated with decreased survival and

should be taken into account when estimating survival.

Performance of the boosting algorithms and nomogram

were comparable on the testing datasets. However, the

nomogram is easier to apply and therefore more useful to

aid surgical decision making in clinical practice.

Level of Evidence Level III, prognostic study.

Introduction

Estimated survival is an important factor in the decision to

operate and operative strategy in patients with bony

metastasis [2, 24]. Physicians often estimate survival based

on their clinical assessments and previously described risk

factors. Several tools in the form of scoring systems have

been developed to assist clinicians with their estimation [2,

8, 9, 19, 24]. However, these tools lack accuracy and

identification of additional and more-specific risk factors

might improve survival estimation [14, 24].

Historically, tools like scoring systems that are used to

provide survival probability are based on a summary score

of weighted clinical or laboratory factors [2, 19, 24]. The

Bauer [2] score is such a classic scoring system commonly

used for estimation of survival in patients with bone

metastases. It is a summary score of five prognostic factors:

(1) no pathologic fracture, (2) no visceral or brain metas-

tases, (3) a solitary bone metastasis, (4) no lung cancer, and

(5) multiple myeloma, lymphoma, breast or kidney carci-

noma. Fulfilling four to five criteria corresponded to a

1-year survival probability of 0.5, two to three criteria to a

1-year survival probability of 0.25, and all patients who

fulfilled none or only one criterion were deceased within 6

months after surgery [2]. Another frequently used tool to

estimate survival in patients with cancer is the nomogram,

which is a simple figure that generates an individualized

numerical probability of survival based on a patient’s

unique set of characteristics; a number of points is assigned

to each prognostic factor, which can be read from the

nomogram and the sum of these points corresponds to a

survival probability [17, 20, 25]. The nomogram can be

seen as an extension of the classic scoring system.

Advances in computer science have led to the development

of more sophisticated boosting (machine learning) algo-

rithms [13, 33]. Machine learning is a method of

automatically developing and constantly adjusting com-

puter algorithms to recognize patterns in data and improve

predictions (eg, filtering spam email) [13]. Boosted

regression emerged from this field and is a method that

iteratively applies classifiers (variables) in a sequential

way–each step building on the previous step aiming to fit

the residuals–and subsequently combines them to obtain

predictions [13, 33]. This can improve the accuracy of

predicting an outcome based on weak learners (ie, classi-

fiers that are only slightly better than random guessing). A

boosting algorithm provides outcome probabilities based

on every possible combination of variables [33].

We aimed to assess factors associated with survival in

patients with long bone metastatic fractures. Based on

those factors, we created a classic scoring algorithm, a

nomogram, and boosting algorithms to estimate survival.

Specifically, we sought to (1) assess factors independently

associated with decreased survival in patients with meta-

static long bone fractures, and (2) compare the accuracy of

a classic scoring system, nomogram, and boosting algo-

rithms in predicting 30-, 90-, and 365-day survival.

Patients and Methods

This retrospective study was approved by our institutional

review board and a waiver of informed consent was

granted. To identify patients with a metastatic long bone

fracture, we retrieved all medical record data of patients
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who had an International Classification of Diseases, 9th

Revision (ICD-9) code for a metastatic long bone fracture

or a Current Procedural Terminology (CPT) code for pro-

phylactic fixation of a long bone fracture (Appendix 1.

Supplemental material is available with the online version

of CORR1.), at two tertiary care referral centers.

After operative report and medical record screening, we

included all 927 patients older than 18 years who had

surgery for a pathologic or impending metastatic long bone

fracture between January 1999 and December 2013. We

included only the first surgery per patient if patients

underwent multiple operations on different occasions so as

to not violate the statistical assumption of independence

[3]. We defined long bones as the femur, humerus, tibia,

fibula, radius, and ulna; multiple long bones operated on

during the same procedure were categorized separately.

Metastatic disease included, in addition to metastases from

solid organs, multiple myeloma and lymphoma. We

included patients regardless of followup duration. Exclu-

sion criteria were (1) revision procedures, (2) metastatic

involvement of the acetabulum or pelvis requiring recon-

struction, and (3) operative treatments other than

endoprosthetic reconstruction, plate-screw fixation, intra-

medullary nailing, and dynamic hip screw.

The decision to operate and the selection of operative

strategy were made by the surgeon together with the

patient. These decisions were based on factors including

type of fracture, primary tumor type, extent of the meta-

static lesion, level of disability and pain, and the estimated

survival.

Our primary outcome was survival, defined as the time

from operative treatment until death resulting from any

cause. Date of death was extracted from the medical

records and Social Security Death Index database (database

of death records created from the US Social Security

Administration), last updated February 24, 2014 [16]. This

date also provided the moment of final followup for all

patients alive in our study. Median followup was 8 months

(interquartile range, 3–25 months). All patients who were

alive at 30 days were still in followup (n = 853), 673 of 678

patients (99%) who were alive at 3 months were still in

followup, and 369 of 412 (90%) patients who were alive at

1 year were still in followup (Fig. 1).

We selected the following explanatory variables based

on the existing studies [19, 24, 31] or theoretical associa-

tion with survival: age, sex, BMI, comorbidity status,

primary tumor type, type of fracture, anatomic location of

fracture, time from diagnosis of the primary tumor until

operative treatment, other bone metastases, other previous

metastatic fractures, visceral metastases, previous systemic

therapy, previous local radiotherapy of the affected long

bone, and preoperative hemoglobin level, platelet level,

white blood cell count, creatinine, and serum calcium level.

We categorized BMI into: less than 18.5 kg/m2 (un-

derweight), between 18.5 and 30 kg/m2 (normal weight),

and 30 kg/m2 or greater (obese) based on previously pub-

lished cutoff points as we expect a nonlinear association of

BMI with survival [10, 37].

We used the modified Charlson Comorbidity Index [28,

29] to indicate comorbidity status. This index provides a

score ranging from 0 to 24 with a higher score representing

more severe comorbidity status based on 12 weighted

comorbidities (congestive heart failure, dementia, chronic

pulmonary disease, rheumatologic disease, mild liver dis-

ease, diabetes with chronic complications, hemiplegia or

paraplegia, renal disease, any malignancy, moderate or

severe liver disease, metastatic solid tumor, and HIV/

AIDS). We determined the modified Charlson Comorbidity

Index through a previously described algorithm based on

ICD-9 codes given before the day of surgery [6, 30, 38]

(Appendix 2. Supplemental material is available with the

online version of CORR1.). The modified Charlson

Comorbidity Index was dichotomized into any additional

comorbidity (additional to the malignancy and metastatic

disease) or none.

Based on a study by Katagiri et al. [19], we dichot-

omized primary tumor types into tumors with a relatively

good prognosis (breast, kidney, prostate, thyroid, myeloma,

and lymphoma) and tumors with a poor prognosis (lung

and all other tumor types).

Fracture type was classified as pathologic or impending.

The latter was defined as bone with no visible fracture line,

loss of height, rotation, or angulation, but the degree of

destruction did mandate, in the surgeon’s opinion, operative

treatment. Previous pathologic fractures or prophylactically

treated impending fractures were categorized into none,

Fig. 1 The Kaplan-Meier plot shows the probability of survival

(solid line) with 95% CI (dashed line). The median survival is 268

days (95% CI, 241–309), with an interquartile range from 84 (95%

CI, 72–97) to 1089 days (95% CI, 922–1262).
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previous long bone fracture, and previous spine fracture

(with or without previous long bone fracture).

We extracted the presence of bone metastases from bone

scan, CT, and other imaging reports. Bone metastases were

categorized into single bone metastasis, multiple bone

metastases without spinal involvement, and multiple bone

metastases with spinal involvement. The presence of vis-

ceral metastases was derived from CT and positron

emission tomography scan reports. We regarded lung,

liver, and brain metastases as visceral metastases and

grouped lung and/or liver metastases together; brain

metastases (with or without lung/liver metastases) were

categorized separately.

We used laboratory values measured within 7 days

before operative treatment.

Statistical Analysis

Variables are presented with frequencies and percentages

for categorical variables and as mean with SD for con-

tinuous variables. In bivariate analyses, the association

between the response variable survival and the explanatory

variables was assessed using Cox regression analysis

(Appendix 3. Supplemental Materials are available with

the online version of CORR1.). The proportional hazards

assumption was tested using Schoenfeld residuals and

verified by assessing if Kaplan-Meier survival curves

crossed. Our exploratory analysis identified the following

variables: age (p\0.001), BMI less than 18.5 kg/m2 (p\
0.001), additional comorbidity (p\ 0.001), multiple long

bones surgically treated during the same procedure (p =

0.077), poor prognosis tumor type (lung and all other

tumor types) (p\ 0.001), multiple bone metastases with-

out spinal involvement (p = 0.096) and with spinal

involvement (p = 0.014), lung and/or liver metastasis (p\
0.001) and brain metastasis (p\0.001), previous systemic

therapy (p = 0.057), hemoglobin level (p = 0.001), and

platelet level (p = 0.004), which then were incorporated in

our multivariable model (Appendix 3. Supplemental

materials are available with the online version of

CORR1.). We recategorized bone metastases as single and

multiple metastases as exploratory analysis showed no

difference in hazard ratios (HR) between patients with

multiple bone metastases without spinal involvement (HR,

1.2; 95% CI, 1.0–1.5) and those with spinal involvement

(HR, 1.3; 95% CI, 1.0–1.5; p = 0.67). Visceral metastases

also was recategorized as none and any visceral metastases

as there was no difference in hazard ratios between lung

and liver metastases (HR, 1.9; 95% CI, 1.6–2.2) and brain

metastases (HR, 1.8; 95% CI, 1.5–2.2; p = 0.82) (Ap-

pendix 3. Supplemental material is available with the

online version of CORR1.).

We entered these explanatory variables with a p value

less than 0.10 on bivariate analysis in a backward stepwise

multivariable Cox regression analysis to assess the inde-

pendent association with survival [1, 15]. We did not test

interactions of variables. HRs and beta regression coeffi-

cients are presented to quantify the association of

explanatory variables with survival. The HR indicates the

relative likelihood of death in one group compared with

another group. HRs are adjusted for all explanatory vari-

ables included in the multivariable Cox regression analysis.

We assume missing values–BMI (21%, 197 of 927

patients) and hemoglobin (6%, 59 of 927 patients)–to be

random and used multiple imputation to replace missing

values 40 times based on the remaining explanatory vari-

ables [22].

A two-sided p value less than 0.05 was considered sig-

nificant; all statistical analyses were performed using

Stata1 13.0 (StataCorp LP, College Station, TX, USA).

Development of A Classic Scoring System, Nomogram,

and Boosting Algorithms

We developed a classic scoring system to estimate survival

probability by assigning a weighted score to every factor

independently associated with survival by rounding its HR

to the nearest integer [2, 19, 31]. To allow for scoring of

continuous variables, we dichotomized age (65 years and

older) and hemoglobin level (10 g/dL and less) and roun-

ded the HRs of the mean difference between the

dichotomized groups to the nearest integer (mean differ-

ence in age, 20 years [HR, 1.34] and mean difference in

hemoglobin level 2.6 g/dL [HR, 1.27]) [24]. The total score

of the classic scoring system ranges from 0 to 10 (Table 1).

We categorized scores as: good prognosis, (0–2 points),

intermediate prognosis (3–5 points), and poor prognosis

(6–10 points) based on the survival probability curves

(Fig. 2). Survival probability was shown per prognostic

group for each prediction period (30, 90, and 365 days)

(Table 2) [2, 19].

We developed a nomogram by ranking the effect esti-

mates (b regression coefficients) of all factors

independently associated with survival to a scale ranging

from 0 to 100 points [17, 20]. The predicted probability of

30-, 90-, and, 365-day survival were calculated for each

patient using the multivariable Cox regression model

underlying the nomogram [17, 21].

Boosting algorithms to predict 30-, 90-, and 365-day

survival were developed using the ‘‘multiple additive

regression trees’’ gradient boosting technique implemented

in Stata1 13.0 [13, 33]. Boosting is a machine learning

technique that produces a prediction algorithm based on

additive decision trees to classify outcome (30-, 90-, and
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365-day survival) in a stepwise fashion [13, 33]. We

included the same set of factors independently associated

with survival for development of the boosting algorithms.

Each boosting algorithm allowed for two-way interactions.

The algorithm provides an estimated survival probability

for every possible combination (permutation) of the

included variables for each prediction period, thereby

taking into account the interaction of the included variables

[33].

All three prediction models were compared using five-

fold cross validation on the 40 multiple imputed datasets,

meaning that the models were created five times on ran-

domly selected training subsets (80%) of the data and

tested on the remaining 20% [12, 36]. The average per-

formance (the ability of a model to separate patients with

different outcomes) was calculated over the five training

and testing repetitions per multiple imputed dataset for all

three models and prediction periods and subsequently

pooled. Performance was assessed using receiver operating

characteristic (ROC) curves [4, 11, 27]. ROC curves are

made by plotting the rate of false positives (1 – specificity)

on the x-axis and the rate of true positives (sensitivity) on

the y-axis for all threshold values. The area under the ROC

curve (AUC) represents its discriminatory power; an AUC

of 1.0 indicates perfect discrimination (100% sensitivity

and 100% specificity), whereas an AUC of 0.50 represents

no discriminatory power (a coin toss).

The final classic scoring system, nomogram, and

boosting algorithms were developed on the 40 multiple

imputed datasets and results were pooled [12, 36].

Patient Characteristics

Among the 927 patients, 401 (43%) were men, and the

mean age of the patients was 62 years (Table 3). There

were 515 (56%) pathologic fractures and 412 (44%)

impending fractures. The femur (70%; 646 of 927 patients)

and humerus (23%; 210 of 927 patients) were most com-

monly affected. Most tumors originated from the breast

(23%; 216 of 927 patients), lung (23%; 215 of 927

patients), myeloma (16%; 148 of 927 patients), kidney

(9%; 87 of 927 patients), and prostate (5%; 48 of 927

patients) (Table 4). Median overall survival was 9 months

(Fig. 1). Ninety-two percent of the patients survived 30

days (853 of 927 patients), 73% (676 of 922 patients)

survived 90 days, and 42% (368 of 884 patients) survived

365 days. The median time from diagnosis of the primary

tumor until operative treatment of the metastatic fracture

was 21 months. Five-hundred sixty (60%) patients

Table 1. Classic scoring system

Variable Points

Age 65 years or older 1

Additional comorbidity 1

BMI less than 18.5 kg/m2 2

Tumor type other than breast, kidney, prostate, thyroid,

myeloma, and lymphoma

2

Multiple bone metastases 1

Visceral metastases* 2

Hemoglobin level 10 g/dL or less 1

* Visceral metastases include lung, liver, and/or brain metastases.

Table 2. Survival probability per prognostic group and prediction

period (n = 927 patients)*

Prognostic groups Probability of survival

(95% CI)

Good prognosis (score 0–2 points)

30 days 0.98 (0.96–0.99)

90 days 0.93 (0.89–0.96)

365 days 0.66 (0.60–0.73)

Intermediate prognosis (score 3–5 points)

30 days 0.92 (0.90–0.94)

90 days 0.73 (0.69–0.76)

365 days 0.39 (0.34–0.43)

Poor prognosis (score 6–10 points)

30 days 0.84 (0.79–0.89)

90 days 0.49 (0.41–0.56)

365 days 0.17 (0.11–0.23)

* Missing values for BMI and hemoglobin level were imputed using

multiple imputation.

Fig. 2 The Kaplan-Meier plot shows the probability of survival per

prognostic group of the classic scoring algorithm: good prognosis (0–

2 points; green dashed line), intermediate prognosis (3–5 points;

dotted red line), and poor prognosis (6–10 points; solid blue line).
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underwent intramedullary nailing, 209 (23%) had endo-

prosthetic reconstruction, 140 (15%) had plate-screw

fixation, and 18 (2%) had placement of a dynamic hip

screw.

Results

Explanatory Variables Associated With Survival

The following factors were associated with a decreased

likelihood of survival after surgical treatment of a meta-

static long bone fracture, after controlling for relevant

confounding variables: older age (HR, 1.0; 95% CI, 1.0–

1.0; p\0.001), additional comorbidity (HR, 1.2; 95% CI,

1.0–1.4; p = 0.034), BMI less than 18.5 kg/m2 (HR, 2.0;

95% CI, 1.2–3.5; p = 0.011), tumor type with poor prog-

nosis (HR, 1.8; 95% CI, 1.6–2.2; p\0.001), multiple bone

metastases (HR, 1.3; 95% CI, 1.1–1.6; p = 0.008), visceral

metastases (HR, 1.6; 95% CI, 1.4–1.9; p \ 0.001), and

lower hemoglobin level (HR, 0.91; 95% CI, 0.87–0.96; p\
0.001)(Table 5).

Comparing Performance of the Classic Scoring,

Nomogram, and Boosting Algorithms

The survival estimates by the nomogram were moderately

accurate for predicting 30-day (AUC, 0.72), 90-day (AUC,

0.75), and 365-day (AUC, 0.73) survival and remained

Table 3. Baseline characteristics

Demographics Mean (± SD)

Age (years) 62 (± 13)

BMI (kg/m2)* 27 (± 5.8)

Modified Charlson Comorbidity Index 6.7 (± 2.0)

Number (%)

Men 401 (43)

Pathologic fracture 515 (56)

Anatomic location

Femur 646 (70)

Humerus 210 (23)

Tibia 31 (3.3)

Radius 3 (0.32)

Ulna 2 (0.22)

Multiple locations§ 35 (3.8)

Oncologic status Number (%)

Bone metastases

Single bone metastasis 202 (22)

Multiple bone metastases without

spinal involvement

185 (20)

Multiple bone metastases with

spinal involvement

540 (58)

Previous pathologic fractures

None 662 (71)

Previous long bone (impending)

pathologic fracture

79 (8.5)

Previous spine (impending) pathologic fracture� 186 (20)

Visceral metastases

None 504 (54)

Lung and/or liver metastases 273 (29)

Brain metastases (with or without

lung/liver metastases)

150 (16)

Previous systemic therapy 577 (62)

Previous local radiotherapy of the

affected long bone

170 (18)

Laboratory values� Mean (± SD)

Hemoglobin (g/dL) 11 (± 1.6)

Platelets (1000/mm3) 254 (± 116)

White blood cell count (1000/mm3) 9.7 (± 4.9)

Creatinine (mg/dL) 0.94 (± 0.81)

Calcium (mg/dL) 8.8 (± 0.93)

Number of patients = 927; * BMI was available for 730 patients;
§multiple metastatic fracture locations undergoing fixation during the

same procedure were: bilateral femur (12 patients), femur and

humerus (16 patients), bilateral humerus (2), tibia and femur (1), tibia

and humerus (1), fibula and tibia (1), radius and humerus (1), ulna and

radius (1); �with or without previous long bone pathologic fracture;
�hemoglobin level was available in 868 patients, platelet level in 866

patients, white blood cell count in 867 patients, creatinine in 812

patients, and calcium in 654 patients.

Table 4. Origin of primary tumors

Tumor distribution Number (%)

Breast 216 (23)

Lung 215 (23)

Myeloma 148 (16)

Kidney 87 (9)

Prostate 48 (5)

Lymphoma 43 (5)

Melanoma 25 (3)

Esophagus 18 (2)

Colorectal 16 (2)

Thyroid 15 (2)

Hepatocellular 12 (1)

Bladder 10 (1)

Other* 35 (4)

Unknown 39 (4)

Number of patients = 927; * neuroendocrine (n = 6), salivary gland (n =

5), nasopharyngeal squamous cell carcinoma (n = 5), pancreas (n = 4),

ovaries (n = 4), endometrium (n = 3), skin squamous cell carcinoma (n =

3), stomach (n = 2), vulva (n = 2), and mesothelioma (n = 1).
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stable after correcting for optimism through fivefold cross

validation (Table 6). Boosting algorithms were better pre-

dictors of survival at all prediction periods on the training

datasets; however, after applying these to the testing

datasets we found that accuracy of the boosting algorithms

decreased substantially for the 30-day (AUC, 0.83 to 0.69),

90-day (AUC, 0.81 to 0.75), and 365-day (AUC, 0.78 to

0.72) prediction periods resulting in a performance com-

parable to the that of the nomogram (Table 6).

Performance of the classic scoring system was lowest for

all prediction periods.

Discussion

Expected survival is an important factor in the decision to

operate and in the selection of a surgical strategy for

patients with metastatic fractures [2, 24]. Previous studies

developed scoring algorithms to estimate survival [2, 8, 9,

19, 24, 31], but survival estimates remain imprecise [24]. In

an attempt to improve survival estimation, we assessed

which clinical factors and laboratory values were indepen-

dent predictors of survival. Additionally, we developed a

classic scoring system, nomogram, and boosting algorithms

to estimate 30-, 90-, and 365-day survival and compared the

accuracy of these methods. We found that older age, addi-

tional comorbidity, BMI less than 18.5 kg/m2, primary

tumor type with poor prognosis, multiple bone metastases,

visceral metastases, and lower hemoglobin level, were

independently associated with decreased likelihood of sur-

vival. The survival estimates by the boosting algorithm

were most accurate on the training datasets, but comparable

to those derived from the nomogram when applied to the

testing datasets for 30-, 90-, and 365-day survival. We

emphasize the use of the nomogram (Fig. 3) for estimating

survival as it is simpler to use in clinical practice.

Table 5. Hazard ratios for survival from stepwise backward multivariable Cox regression analysis§

Explanatory variables b regression

coefficient

Standard

error

Hazard ratio (95% CI) p value

Age (in years) 0.015 0.003 1.015 (1.008–1.021) \ 0.001

Additional comorbidity 0.164 0.077 1.179 (1.013–1.372) 0.034

BMI

Less than18.5 kg/m2* 0.707 0.276 2.027 (1.175–3.480) 0.011

Between 18.5 and 30 kg/m2* Reference Reference Reference Reference

Greater than 30 kg/m2* 0.045 0.106 1.046 (0.549–1.288) 0.672

Tumor type other than: breast, kidney, prostate,

thyroid, myeloma, and lymphoma

0.609 0.080 1.839 (1.574–2.150) \ 0.001

Multiple bone metastases 0.254 0.095 1.290 (1.069–1.555) 0.008

Visceral metastases 0.500 0.079 1.649 (1.412–1.926) \ 0.001

Hemoglobin level (g/dL)* �0.094 0.025 0.911 (0.867–0.956) \ 0.001

Number of patients = 927; * BMI was available for 730 patients; hemoglobin level available for 868 patients; missing values were imputed using

multiple imputation; §variables were selected using stepwise backward multivariable Cox regression analysis retaining variables with a p value

less than 0.10.

Table 6. AUC for the classic scoring algorithm and boosting algorithm from receiver operating characteristic analysis

Prediction period Classic scoring system

AUC (95% CI)

Nomogram AUC

(95% CI)

Boosting algorithm

AUC (95% CI)

p value

Training subsets

30 days 0.66 (0.60–0.72) 0.72 (0.66–0.78) 0.83 (0.78–0.88) \ 0.001

90 days 0.70 (0.66–0.73) 0.76 (0.72–0.80) 0.81 (0.78–0.85) \ 0.001

365 days 0.68 (0.65–0.72) 0.73 (0.70–0.77) 0.78 (0.75–0.81) \ 0.001

Testing subsets

30 days 0.67 (0.55–0.78) 0.72 (0.59–0.84) 0.69 (0.55–0.83) 0.328

90 days 0.70 (0.62–0.77) 0.75 (0.68–0.83) 0.75 (0.67–0.83) 0.075

365 days 0.68 (0.61–0.75) 0.73 (0.65–0.80) 0.72 (0.65–0.80) 0.125

AUC = area under the curve.
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This study has some limitations. First, there were no uni-

form criteria for operative treatment because the study was

retrospective. This might have resulted in selection bias and

potentially influenced accuracy of the prediction models; for

example, patients with a very poor overall health status might

not have been considered for operative treatment. Although

this might limit the usefulness of the algorithms in these

patients, we believe that this did not compromise the com-

parison of performanceof the algorithms inour study. Second,

we used diagnostic and billing codes to identify potentially

eligible patients. We might have missed patients using this

methodology; however, we expect this number to be low and

therefore not influence our conclusions. Third, although we

internally validated the algorithms through fivefold cross

validation, predictive performance can worsen substantially

on external validation. External validation should be per-

formed before widespread use of a prediction algorithm [5,

34]. Fourth, we did not assess how discriminant the predicted

probabilities by the different models were. We see this as a

minor limitation and emphasized performance of the models

as better performance (higher AUC) implies less uncertainty–

more precision–of the points estimate of the predicted prob-

ability. Fifth, because the study was retrospective, we could

not include performance status of the patient. Including this

might have improved the predictive accuracy of our algo-

rithms as previous studies showed a strong association with

survival [19, 24]. Sixth, we decided to select variables for

inclusion in the boosting algorithms based on theory.

Including all explanatory variables using a kitchen-sink

approach (having the algorithm select variables) could

improve its accuracy. However, this might have resulted in a

large number of factors to consider when estimating survival,

making it less useful in clinical practice, and potentially

worsening its external validity. We aimed to compare the

performance of prediction models based on the same set of

variables supported by theory. Seventh, we did not define

minimum followup. We see this as a minor limitation as we

used Cox regression analysis to account for right censoring

(loss to followup) and followupwas 90% for patients alive at 1

year.

Fig. 3 The nomogram for prediction of 30-, 90-, and 365-day

survival is shown. Locate the patients age on the age axis and draw a

straight line to the points axis. Repeat this process for all variables

and sum the points obtained for each predictor. Locate the total points

on the total points axis and draw a line straight down to find the 30-,

90-, and 365-day survival probabilities. BMI categories are: (1) less

than 18.5 kg/m2, (2) between 18.5 and 30 kg/m2, and (3) 30 kg/m2 or

greater (obese). The primary tumor Group 1 includes breast, kidney,

prostate, thyroid, myeloma, and lymphoma; Group 2 includes lung

and all other primary tumor types. This nomogram is not applicable to

a patient who otherwise is not a candidate for operative treatment of a

metastatic fracture. The outcome is a point estimate and the

nomogram does not include the uncertainty of the estimate.
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Previous studies of patients with metastatic fractures

found that visceral metastases, primary tumor type, number

of bone metastases, time from diagnosis of primary tumor

to surgery for metastatic fracture, fracture type, perfor-

mance status, previous chemotherapy, and hemoglobin

level were independently associated with survival [2, 19,

24, 31, 32]. We identified additional factors associated with

survival in patients with metastatic fractures, namely,

comorbidity status and BMI. The association of comor-

bidity status with overall and cancer-specific survival has

been shown in patients with primary malignancies [7, 26,

35] but not in patients with metastatic fractures. BMI can

be considered a surrogate marker of cancer severity

because low body weight often is associated with more

advanced cancer. Previous studies showed an association

of BMI with survival in patients with cancer [18, 23].

Furthermore, we divided multiple bone metastases into

those with and those without spinal involvement and vis-

ceral metastases into lung and/or liver metastases and brain

metastases to explore differences in their association with

survival. However, we found no differences between these

groups in terms of survival nor did we find an association

of previous pathologic fractures with survival. The differ-

ence in survival between impending and pathologic

fractures, found by Bauer and Wedin [2], was not found in

our study. Based on our findings, future studies should

explore how specific comorbidities influence survival in

patients with metastatic fractures and if optimizing peri-

operative nutritional status improves survival in these

patients.

Although the boosting algorithm was most accurate in

estimating survival on the training samples, its perfor-

mance decreased when applied to the testing subsets of the

data. This might be a result of overfitting of the boosting

algorithm on the training data. Performance of the boosting

algorithm was comparable to that of the nomogram when

applied to the testing subsets. We therefore prefer using the

nomogram in estimating survival as it is simpler to use in

daily practice. However, the nomogram does not make

treatment recommendations, it simply provides estimated

survival probabilities and can enable a more informed

decision-making process. Thirty-, 90-, and 365-day sur-

vival probabilities are based on the sum score of the points

assigned to the prognostic factors of an individual patient

(Fig. 3). For example, a 77-year old patient with breast

carcinoma, normal BMI, multiple bone metastases, but no

visceral metastases, diabetes with chronic complications

(additional comorbidity), and a preoperative hemoglobin of

9.4 g/dL gets assigned 157 points which corresponds to a

30-day survival probability of 0.93, 90-day survival prob-

ability of 0.74, and 365-day survival probability of 0.42.

The mean total points in our cohort was 156 points (SD,

39). Forsberg et al. [8, 9] described the development and

testing of machine learning algorithms in determining

survival of patients with metastatic fractures. The algo-

rithms they developed, based on a prospective cohort of

189 patients, had an AUC of 0.85 for 3-month survival and

0.83 for 1-year survival, indicating a higher accuracy

compared with our algorithms [8]. The prospective col-

lection of their data might have been more accurate and

less prone to bias, resulting in higher accuracy. Future

studies should externally validate survival prognostication

models and assess which algorithm is most accurate in

predicting survival for patients with extremity metastases.

Comorbidity status and BMI are two additional factors

associated with survival and should be taken into account

when estimating survival. These factors should be incor-

porated in survival prediction models. The nomogram

remained most accurate in predicting survival after cor-

recting for optimism and could be used on paper; however,

its estimates will be more precise when implemented in an

application. The nomogram could be made available on

interfaces convenient in clinical practice (such as smart-

phone applications) to aid surgical decision making. We

are working on external validation of the developed algo-

rithms and aim to develop an online tool to estimate

survival for use in clinical practice.
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