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Allocating attentional resources to currently relevant information in a dynamically changing environment is critical to goal-directed
behavior. Previous studies in nonhuman primates (NHPs) have demonstrated modulation of neural representations of stimuli, in
particular visual categorizations, by behavioral significance in the lateral prefrontal cortex. In the human brain, a network of frontal and
parietal regions, the “multiple demand” (MD) system, is involved in cognitive and attentional control. To test for the effect of behavioral
significance on categorical discrimination in the MD system in humans, we adapted a previously used task in the NHP and used multi-
voxel pattern analysis for fMRI data. In a cued-detection categorization task, participants detected whether an image from one of two
target visual categories was present in a display. Our results revealed that categorical discrimination is modulated by behavioral rele-
vance, as measured by the distributed pattern of response across the MD network. Distinctions between categories with different
behavioral status (e.g., a target and a nontarget) were significantly discriminated. Category distinctions that were not behaviorally
relevant (e.g., between two targets) were not discriminated. Other aspects of the task that were orthogonal to the behavioral decision did
not modulate categorical discrimination. In a high visual region, the lateral occipital complex, modulation by behavioral relevance was
evident in its posterior subregion but not in the anterior subregion. The results are consistent with the view of the MD system as involved
in top-down attentional and cognitive control by selective coding of task-relevant discriminations.
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Introduction
Essential to goal-directed behavior is the ability to allocate atten-
tional resources to behaviorally relevant aspects of sensory input,

such as categorical membership, and to filter out irrelevant informa-
tion. Evidence from nonhuman primates (NHPs) has demonstrated
that neuronal activity in the lateral prefrontal cortex (LPFC), and
more recently in the parietal cortex, is related to attentional control,
in particular task-related visual categorization. It has been shown
that neurons respond to behaviorally meaningful visual catego-
rizations, but not to task-irrelevant distinctions (Freedman et al.,
2001; Everling et al., 2002, 2006; Swaminathan and Freedman,
2012). Many other studies provide evidence for selective prefron-
tal activity based on behavioral relevance (Watanabe, 1986; Sak-
agami and Niki, 1994; Miller et al., 1996; Asaad et al., 2000; Miller
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Significance Statement

Control of cognitive demands fundamentally involves flexible allocation of attentional resources depending on a current behav-
ioral context. Essential to such a mechanism is the ability to select currently relevant information and at the same time filter out
information that is irrelevant. In an fMRI study, we measured distributed patterns of activity for objects from different visual
categories while manipulating the behavioral relevance of the categorical distinctions. In a network of frontal and parietal cortical
regions, the multiple-demand (MD) network, patterns reflected category distinctions that were relevant to behavior. Patterns
could not be used to make task-irrelevant category distinctions. These findings demonstrate the ability of the MD network to
implement complex goal-directed behavior by focused attention.
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and Cohen, 2001; Cromer et al., 2010; Kusunoki et al., 2010;
Kadohisa et al., 2013).

Although single-cell studies from the NHP provide only partial
brain coverage, accumulating findings suggest that comparable re-
gions in the human brain may be involved in similar attentional and
categorization processes. It is widely accepted that a network of fron-
tal and parietal cortical regions in the human brain, the “multiple
demand” (MD) network, is involved in cognitive and attentional
control (Norman and Shallice, 1980; Desimone and Duncan, 1995;
Miller and Cohen, 2001; Duncan, 2013). Regions within this net-
work include the intraparietal sulcus (IPS), the anterior–posterior
axis of the inferior frontal sulcus, anterior insula (AI), and adjacent
frontal operculum, frontal eye field (FEF), and presupplementary
motor area (pre-SMA) with adjacent anterior cingulate cortex. Neu-
roimaging studies in humans have demonstrated the involvement of
the MD network in cognitive control across a wide range of tasks,
including spatial visual attention, working memory, language, and
others (Woolgar et al., 2011b; Duncan, 2013; Fedorenko et al., 2013).
Damage to the MD system may be an important contributor to the
broad impairments in cognitive control that follow prefrontal le-
sions (Milner, 1963; Luria, 1966; Roca et al., 2010; Woolgar et al.,
2010).

Here, we sought to build on the findings from the NHP and
track categorical discrimination of visual objects across the MD
network in the human brain using fMRI. We predicted that neu-
ronal activity across the MD network would reflect categorical
discrimination and that this discrimination would depend on
whether it is behaviorally relevant. We adapted a cued-detection
task that was used previously in the NHP (Kadohisa et al., 2013)
with a categorization component added into it. In the task, a cue
indicated two visual categories as targets. In a subsequent visual
display, participants detected whether an object from one of these
two categories appeared on the screen. Importantly, categories
could serve as either targets on some trials or nontargets on other
trials depending on the cue, with two additional categories always
serving as nontargets. Using multivoxel pattern analysis (MVPA),
we tested for the modulation of categorical discrimination by
behavioral relevance across the MD network and in a high-level
visual region, the lateral occipital complex (LOC).

Materials and Methods
Participants
Nineteen healthy volunteers (12 females, mean � SD age, 25.8 � 5.6
years) participated in the experiment. All participants gave written in-
formed consent and were reimbursed for their time. All participants were
right-handed, had normal or corrected-to-normal vision, and had no
history of neurological or psychiatric illness. The study was approved by
the Cambridge Psychology Research Ethics Committee. One participant
was excluded from the analysis because of frequent pauses for rest be-
tween trials.

Experimental paradigm
Task. Participants were scanned while performing a cued category-
detection task (Fig. 1A). The task was organized in miniblocks of four
trials. At the start of the miniblock, a cue that included names of two
visual target categories was displayed on the screen for 2 s, followed by a
blank period of 1 s and the sequence of 4 trials. In each trial, a visual
display was presented for 150 ms and the participant decided whether a
stimulus from either of the two target categories was present. The re-
sponse (target category present or absent) was made by pressing a button
with the right or left index finger (see below). Participants were in-
structed to respond as fast and as accurately as possible. After the partic-
ipant’s response, there was a 1 s delay before stimulus onset for the next
trial. After the 4 trials were complete, there was a further delay of 1 s
before onset of the cue for the next miniblock.

Visual categories. Six visual categories were used and included two
category types: three animate categories (butterflies, fish, birds) and three
inanimate categories (cars, shoes, sofas). For each participant, the cate-
gories were paired throughout the experiment and each pair included
one animate and one inanimate category. Two of the three pairs of cate-
gories (pair A, pair B) were assigned a cue (cue A and B, respectively).
Therefore, they could serve as either targets (T) or nontargets (NIs, non-
targets that are inconsistent, i.e., may be targets on other trials), depend-
ing on the cue. The remaining pair of categories (pair C) was not
associated with a cue; therefore, stimuli from these categories were always
nontargets (NCs, nontargets that are consistent; Fig. 1 B, C). This design
resulted in three levels of behavioral status of the categories (T, NI, and
NC). The combinations of category pairs and their association with the
cues were balanced across participants. Overall, we had 18 possible com-
binations of categories, one combination for each of the 18 participants
that were included in the analysis. We predicted that, for any two cate-
gories, the discrimination between them as assessed by MVPA across the
MD network would be based on the behavioral relevance of this discrim-
ination. Patterns of neural activity for two categories with different
behavioral status (e.g., T and NI, T and NC) would be well discrimi-
nated. In contrast, patterns of neural activity for two categories with
the same behavioral status (e.g., T and T, NI and NI) would not be
well discriminated.

Stimuli and visual display. Stimuli were colorful images drawn from
the 6 visual categories with a similar size and an average of 4.7° � 3°. Eight
exemplars were used from each category, with similar view for all exem-
plars within the same category. The visual display included a white back-
ground and a black fixation dot in the center of the screen. A stimulus
could appear in each of the four quadrants of the display: top-left, top-
right, bottom-left, and bottom-right, counterbalanced throughout the
experiment for the different conditions. Stimuli in each quadrant were
centered at 2.8° from the fixation dot on both the x and y axes. To avoid
any effects on neural representation driven by differences in visual expo-
sure between the task conditions as a result of a saccade, stimuli were
presented very briefly (150 ms only). In addition, the fixation dot ap-
peared on the screen while the stimuli were displayed and participants
were instructed to fixate. The display contained either one or four stim-
uli, but here we focus on the single-stimulus displays only.

Task structure and design. The task included four runs, with two blocks
in each run. The task design was event related, and trials were organized
in blocks and miniblocks. Each block comprised 33 miniblocks of four
trials each, with one cue used for each miniblock. A cue was presented at
the beginning of each miniblock, indicating the target categories for the
four subsequent trials. The two cues (cue A, cue B) were used throughout
the experiment alternately, such that each of the two cues appeared every
second miniblock. A 24 s fixation dot display appeared after each block to
use as the baseline and to keep the blocks as independent as possible in
terms of BOLD signal.

Responses were made by pressing either the right or left button on a
button box using the right and left index fingers for “target present” and
“target absent” responses. The stimulus–response mapping between tar-
get present/absent and button (left/right) was changed every block and
was balanced across runs. To eliminate influence of change in stimulus–
response mapping on performance and neural discrimination measures,
the first miniblock (four trials) in each block served as a dummy and was
excluded from the analysis.

Overall, 32 miniblocks in each block were included in the analysis for
a total number of 128 trials per block. Each condition appeared an equal
number of times after each of the two cues within a block. Half of the
trials in a block (64) included single-stimulus displays, of which half (32)
were target trials (T) and half were nontarget trials, with 16 NI trials and
16 NC trials. The 32 T trials included two repetitions of each combina-
tion of cue (Cue A, Cue B), category type (Animate, Inanimate) and
location (four visual quadrants). The 16 NI trials and the 16 NC trials
each included one repetition of each combination. The average EPI time
for each run of the task was 12.6 � 0.9 min (mean � SD). The task was
written and presented using Psychtoolbox3 for MATLAB (The Math-
Works; Brainard, 1997).
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Functional localizers
We used two functional localizers to help with subject-specific feature
selection for MVPA in selected regions of interest (ROIs). One localizer
was used for the MD network regions and the other for LOC, with two
runs for each localizer. ROIs were defined using templates (see ROIs,
below) and, within each ROI template, subject-specific feature selection
for the MVPA was done using the functional localizer data.

MD network functional localizer. We used a spatial working memory
task to localize the MD network (Fedorenko et al., 2013). Each trial
started with a 500 ms fixation display, followed by a 3 � 4 grid. Partici-
pants had to keep track of either four or eight locations that were con-
secutively highlighted on the grid for the Easy or Hard conditions,
respectively. Then, in a two-alternative forced-choice question presented
for 3 s, participants had to choose the grid with the correct highlighted
locations by pressing either a left or right button. An additional 500 ms

fixation display followed each trial. Locations were highlighted on the
grid for 1 s each. For the Hard condition with the eight locations, loca-
tions were highlighted on the grid in pairs. Hard and Easy conditions
were blocked and balanced with four trials in each block. There were also
equal numbers of left and right responses. Each participant completed
two runs, with each run including six Easy blocks and six Hard blocks of
32 s each, as well as four fixation blocks of 16 s each. The total duration of
each run was 7.5 min. The task was written and presented using Python
(Python Software Foundation).

LOC functional localizer. We used a standard functional localizer that
included two object categories (Objects and Scrambled-objects) pre-
sented in a blocked design. Each block lasted 12 s and included 15 stimuli,
each presented for 300 ms with a 500 ms interstimulus interval. Category
block order was counterbalanced within and across runs. Each run con-
sisted of an initial 6 s fixation dummy scans, 8 blocks for each category

Figure 1. Experimental paradigm and classification approach. A, A cued category-detection experimental paradigm was used in which a cue (names of two target categories) is followed by a
series of visual displays. In each trial, participants detected whether one of the target categories appeared or not and pressed a button accordingly. B, An example of visual categories and their
behavioral status under different task contexts. Exemplars from visual categories could be either targets (T) or nontargets, depending on the cue. Importantly, nontargets could be either inconsistent
nontargets (NI) that may be targets on other trials or consistent nontargets (NC) that are never targets, therefore creating three levels of behavioral status for the presented objects. C, Diagrammatic
scheme of the full condition space, including example category assignments for a single participant. Each cue (Cue A, Cue B) indicated the pair of categories currently serving as targets. Pairs of
categories included one animate and one inanimate category. For each participant, the six visual categories were divided into three pairs (A, B, and C). Behavioral status (T, NI, NC) was determined
by the combination of the cue and presented category in each trial. D, Classification matrix. To assess the modulation of categorical discrimination by behavioral relevance, we used correlation-based
classification (see Materials and Methods for details). Classification accuracies were computed between all possible pairs of categories and averaged across entries of the classification matrix as
appropriate for each contrast. Distinction between category pairs with different behavioral status was termed behaviorally relevant (red entries), whereas distinction between category pairs with
the same behavioral status was termed behaviorally irrelevant (blue entries). To assess the modulation of categorical discrimination by other aspects of the task, which are orthogonal to the
behavioral decision, we averaged classification accuracies across entries depending on whether pairs of categories shared the same or different cue (Cue A, Cue B), as well as same or different category
type (Animate, Inanimate), as indicated by acronyms and color coding of entries (hues of red and blue). SS, Same cue and Same category type; SD, Same cue and Different category type; DS, Different
cue and Same category type; DD, Different cue and Different category type.
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and 5 blocks of a baseline fixation dot (a total of 162 s). To maintain
vigilance, participants were asked to perform a one-back task on the
presented stimuli by pressing a button on a button box. Each participant
completed two visual localizer runs. The task was written and presented
using Psychtoolbox3 for MATLAB (Brainard, 1997).

Overall, the scanning session comprised a short training outside the
scanner followed by testing in the scanner including four runs of the
main task, two runs of the LOC localizer, and two runs of the MD net-
work localizer. Stimuli for the main task and localizers were projected on
an MRI-compatible screen inside of the scanner.

Data acquisition
fMRI data were acquired using a Siemens 3T TimTrio scanner with a
32-channel head coil. We used a T2*-weighted 3D EPI fast imaging ac-
quisition depicting the BOLD contrast (Poser et al., 2010). We used an
in-plane acceleration factor (AF) of 2 and an additional factor of 2 for the
slice encoding direction, resulting in a total AF of 4. Other acquisition
parameters were as follows: acquisition time of 1288 ms, echo time of 30
ms, 52 slices with a slice thickness of 2.5 mm, no interslice gap, inplane
resolution of 2.5 � 2.5 mm, field of view of 205 mm, and flip angle of 14°.
T1-weighted multiecho MPRAGE (van der Kouwe et al., 2008) high-
resolution images were acquired for all participants (slice size 1 mm
isotropic, field of view of 256 � 256 � 192 mm, TR of 2530 ms, TEs of
1.64, 3.5, 5.36, and 7.22 ms). The voxelwise root mean square across the
four MPRAGE images was computed to obtain a single structural image.

Data analysis
The main analysis approach was MVPA to test for categorical discrimi-
nation based on behavioral relevance. This was preceded by an initial
univariate analysis that was used to verify the recruitment of the MD
network during task performance. Preprocessing and generalized linear
modeling (GLM) were conducted using SPM8 (Wellcome Trust Centre
for Neuroimaging, University College London, London). MVPA was
conducted using custom MATLAB code.

Preprocessing. Functional images for the three tasks (main task, MD
network localizer, and LOC localizer) were processed separately. For
each task, functional images were realigned to the first image and
resliced. Structural and functional images were normalized to a Montreal
Neurological Institute (MNI) template using the normalization matrix
obtained for the structural image. Slice timing correction was not re-
quired because a whole volume was acquired simultaneously.

GLM for the main task. A GLM was estimated for each participant for
correct trials only. Separate regressors were created for each combination
of behavioral status (T, NI, NC), cue (cue A, cue B), category type (Ani-
mate, Inanimate), and block within a run, ignoring location (visual
quadrant). Trials were modeled as epochs lasting from stimulus onset to
response (Woolgar et al., 2014) convolved with a canonical hemody-
namic response function (HRF). Additional regressors were created for
fixation blocks, block instructions (including the stimulus–response
mapping instructions for the block), cue displays, and error trials. Move-
ment parameters and run means were included as covariates of no inter-
est. In the experimental paradigm, the number of T trials was double that
of NI and NC conditions, to produce a 50% chance of target presence. To
have an equal number of trials used to model each condition, the T trials
were split into two halves while maintaining counterbalancing across all
relevant parameters (cue, category type, location, etc.) and each half was
modeled with separate regressors in the GLM. Spatially unsmoothed data
were used.

GLM for the MD network localizer. A GLM was estimated for each
participant, with regressors created by convolving a canonical HRF with
blocks of Hard and Easy conditions. Movement parameters and run
means were included as covariates of no interest. Data were smoothed
with a full-width-at-half-maximum (FWHM) Gaussian kernel of 5 mm.

GLM for LOC localizer. A GLM was estimated for each participant,
with regressors created by convolving a canonical HRF with blocks of
Objects and Scrambled-objects conditions. Movement parameters and
run means were included as covariates of no interest. Data were
smoothed with a FWHM Gaussian kernel of 5 mm.

Univariate analysis
Whole-brain random-effects analysis across participants examined vox-
elwise BOLD response during task performance to confirm the recruit-
ment of MD cortex. Beta estimates of the main task GLM were averaged
across all single-stimulus conditions, blocks, runs, cues, and category
types and were contrasted with fixation blocks to generate a t-contrast
map. The contrast was smoothed by a kernel of 14 mm. To assess average
activity for each of the conditions (T, NI, NC), � values were averaged
across blocks, runs, cues, category type, and voxels in each ROI within the
MD network template (see ROIs, below).

ROIs
We used a conjunction of template ROIs and single-subject localizer data
to select voxels within each ROI (feature selection) to be used in the
MVPA. For each participant and ROI, we first selected voxels located
within the template ROI. Then, within the ROI template, we selected the
N voxels with the largest t values as derived from the relevant subject-
specific localizer independent dataset and relevant contrast (MD regions:
Hard � Easy contrast, n � 200 voxels for each ROI; LOC: Objects �
Scrambled-objects contrast, n � 200 voxels, with n � 180 voxels for its
anterior and posterior subregions when these were separately analyzed;
see LOC template, below).

MD regions template. We used a template for the MD network ROIs in
MNI space as defined in a separate study contrasting hard and easy
conditions across seven tasks and 40 participants (Fedorenko et al., 2013;
see t-map at http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem).
The regions within this network include the AI; IPS; anterior, middle,
and posterior parts of the middle frontal gyrus (MFG-ant, MFG-mid,
MFG-post, respectively), pre-SMA, and FEF, symmetrically defined in
left and right hemispheres (Fig. 2B).

LOC template. LOC was defined using a functional localizer that iden-
tified object-selective cortex (Malach et al., 1995) in an independent
study with 15 participants (Lorina Naci, PhD dissertation, University of
Cambridge). BOLD responses evoked by forward- and backward-
masked objects were contrasted to those evoked by masks alone (Cusack
et al., 2012). We further divided the LOC into an anterior part, the
posterior fusiform region (pFs) of the inferior temporal cortex, and a
posterior part, the lateral occipital region (LO) using a cutoff MNI coor-
dinate of y � �62 (Fig. 3).

MVPA
Our main pattern analysis was ROI based and hypothesis driven, testing
for the modulation of categorical information by behavioral relevance in
the MD network regions as well as high-level visual cortex regions. ROIs
and subject-specific feature selection were used as described above in the
“ROIs” section. As a complementary approach, we conducted a whole-
brain searchlight pattern analysis, to identify additional regions in which
representation of categorical information is modulated by behavioral
relevance (Kriegeskorte et al., 2006) (see Whole-brain searchlight pattern
analysis, below).

Categorical discrimination. We used MVPA to test for categorical dis-
crimination and its modulation by behavioral relevance. We computed
discrimination between all possible pairs of categories, as illustrated in
the classification matrix in Figure 1D. Each entry in the matrix corre-
sponds to discrimination between two categories as indicated by the
combination of row and column categories. Each of the six categories was
considered separately depending on the preceding cue (cue A, cue B),
resulting in 12 conditions as indicated in the number of rows and col-
umns in the classification matrix. For example, the inanimate category
from pair A (A-i) was considered separately depending on the cue, with
status target (T) following Cue A and inconsistent nontarget (NI) follow-
ing Cue B. Therefore, this category, as well as all other categories, appears
twice (following each of the two cues) in each row/column in the classi-
fication matrix.

To test for the effect of behavioral relevance on category discrimina-
tion, we considered separately pairs of categories for which the distinc-
tion between them was behaviorally relevant or not. Importantly, if for a
given pair of categories, both categories had the same behavioral status
(e.g., T and T, NI and NI, NC and NC), then the discrimination between
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these two categories was not behaviorally relevant (Fig. 1D, blue entries).
In contrast, for pairs of categories with different behavioral status (e.g., T
and NI, T and NC, NI and NC), the discrimination between them was
behaviorally relevant (Fig. 1D, red entries). NIs and NCS differed in their
behavioral status because NIs are potential targets, whereas NCs are
never targets. Therefore, NI–NC pairs were considered as a distinction
that is behaviorally relevant.

We were also interested in testing for the modulation of categorical
discrimination by other aspects of the task. Therefore, within behavior-
ally relevant/irrelevant category distinctions, we further divided the pairs
of categories depending on whether they had the same/different preced-
ing cue (Cue A, Cue B) and whether they were from the same/different
category type (Animate, Inanimate) (see color-coding and entry naming
conventions in the classification matrix in Fig. 1D). Both of these distinc-
tions (the preceding cue and category type) were orthogonal to the final
behavioral response.

Pattern analysis. We applied classification using a correlational ap-
proach on bias patterns (Stokes et al., 2009). For each pair of categories,
we computed the relative activation bias associated with one category
compared with another by subtracting the voxelwise �-estimates for
the two categories. The voxelwise bias pattern was then normalized by the
univariate noise estimates by computing the voxelwise t-contrast of the
two categories using SPM. This procedure was repeated for each of
the eight blocks across the four runs. To estimate the generalizability
of the bias pattern across runs, we used a leave-one-run-out cross-
validation. We correlated the average bias pattern across three runs
(training set), with each of the two bias patterns in the remaining run
(test set). Correlation coefficients larger than zero were considered as
correct classification of the category pair bias pattern and coefficients of
zero or smaller were considered as incorrect classification. We repeated
this procedure four times across all possible training-test permutations,
resulting in eight test iterations. The proportion of correct classification
was then computed across the eight iterations. Classification accuracy
scores were then averaged for each participant across entries of the clas-
sification matrix as appropriate for each contrast (see Results) and tested
against chance of 50% using second-level group analysis (one-tailed t
test). Group accuracy scores significantly larger than chance were inter-
preted as being a representation of categorical discrimination across the
distributed pattern of activity. Because data for each type of T stimulus
were split into two halves (equating numbers of T and N trials in each
regressor; see above), each classification accuracy involving a T category
was measured twice, once for each half of the data, and the two resulting
values were averaged.

To check the robustness of the results, we repeated the pattern analysis
using a support vector machine (SVM) classifier (LibSVM library for
MATLAB). For each pair of categories, we computed the voxelwise
�-estimates for the two categories for each of the eight blocks across the
four runs. Then, we used a leave-one-run-out (two patterns) cross-
validation and averaged the obtained classification accuracy across the
four training-test iterations.

Whole-brain searchlight pattern analysis. To identify additional regions
that might show modulation of categorical information by behavioral
relevance, we conducted a whole-brain searchlight pattern analysis
(Kriegeskorte et al., 2006). This technique also allows testing for infor-
mation coding in more spatially restricted regions. Searchlight analysis
was computed for each participant and followed by a second-level group
analysis. First, a group mask was computed based on the individual nor-
malized brain masks of all of the participants. The group mask was com-
posed of only voxels that were included in all of the individual brain
masks. Then, for each participant, data were extracted from spherical
ROIs (20 voxels) centered on each voxel in the brain mask. Searchlight
ROIs near the surface of the brain were extended laterally to keep the
number of voxels in each ROI constant. A classification matrix was com-
puted for each participant and each spherical ROI across the brain using
the correlational approach that was used for the main ROI-based pattern
analysis. For each voxel, the contrast “behaviorally relevant discrimina-
tion” versus “behaviorally irrelevant discrimination” (red vs blue entries
in the classification matrix, respectively) was computed, generating indi-
vidual whole-brain classification accuracy maps. The individual contrast

maps were subsequently smoothed by a 10 mm FWHM Gaussian kernel
and entered into a second-level random-effects group analysis (SPM 8).

Task difficulty level and classification results
Activity in the MD network is known to be modulated by task difficulty.
Therefore, we tested for the possibility that discrimination effects may be
related to differences in difficulty level of the task conditions, as reflected
in differences in reaction time (RT). Importantly, in the GLM of our
main analysis, trials were modeled as epochs lasting from stimulus onset
to response, thus controlling for lengthened BOLD response as a result of
longer response time (Woolgar et al., 2014). We further tested for the
potential contribution of RT to our classification results using two sepa-
rate control analyses.

In the first analysis, for each participant, we correlated classification
accuracy across the MD network for all pairs of categories with the abso-
lute difference in RT between them. Correlations were computed sepa-
rately for category pairs for which the distinction between them was
behaviorally relevant and for category pairs for which the distinction was
behaviorally irrelevant, as indicated by red (48 pairs) and blue (18 pairs)
entries in the classification matrix (Fig. 1D), respectively. Correlation
coefficients were averaged across participants and tested against 0 using a
one-tailed t test. Furthermore, we used regression of classification scores
over the absolute difference in RT, computed separately for each partic-
ipant and for behaviorally relevant and irrelevant distinctions between
category pairs. For each regression, the intercept indicates the predicted
accuracy score when there is no difference in RT/difficulty level. An
intercept larger than chance (50%) implies that accuracy score is above
chance even when there is no difference in difficulty level, therefore
suggesting that discrimination is not driven by task difficulty. We com-
puted intercepts for pairs of categories with behaviorally relevant and
irrelevant distinctions separately across all participants and tested for the
average intercept against 50% using a one-tailed t test.

In the second control analysis, we regressed out RT at the GLM level
and then repeated the classification analysis. In the GLM, we used an
additional regressor for all events (trials) with fixed duration (0.5 s) and
with parametric modulation by a quadratic polynomial expansion of RT
to regress out both linear and nonlinear effects of RT (Todd et al., 2013;
Woolgar et al., 2014). The rest of the events were modeled with fixed
duration (0.5 s). Then, we computed the voxelwise bias patterns as before
and repeated the classification analysis.

Control for ROI size
To be able to compare MVPA results between regions, we controlled for
ROI size by using feature selection with a fixed number of voxels. To
verify that the results that we obtained are robust and not limited to a
specific choice of ROI size, we repeated the analysis with a varying size of
ROI (100, 150, 250, and 300 voxels).

Results
Behavioral results
Mean RTs were 702 � 31, 860 � 49, and 702 � 34 ms for the T,
NI, and NC conditions, respectively. RTs for the three condi-
tions were significantly different (one-way repeated-measures
ANOVA: F(2,34) � 42.3, p � 0.001), with larger RT for NI than T
and NC (paired t test for T vs NI and NI vs NC, respectively: t(17)

� 6.9, p � 0.001; t(17) � 7.5, p � 0.001) and no difference in RT
for T vs NC (paired t test: t(17) � 0.1, p � 0.9). The percentage of
correct trials was 94.6 � 0.6%, 92.1 � 1%, and 98.1 � 0.4% for
the T, NI, and NC conditions, respectively. The proportion of
correct responses was significantly different across the three con-
ditions (one-way repeated-measures ANOVA: F(2,34) � 26.1, p �
0.001), with the highest success rate for NC and the lowest for NI
(paired t test: t(17) � 2.9, p � 0.009 for T vs NI; t(17) � 5.4, p �
0.001 for T vs NC; t(17) � 6.2, p � 0.001 for NI vs NC). As
expected, the best performance overall was for NC stimuli, the
status of which as nontargets was fixed throughout the test
session.
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Univariate neural activity
To examine the recruitment of the MD
network during performance of the task,
we first conducted univariate random-
effects analysis across participants, com-
paring mean activity across all trial types
to fixation blocks. Although no voxels
survived correction for multiple compar-
isons across the whole brain, at lower
threshold (t � 1.5), a pattern of MD activ-
ity was revealed, including the MFG, FEF,
IPS, AI, and pre-SMA. An additional typ-
ical visual component in the extrastriate
cortex was evident. We further examined
differences in the average univariate activ-
ity between the task conditions within the
MD network ROIs, as defined by the tem-
plate (see ROIs, above). Within each MD
region, average � estimates were similar
for the T, NI, and NC conditions (one-
way repeated-measures ANOVAs: F(2,34)

� 1, p � 0.4). Similarly, there were no
differences between conditions in LOC
(F(2,34) � 1, p � 0.7).

Modulation of category discrimination
by behavioral relevance in the
MD network
Consistent with the role of the MD net-
work in attentional and cognitive control,
we predicted that categorical discrimina-
tion, as measured using MVPA, would be
modulated by the relevance of the cate-
gorical distinction to behavior. In the
present task, a distinction between catego-
ries that have a different behavioral status,
such as a target and a nontarget, is behav-
iorally relevant. In contrast, a distinction
between categories that share the same be-
havioral status, such as animate and inan-
imate targets, is behaviorally irrelevant.
Therefore, we expected that the multi-
voxel pattern of activity across the MD
network would reflect the behavioral rel-
evance of the categorical discrimination,
with accuracy of pattern discrimination above chance for two
categories with different behavioral status (red entries in the clas-
sification matrix in Fig. 1D), but not for two categories with the
same behavioral status (blue entries in the classification matrix in
Fig. 1D).

For each participant and ROI, category discriminability was
computed using MVPA for all possible category pairs, sorted
according to same/different behavioral status (T, NI, NC), cue
(Cue A, Cue B), and category type (Animate, Inanimate) (see
classification matrix in Fig. 1D; see Materials and Methods for
more details). To test for category discrimination when it is be-
haviorally relevant, we examined T versus NI, T versus NC, and
NI versus NC discriminations separately. For each of these cases
and for each participant, we averaged the separate accuracy val-
ues obtained for each of the 16 contributing category pairs (en-
tries with red hues in the classification matrix; Fig. 1D). To assess
T versus NI discrimination, for example, we averaged the 16 sep-
arate values from the top-middle block in Figure 1D. The analysis

was conducted separately for each of the MD ROIs and the results
were then averaged across ROIs. As predicted, category discrim-
ination across participants was above chance (50%) for behavior-
ally relevant distinctions (one-tailed t test: T vs NI: t(17) � 2.39,
p � 0.014; T vs NC: t(17) � 2.16, p � 0.022; NI vs NC: t(17) � 2.12,
p � 0.025). Also consistent with our prediction, discrimination
for categorical distinctions that are behaviorally irrelevant was
not above chance (entries with blue hues in the classification
matrix; one-tailed t test: t(17) � 1.24, p � 0.16). Discrimination
was significantly larger for behaviorally relevant than for behav-
iorally irrelevant categorical distinctions (one-tailed paired t test:
t(17) � 3.76, p � 0.001). Importantly, a similar pattern of results
was evident across all regions within the MD network (Fig. 2B). A
7 � 2 repeated-measures ANOVA with MD ROI and behavioral
relevance of distinction (relevant, irrelevant) as factors revealed a
significant main effect of behavioral distinction (F(1,17) � 8.45,
p � 0.01), no effect of ROI (F(6,102) � 0.91, p � 0.49), and no
significant interaction (F(6,102) � 1.54, p � 0.17). For all of the

Figure 2. Behavioral relevance modulates categorical discrimination across the MD network. A, Categorical distinction that is
behaviorally relevant is represented across the MD network, as measured by distributed neural pattern of activity (red bars).
Distinction between categories that is behaviorally irrelevant is not well represented (blue bars). *p � 0.05. B, A similar pattern of
activity is evident across all regions within the MD network. MD regions template is shown on sagittal and coronal planes. Error bars
indicate SEM of the difference between behaviorally relevant and irrelevant discriminations in each region. C, Modulation of
category discrimination by behavioral relevance in the MD system was robust across a large range of ROI sizes. Error bars indicate
SEM of the difference between behaviorally relevant and irrelevant discriminations. **p � 0.01, ***p � 0.001. D, Categorical
discrimination is not modulated by aspects of the task that are orthogonal to the behavioral decision, such as cue and category type.
Color coding of bars follows the classification matrix in Figure 1D. Error bars indicate SEM. AI, anterior insula; IPS, intraparietal
sulcus; MFG-ant, middle frontal gyrus—anterior part; MFG-mid, middle frontal gyrus—middle part; MFG-post, middle frontal
gyrus—posterior part; preSMA, presupplementary motor area; FEF, frontal eye field.
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ROIs, similar results were obtained for the two hemispheres [2 �
2 repeated-measures ANOVA for each ROI with hemisphere and
behavioral relevance of distinction (relevant, irrelevant) as fac-
tors: no interaction, F(1,17) � 1.8, p � 0.19]. The modulation of
categorical distinction by behavioral relevance was robust across
a large range of ROI sizes (100, 150, 200, 250, 300 voxels), with
average classification above chance for behaviorally relevant dis-
criminations (one-tailed t test: t(17) � 2.87, p � 0.006), but not for
behaviorally irrelevant discriminations (classification accuracy �
50%). Classification accuracy for behaviorally relevant discrimi-
nations was larger than accuracy for irrelevant discriminations
across the range of ROI sizes (one-tailed paired t test: t(17) � 4.2,
p � 0.002; Fig. 2C). To ensure that our results were consistent
across classification methods, the analysis was repeated using
SVM, yielding accuracy scores and results similar to the
correlation-based pattern analysis. Across MD regions, the aver-
age classification was above chance for behaviorally relevant dis-
criminations (one-tailed t test: t(17) � 3.4, p � 0.002), but not for
behaviorally irrelevant discriminations (classification accuracy �
50%), with the former larger than the latter (one-tailed paired t
test: t(17) � 5.2, p � 0.001). These results suggest that behavioral
relevance modulates categorical discrimination throughout the
MD network.

Our design also allowed us to test for the modulation of cate-
gory discrimination by two additional factors. For each of the
three behaviorally relevant category distinctions (T vs NI, T vs
NC, and NI vs NC) and three behaviorally irrelevant category
distinctions (T vs T, NI vs NI, and NC vs NC), we further divided
the pairs according to whether they had the same or different
preceding cue (Cue A, Cue B) and similarly by whether they had
the same or different category type (Animate, Inanimate). This
resulted in four combinations of category pairs: “Same cue and
Same category type” (SS), “Same cue and Different category
type” (SD), “Different cue and Same category type” (DS), and
“Different cue and Different category type” (DD) (see acronyms
and different hues of blue and red entries in the classification

matrix in Fig. 1D). For example, for T ver-
sus NI category pairs (top-middle 16-
entry square in the classification matrix),
we computed classification accuracy sep-
arately for pairs of categories with the
same preceding cue and the same category
type (SS, light pink entries: A-a vs B-a fol-
lowing Cue A, A-i vs B-i following Cue A,
B-a vs A-a following Cue B, B-i vs A-i fol-
lowing Cue B) and then averaged across
them (Fig. 2D, top, leftmost bar in left
group). Similar averaging was done for
SD, DS, and DD cases (Fig. 2D, top, re-
maining bars in left group) and for T ver-
sus NC (Fig. 2D, top, middle group) and
NI versus NC (Fig. 2D, top, right group).
For category pairs with behaviorally irrele-
vant distinctions (T vs T, NI vs NI, NC vs
NC), the combination of SS was the dis-
crimination between the category and itself.
This could only be computed by splitting
the data into halves, which was not under-
taken because of the low number of trials
per condition. Therefore, for the behavior-
ally irrelevant distinctions, only SD, DD,
and DS pairs were computed.

Because cue and category type were or-
thogonal to the behavioral decision, we predicted that they
should be poorly coded in the MD network. In other words, we
predicted that there would be no difference in classification ac-
curacy between SS, SD, DS, and DD pairs within behaviorally
relevant category distinctions and between SD, DS, and DD pairs
within behaviorally irrelevant category distinctions. Consistent
with this prediction, we found that discrimination was similar
regardless of whether the same or different cue or category type
was used (for behaviorally relevant category distinctions, one-
way repeated-measures ANOVA with levels SS, SD, DS, DD: T vs
NI: F(3,51) � 1.83, p � 0.15; T vs NC: F(3,51) � 0.58, p � 0.63; NI
vs NC: F(3,51) � 1.36, p � 0.27; for behaviorally irrelevant cate-
gory distinctions, one-way repeated-measures ANOVA with lev-
els SD, DS, DD: T vs T: F(2,34) � 0.37, p � 0.7; NI vs NI: F(2,34) �
0.67, p � 0.52; NC vs NC: F(2,34) � 0.94, p � 0.4). These data
suggest that category discriminability in the MD network is not
modulated by aspects of the task that are orthogonal to the be-
havioral decision.

Category discrimination based on behavioral relevance
in LOC
The MD network is thought to impose top-down modulations on
occipital visual regions to control attention. We therefore sought
to test whether category discrimination is modulated by behav-
ioral relevance in the visual object region LOC and pursued an
analysis similar to the one conducted for the MD network (Fig.
3A). Across all pairs of categories (all entries in the classification
matrix), discrimination was above the chance level (50%), but
this trend was not significant (one-tailed t test: t(17) � 1.15, p �
0.13, rightmost bar in Fig. 3A). Category discrimination was not
significantly above chance across behaviorally relevant (Fig. 1D,
red entries in the classification matrix) or behaviorally irrelevant
(blue entries in the classification matrix) distinctions (one-tailed
t test: T vs NI: t(17) � 0.88, p � 0.19; T vs NC: t(17) � 1.36, p � 0.1;
NI vs NC: t(17) � 1.4, p � 0.09; T vs T: t(17)�0.9, p � 0.19; NI vs
NI: t(17) � 0.57, p � 0.29; NC vs NC: t(17) � 0, p � 0.5). Discrim-

Figure 3. Categorical discrimination and behavioral relevance in LOC. A, In LOC, categorical discrimination is similar for both
behaviorally relevant and irrelevant category distinctions (red and blue bars, respectively). Overall, the classification accuracy
across all category pairs is shown on the right (gray bar). B, In the LO subregion, categorical discrimination is modulated by
behavioral relevance. In the pFs subregion, categorical discrimination is similar and above chance for both behaviorally relevant
and irrelevant category distinctions. *p � 0.05, **p � 0.01, n.s., not significant. Bottom, LOC template shown on sagittal and
coronal planes, with vertical blue line indicating division into posterior (LO) and anterior (pFs) subregions. Error bars indicate SEM.
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ination was not significantly larger for behaviorally relevant com-
pared with behaviorally irrelevant distinctions (one-tailed paired
t test: t(17) � 1.52, p � 0.073).

Because it has been suggested that the two subregions within
the LOC, the pFs and LO, may be involved in different aspects of
object recognition (MacEvoy and Epstein, 2011; Harel et al.,
2014), we further tested whether behavioral relevance modulates
categorical representation in these subregions (Fig. 3B). Interest-
ingly, in the pFs, classification was above chance for both behav-
iorally relevant and irrelevant discriminations (one-tailed t test:
t(17) � 2.6, p � 0.009 for relevant discriminations; t(17) � 1.7, p �
0.05 for irrelevant discriminations), with no difference between
them (one-tailed paired t test: t(17) � 1.05, p � 0.15). In contrast,
in LO, classification was above chance for behaviorally relevant
discriminations only (one-tailed t test: t(17) � 2.21, p � 0.02 for
relevant discriminations; t(17) � 0.3, p � 0.4 for irrelevant dis-
criminations), with larger classification for relevant than irrele-
vant discriminations (one-tailed paired t test: t(17) � 2.82, p �
0.006). A 2 � 2 repeated-measures ANOVA with ROI (pFs, LO)
and behavioral relevance (relevant, irrelevant) as factors revealed
a main effect of behavioral relevance (F(1,17) � 5.2, p � 0.036) but
no interaction (F(1,17) � 1.39, p � 0.26). Overall, our results show
category discrimination in the pFs regardless of whether it is
behaviorally relevant or not, whereas category discrimination in
the LO is modulated by behavioral relevance and is above chance
only when it is relevant.

Whole-brain searchlight pattern analysis
As a complementary approach to the main ROI-based classifica-
tion analysis, we searched for additional regions across the brain
in which categorical information is modulated by behavioral rel-
evance. We therefore conducted a whole-brain searchlight anal-
ysis (Kriegeskorte et al., 2006) for the main contrast of interest,
behaviorally relevant discriminations versus behaviorally irrele-
vant discriminations. Searchlight analysis was conducted at the
single-participant level and the resulting individual maps were
entered into a second-level group analysis. None of the voxels
survived false discovery rate correction for multiple comparisons
(p � 0.05). Using a lower threshold (p � 0.01, uncorrected),
salient regions of discriminations were as follows: middle and
posterior parts of the MFG, IPS and adjacent supramarginal
gyrus, as well as the lateral occipital cortex on the left hemisphere;
the AI, FEF, and the lateral occipital cortex on the right hemi-
sphere. Overall, this analysis does not suggest additional brain
regions beyond the MD network and higher visual cortex that
show modulation of categorical information by behavioral
relevance.

Category discrimination, behavioral relevance, and task
difficulty in the MD network
Activity in the MD network is highly driven by task difficulty.
Therefore, we tested for the possibility that modulation of cate-
gory discrimination by behavioral relevance in the MD network
was driven by differences in difficulty level of the task conditions
using two separate control analyses. In the first analysis, we cor-
related for each participant the accuracy scores for pairs of cate-
gories with the absolute difference in RT between them. Because
our results showed discrimination above chance for behaviorally
relevant distinctions but not for behaviorally irrelevant distinc-
tions, we computed correlations separately for these two groups
of pairs of categories (Fig. 1D, red and blue entries in the classi-
fication matrix). Overall, correlation coefficients of accuracy
scores and absolute difference in RT were negligible and not sig-

nificantly different from zero (behaviorally relevant distinctions:
mean � SEM 0.04 � 0.05, t(17) � 0.8, p � 0.22; behaviorally
irrelevant distinctions: mean � SEM 0.01 � 0.06, t(17) � 0.17,
p � 0.43), suggesting that accuracy levels were unrelated to dif-
ferences in difficulty levels between conditions. We further tested
for prediction of discriminability by difficulty level using regres-
sion of accuracy scores over absolute different in RT. This was
done at the single-subject level, and the regression was computed
separately for behaviorally relevant and irrelevant distinctions. In
the regression, the intercept is the expected accuracy score for a
difference in RT of zero. In particular, for behaviorally relevant
category distinctions, in which the overall accuracy score was
above chance (50%), an intercept larger than 50% means that,
even if RTs were the same for a given pair of categories, the
accuracy score would still be above chance, implying that accu-
racy score is not driven by task difficulty. The average intercept
across participants for behaviorally relevant category distinctions
was marginally significantly above the chance level (mean �
SEM: 51.4 � 0.9, one-tailed t test against 50%: t(17) � 1.45, p �
0.08). For behaviorally irrelevant category distinctions, in which
the overall accuracy score was not above chance, the average
intercept was not above the chance level either (mean � SEM:
48.7 � 1.4). The average intercept was marginally significantly
larger for behaviorally relevant than irrelevant distinctions (one-
tailed paired t test: t(17) � 1.57, p � 0.068). The overall negligible
correlation coefficients, together with the accuracy score above
chance for behaviorally relevant distinctions even when there was
no RT difference, suggest that task difficulty is not a serious con-
found in our findings.

In a second analysis to control for task difficulty differences
between conditions, we regressed out RT at the GLM level (Todd
et al., 2013; Woolgar et al., 2014) and repeated the classification
analysis. This analysis yielded accuracy scores and results similar
to the ones that were obtained in our main analysis. In the MD
network, the average classification accuracy for behaviorally rel-
evant discriminations was significantly above chance (one-tailed
t test: t(17) � 2.65, p � 0.008) and was larger than the classification
accuracy for the behaviorally irrelevant discriminations (one-
tailed paired t test: t(17) � 5.1, p � 0.001). The average classifica-
tion for the irrelevant discriminations was not significantly above
chance (classification accuracy �50%). The similar results ob-
tained using this control analysis further reassured us that our
findings were not driven by differences in difficulty level.

Discussion
In this study, we found that the behavioral relevance of a categor-
ical distinction modulates categorical discrimination across the
MD network, as represented in the distributed pattern of activity.
Using MVPA, classification accuracies for pairs of visual catego-
ries for which the categorical distinction was behaviorally rele-
vant were above chance, implying that information about this
distinction is coded across the MD network. In contrast, infor-
mation about categorical distinctions that were behaviorally ir-
relevant was not coded.

Our results support the involvement of the MD network in
adaptive control of cognitive function and goal-directed behavior
(Norman and Shallice, 1980; Desimone and Duncan, 1995;
Miller and Cohen, 2001; Duncan, 2013). Several previous neuro-
imaging studies have demonstrated the involvement of frontal
and parietal cortex in the representation of task-relevant infor-
mation (Jiang et al., 2007; Li et al., 2007; Liu et al., 2011; Woolgar
et al., 2011a; Woolgar et al., 2011b; Chen et al., 2012; Lee et al.,
2013; Harel et al., 2014; Woolgar et al., 2015). Our findings pro-
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vide another tier of evidence for MD network function: using a
categorization-based task, we showed that task-critical informa-
tion is represented across the network, whereas task-irrelevant
information is represented less strongly or not at all. In our par-
adigm, distinctions between category pairs that had different be-
havioral status (e.g., targets and nontargets) were consistently
represented across the MD network, in contrast to categorical
distinctions (such as two target categories) that were behaviorally
irrelevant. Moreover, two other dimensions of the task, namely
cue (Cue A, Cue B) and category type (Animate, Inanimate),
were orthogonal to the decision required and were not signifi-
cantly discriminated. Notably, animate and inanimate category
types were chosen to maximize the potential discrimination, as
animate and inanimate objects have been shown to be highly
discriminable in the visual system (Kriegeskorte et al., 2008).
Nevertheless, no discrimination was seen in the current task
across MD regions. Lack of modulation of neural representation
by irrelevant features of a task is a critical property of a system that
is involved in attentional control: not only is it important to focus
attention on behaviorally relevant information, but at the same
time, it is essential to filter out information that is currently irrel-
evant. Our findings provide a broad demonstration of this prin-
ciple across the MD network.

Our results complement and extend previous findings from
the NHP reporting task-dependent coding of categorical distinc-
tions in single cells of both LPFC (Freedman et al., 2001) and
parietal cortex (Fitzgerald et al., 2012; Swaminathan and Freed-
man, 2012). Although these studies provide detailed information
at the level of single-cell activity, they are limited in the breadth of
brain coverage and scale of brain network under study. Here, we
go beyond this by looking at the entire MD network. Similarly to
the evidence from the NHP, we find modulation of information
coding by behavioral relevance. Of particular relevance to this
study are the findings from the NHP by Kadohisa et al. (2013)
because the two studies share a very similar design. In this NHP
study, a cue at trial onset indicated which of two visual stimuli
(drawings of real-world objects) was the current target. The re-
sults showed many cells in the LPFC with selective responses as
early as 100 ms after stimulus onset based on the behavioral rel-
evance of the stimuli (T, NI, NC, defined analogously to the
current study), rather than on physical stimulus identity. In par-
tial agreement with the current findings, coding of cue was less
common, although present in some individual cells. The accu-
mulating evidence across both humans and NHPs further dem-
onstrate the ability of the MD network to focus on currently
relevant information whether it is category based (visually or
verbally related), cue associated, or more abstract.

In our study, MD coding of behaviorally relevant distinctions
(T, NI, or NC) could not simply be interpreted as coding of
responses. Critically, the S-R mapping linking the decision (tar-
get present or absent) to the response (left or right keypress) was
reversed every block, unconfounding decision and response. Also
relevant is the significant discrimination between the NI and NC
categories. Arguably, NI and NC stimuli were classified on a dif-
ferent basis, NI based on the current cue but NC based on long-
term learning. The data suggest that these different classification
procedures led to different patterns of MD activity despite the
same final response.

In our results, all regions within the MD network exhibited a
similar pattern of response, discriminating only those categories
that were critical to the task, which is consistent with previous
findings (Duncan, 2010; Woolgar et al., 2011b). Various sugges-
tions have been made about division of the MD system into sep-

arate components, for example, into cingulo-opercular and
frontoparietal subnetworks (Dosenbach et al., 2007; Sadaghiani
and D’Esposito, 2014), but separate MD regions also show many
similar properties. Similar properties may reflect, at least in part,
the coarse time scale of the BOLD signal. Frontal and parietal
regions in the NHP, for example, exchange information at a time
scale of tens of milliseconds (Salazar et al., 2012). Similarly, neu-
rons within a single region code task events with rapidly changing
population vectors of activity (Meyers et al., 2008; Kadohisa et al.,
2013; Stokes et al., 2013). Rapid evolution of signals within each
region and rapid exchange from one region to another may make
functional differences between regions hard to observe at the
time scale of BOLD signal.

In our study, classification accuracies were low but statis-
tically significant. Similar classification rates obtained using
MVPA of fMRI data are not uncommon in decoding task
events across the MD network (Woolgar et al., 2011a; Woolgar
et al., 2011b) and in the auditory and visual cortex (MacEvoy
and Epstein, 2011; Alink et al., 2012). The expected effect size
of classification accuracy is generally unknown and may be
limited, for example, by the underlying spatial arrangement of
critical neural populations (Dubois et al., 2015). Regardless of
absolute classification accuracy, our results show the robust
difference in MD coding of task-critical and task-irrelevant
categorizations.

Using whole-brain imaging, we could investigate categori-
cal discrimination not only across the MD network, but also in
the visual cortex, in particular the high-level visual region, the
LOC. Several other studies have looked at attentional modu-
lations in the visual cortex using low-level stimuli such as
gratings (Li et al., 2007; Serences et al., 2009; Jehee et al., 2011)
or high-level objects (Chen et al., 2012; Lee et al., 2013; Harel
et al., 2014) and addressing issues including training (Jiang et
al., 2007), visual clutter (Reddy and Kanwisher, 2007; Reddy et
al., 2009; Erez and Yovel, 2014), and attentional effects on
functional connectivity (Chadick and Gazzaley, 2011). Con-
textual modulations of object representation have been found
in LOC, with some studies reporting such modulations in pFs
(Lee et al., 2013; Harel et al., 2014), but not in LO (Harel et al.,
2014), and others reporting flexible categorization in LO (Ji-
ang et al., 2007; Li et al., 2007). More broadly in the visual
system, attentional modulations were reported in category-
selective regions such as the fusiform face area (FFA) and
parahippocampal scene-selective area (PPA) (Reddy and Kan-
wisher, 2007; Reddy et al., 2009; Chadick and Gazzaley, 2011;
Chen et al., 2012) and early visual cortex (Serences et al., 2009;
Jehee et al., 2011). Interestingly, in our study, a division of
LOC into its two subregions revealed representation of both
behaviorally relevant and irrelevant category distinctions in
the pFs, whereas the representation in the LO was modulated
by behavioral relevance and limited to relevant category dis-
tinctions only. Nonetheless, the overall category discrimina-
tion in LOC was weak. Possibly, a combination of several
factors in the complex design of the paradigm that we used
contributed to suboptimal classification power. These factors
include the peripheral stimulus display while fixating, very
brief presentation (150 ms), fast event-related design, and fre-
quent changes of target categories. The accumulating mixed
evidence suggests that the pFs and LO may have different roles
in object processing and its contextual modulation. Further
studies are required to better understand the contribution of
LOC and its subregions, as well as other regions within the
visual system, to context-dependent object processing.
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To conclude, our data suggest that coding of stimulus
events in the MD network is determined by behavioral rele-
vance. In a cued category-detection task, neural patterns of
activity across the MD network conveyed information about
the categorical distinctions that were behaviorally relevant. In
contrast, discrimination was not seen for categorical distinc-
tions that were behaviorally irrelevant and, at least in our data,
discrimination was also not visible for other aspects of the task
that were orthogonal to the behavioral decision. The ability to
carry information about those aspects of the task that are rel-
evant to decision making and filter out aspects currently not
relevant is an essential property of a neural system adapting to
the dynamic requirements of behavior. Our findings are con-
sistent with the view of the key role of the MD network in
attentional and cognitive control and provide important evi-
dence for its ability to focus attentional resources on behav-
iorally relevant information.
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