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Abstract The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov) is a valuable data

resource focused on an increasing number of well-characterized cancer genomes. In part, TCGA

provides detailed information about cancer-dependent gene expression changes, including changes

in the expression of transcription-regulating microRNAs. We developed a web interface tool

MMiRNA-Tar (http://bioinf1.indstate.edu/MMiRNA-Tar) that can calculate and plot the

correlation of expression for mRNA�microRNA pairs across samples or over a time course for a

list of pairs under different prediction confidence cutoff criteria. Prediction confidence was estab-

lished by requiring that the proposed mRNA�microRNA pair appears in at least one of three target

prediction databases: TargetProfiler, TargetScan, or miRanda. We have tested our MMiRNA-Tar

tool through analyzing 53 tumor and 11 normal samples of bladder urothelial carcinoma (BLCA)

datasets obtained from TCGA and identified 204 microRNAs. These microRNAs were correlated

with the mRNAs of five previously-reported bladder cancer risk genes and these selected pairs exhib-

ited correlations in opposite direction between the tumor and normal samples based on the cus-

tomized cutoff criterion of prediction. Furthermore, we have identified additional 496 genes (830

pairs) potentially targeted by 79 significant microRNAs out of 204 using three cutoff criteria, i.e.,
nces and
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false discovery rate (FDR) < 0.1, opposite correlation coefficient between the tumor and normal

samples, and predicted by at least one of three target prediction databases. Therefore, MMiRNA-

Tar provides researchers a convenient tool to visualize the co-relationship between microRNAs

and mRNAs and to predict their targeting relationship. We believe that correlating expression

profiles for microRNAs and mRNAs offers a complementary approach for elucidating their

interactions.
Introduction

MicroRNAs (miRNAs) are an abundant family type of non-
coding RNAs that participate in post-transcriptional regula-
tion [1] through binding to the 30 UTRs of mRNAs or target

genes. Mature miRNAs typically are 17–24 nucleotides in
length. Single-stranded mature miRNAs are generated from
miRNA precursors (pre-miRNA) by the RNase III type

enzyme Dicer in the cytoplasm [2].
There are many studies that demonstrate inverse correla-

tions in the expression of specific miRNAs and their corre-

sponding target mRNAs [3–6], although studies showing
positive correlations also exist [7,8]. Aberrant miRNA expres-
sion is involved in the pathogenesis of several human diseases

[9–11]. Interestingly, Miles et al [8] showed directional changes
in microRNA/mRNA positive and negative correlation
between the tumor and normal samples.

Urothelial carcinoma occurring in the bladder is the fourth

leading type of cancer in men and the ninth most common can-
cer in women, with 150,000 related deaths per year in the world
[12]. Many genes such as FGFR3, HRAS, RB1, TSC1, and

TP53, have been associated with bladder cancer [13–17].
Recurrent mutations in these genes have also been reported
in many studies [18,19].

The Cancer Genome Atlas (TCGA), a project initiated
by the National Cancer Institute (NCI) and the National
Human Genome Research Institute (NHGRI) of the United
States in 2006, continues to characterize and document a

number of tumor or cancer samples. So far, more than
10 cancer tissues (breast, central nervous system, endocrine,
gastrointestinal, gynecologic, head and neck, hematologic,

skin, soft tissue, thoracic, and urologic) have been
presented for potential study and their sequencing data
are currently accessible to researchers (http://cancergenome.

nih.gov).
Assuming that significant correlations between miRNA

and mRNA expression levels in opposite directions

between the tumor and normal samples would tend to sig-
nal the existence of demonstrable targeting relationships,
we performed pairwise correlation calculations of miRNA
and mRNA expression profiles of both the tumor and

normal samples for the bladder urothelial carcinoma
(BLCA) datasets available from the TCGA project to pre-
dict targeting relationships between specific miRNAs and

mRNAs using MMiRNA-Tar, a tool developed in-house
by us. The results from global correlation analysis of the
expression data for miRNAs and mRNAs revealed poten-

tial targeting miRNAs for known bladder cancer risk
genes, as well as, additional cancer risk genes apparently
targeted by these miRNAs.
Methods

Data source

The test datasets were downloaded from TCGA Data Portal
(https://tcga-data.nci.nih.gov/tcga/). The type of cancer
studied in this paper is bladder urothelial carcinoma (BLCA).

Illumina HiSeq data were acquired based on the availability of
expression profile for both miRNA, which was produced by
Baylor College Human Genome Sequencing Center (BCGSC),

and mRNA, which was produced by University of North Car-
olina at Chapel Hill (UNC). Specifically, TCGA level 3
mRNASeq data were produced on Illumina HiSeq 2000

sequencers and its public release date is 04/30/2012. Read
counts and reads per kilobase per million (RPKM) per com-
posite gene (UCSC genes Dec 2009 build) were calculated
using the SeqWare framework via the RNASeqAlign-

mentBWA workflow (http://seqware.sourceforge.net). The
miRNA analyses of TCGA level 3 BLCA samples were pro-
duced by Illumina HiSeq as well. Normalized expression per

miRNA gene (Reads per million miRNA mapped or RPM)
was reported as miRNAs expression measurement unit. The
public release date of miRNA data used in this study is

10/09/2014. To make measurement units between two sequenc-
ing data sets consistent, we converted RPKM expression val-
ues for mRNA samples into transcripts per million (TPM)

values. A total of 53 tumor and 11 normal samples from seven
batches (batch No. 86, 113, 128, 150, 170, 175, and 192) were
downloaded and tested for both miRNA and mRNA data.
The normalized mRNA and miRNA expression data of both

the tumor and normal samples are shown in Tables S1 and
S2, respectively.

Data pre-processing

Expression profiles of BLCA datasets for a total of 20,532
mRNAs were downloaded. We excluded 29 genes that do

not have their gene symbols available (gene names marked
as ‘‘?’’ in the annotation table) from the list. We also excluded
SLC35E2 because it is doubly reported. Thus, a total of 20,501
genes were used to check against a miRNA expression file, in

which 1046 miRNAs were available.

Correlation coefficient calculation and target prediction

Calculations of linear (positive) or inverse (negative) correla-
tion (Pearson correlation) for each miRNA�mRNA pair
across samples and the prediction of miRNA and mRNA tar-

get relationship were implemented in C language. All three
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Figure 1 Workflow of selecting potential microRNAs and their gene targets

Liu Y et al / Correlation of mRNA and MicroRNAs 179
databases including TargetProfiler [20], TargetScan [21], and
miRanda [22] were precompiled for the search of targeting
relationship between miRNA and mRNA. We claimed the

existence of the targeting relationship if a target prediction
outcome is supported by at least one of the three databases
mentioned above. The FDR multiple testing [23] control and
normalization steps were implemented using a customized R

script.
Figure 1 shows the workflow of selecting potential targeting

miRNAs and additional targeted genes. MMiRNA-Tar is

available at http://bioinf1.indstate.edu/MMiRNA-Tar and
the software source code is freely available upon request for
non-commercial purposes.
Results

Correlation of expression profiles of miRNAs and mRNAs

We took five genes that have been reported as common blad-

der cancer risk genes in multiple studies and the National Insti-
tutes of Health (NIH) Genetic Home Reference website
(http://ghr.nlm.nih.gov/condition/bladder-cancer) and set out

to identify their potential targeting miRNAs using three pop-
ular target prediction databases mentioned in the Method sec-
tion. These genes include FGFR3, HRAS, RB1, TSC1, and

TP53. We calculated correlations (Pearson correlation)
between each of the five genes and all miRNAs reported in
53 tumor and 11 normal samples from the aforementioned
TCGA datasets. We then selected the pairs with correlation

values in opposite directions between the tumor and normal
samples and with targeting relationship predicted by at least
one of three databases using MMiRNA-Tar. As shown in
Figure 2, three prediction databases showed similar density
distribution patterns for calculated correlation values in the

tumor samples, although the density distribution by miRanda
was slightly different from the other two in the normal sam-
ples. We concluded that requiring a prediction outcome from
any of these databases would be reasonable.

Using these five genes, 204 miRNAs in total were
obtained based on the cutoff criteria of opposite correla-
tion direction between the tumor and normal samples

and by at least one database prediction (Table 1 and
Table S3). These 204 miRNAs are presumed to have tar-
geting relationships with five bladder cancer risk genes.

The expression information in heatmap format for 204
miRNAs (259 pairs) across 53 tumor and 11 normal sam-
ples is shown in Figure S1. We noticed that miRNAs

targeting the same gene(s) were often grouped together
using hierarchical clustering with the Pearson correlation
distance measure method of multiple array viewer
(http://sourceforge.net/projects/mev-tm4/).

The expression profile correlation analysis for 79 selected

miRNAs and their targeting mRNAs

We then calculated correlations and predicted targeting rela-
tionships for all possible pair combinations of 204 miRNAs
and 20,501 mRNAs in 53 tumor and 11 normal samples of

BLCA data. We obtained 830 additional miRNA–mRNA
pairs (comprising of 79 miRNAs and 496 genes) showing
opposite correlated relationships between the tumor and nor-
mal samples and having at least one database prediction out-

come with FDR < 0.1. Figure 3 is a Venn diagram showing
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Figure 2 Density distribution of correlation of the five initial genes and their paired miRNAs for tumor and normal samples

Pearson correlation was calculated for all possible pair combinations of FGFR3, HRAS, RB1, TSC1, and TP53 and 1046 miRNAs listed

in the BLCA dataset downloaded from TCGA. Targeting relationship was then predicted using databases including TargetProfiler,

TargetScan, and miRanda. The distribution of the miRNA–mRNA correlation values of the prediction results by three databases is

presented for tumor samples (A) and normal samples (B).

Table 1 Correlations between five selected bladder cancer risk genes and their predicted targeting microRNAs

Gene Chromosomal location No. of targeting miRNAs
Average difference of correlation

between tumor and normal samples

FGFR3 4p16.3 55 0.627199249

HRAS 11p15.5 10 0.714147948

RB1 13q14.2 41 0.417446885

TP53 17p13.1 31 0.327425407

TSC1 9q34 122 0.630901655

Note: Targeting relationship was predicted using Targetprofiler, TargetScan, and miRanda. Average difference of Pearson correlation for each gene

was calculated for all miRNA�mRNA pairs of the respective gene between the tumor and normal samples.
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prediction results derived by applying the three target predic-
tion database filters. The additional list of miRNA-gene target

pairs, along with their correlation values and target prediction
result using the aforementioned cutoff criteria, is shown in
Table S4. We noticed, among the 830 pairs, half of the genes

seem to have targeting relationships with at least two of the
79 identified miRNAs. Thus, in addition to the five initial
genes, we obtained another 496 genes having at least one pre-

dicted targeting relationship with 79 selected miRNAs.

Gene functional enrichment analysis

We searched the Database for Annotation, Visualization and

Integrated Discovery (DAVID) [24,25] for functional informa-
tion about the 496 genes with their predicted targeting miR-
NAs identified above. Enrichment of these genes was found

in several GO biological processes. Some of genes are involved
in chromatin remodeling complex, some of genes are
associated with cell cycle regulation, and some genes are

involved in protein kinase signaling pathways. These
biological processes (cell cycle regulation, kinase signaling,
chromatin remodeling) are frequently dysregulated in
bladder cancer [26]. Genes associated with aforementioned

biological processes and their associated GO terms are shown
in Table 2.

Discussion

In this study, we computed the correlation coefficients for all
available combinations of miRNA and mRNA pairs using

TCGA BLCA sequencing data. Performing multivariable cor-
relation analysis on a genome scale would be our future
research strategy. Under the assumption of an opposite corre-

lation of miRNA and mRNA (gene) expression levels between
the tumor and normal samples as an indicator for the
miRNA–mRNA target relationship, we used five previously

reported bladder cancer risk genes to obtain a list of 204 poten-
tial targeting miRNAs by applying several state-of-the-art tar-
get prediction algorithms. We then used this list of miRNAs to

identify other potential targeted pairs (genes), which could be
bladder cancer risk candidate genes, and perform GO
functional analysis on these genes. Fewer pairs with negative
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Figure 3 Venn diagram of miRNA–mRNA pairs of BLCA dataset

predicted by difference databases

Correlation was calculated for all possible pair combinations of 204

miRNAs (targeting the initial five genes) and 20,501 mRNAs of the

BLCA dataset. Targeting relationship was predicted with the

criteria: (1) opposite correlation between the tumor and normal

samples, (2) prediction by at least one database of TargetProfiler,

TargetScan, and miRanda, and (3) false discovery rate <0.1.

Table 2 Predicted target genes along with their associated GO terms

Gene

SHPRH, RSF1, MLL, NAP1L1, WRN, MLH3, SIRT1, TAF5L, HUWE1,

BRPF3, SUPT16H, PHF21A, KDM3B, PARP1, USP16, MYSM1, RERE,

EP400, APC

TAF5L, HUWE1, BRPF3, USP16, SIRT1, MYSM1, EP400

TAF5L, MLL, RSF1, HUWE1, BRPF3, PHF21A, KDM3B, USP16,

SIRT1, MYSM1, EP400, RERE

TAF5L, HUWE1, BRPF3, USP16, SIRT1, MYSM1, EP400

SHPRH, RSF1, MLL, NAP1L1, SIRT1, TAF5L, BRPF3, HUWE1,

SUPT16H, PHF21A, KDM3B, USP16, RERE, EP400, MYSM1

UHRF2, ZAK, SMAD3, PPP1CB, PTPN11, APC

BCAT1, TAF1, MLL, ZAK, SMAD3, MLH3, PPP1CB, TACC1, JMY,

CUL5, PSMC6, UHRF2, HSPA2, CASP8AP2, MAPK4, PTP4A1,

TUBE1, TNKS, MAPRE2, MAPRE1, USP16, DST, APC

BCAT1, TAF1, ZAK, SMAD3, MLH3, PPP1CB, JMY, CUL5, PSMC6,

HSPA2, TUBE1, MAPRE2, TNKS, MAPRE1, USP16, DST, APC

BCAT1, CUL5, PPP1CB

BCAT1, TAF1, CUL5, PPP1CB

BCAT1, TAF1, CUL5, PPP1CB

BCAT1, TAF1, PSMC6, CUL5, TNKS, MAPRE2, MAPRE1, USP16,

PPP1CB, APC

BCAT1, TAF1, CUL5, HSPA2, TNKS, MAPRE2, MAPRE1, MLH3,

USP16, PPP1CB, APC

TNIK, ZAK, MAPK8IP1

PHIP, UTP11L, EPHA7, GRB10, BAIAP2, SOCS7, RAF1, SOCS5,

PTPN11

TWSG1, SMAD9, ID1, SMAD5, SMAD3
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correlation were reported in tumor samples than in normal
samples, suggesting that these miRNAs possibly lose their
functions in tumor samples, under the assumption that

miRNAs often anti-correlate with their gene targets.
Target prediction tools employed in our study for

predicting miRNA targets likely contain false positives

since the intersection of the predictions by Targetprofiler,
TargetScan, and miRanda are low (Figure 3). In our effort,
to identify more targets, further analysis with at least one

prediction selection criteria was performed.

Conclusion

We have developed a web-based tool, MMiRNA-Tar, to plot
the correlation relationships and to report target prediction
outcomes between miRNAs and mRNAs across multiple sam-

ples and time course data. We used the complete TCGA
BLCA dataset currently available to test the tool and identified
204 potential targeting miRNAs and many additional targeted

genes by 79 selected miRNAs. We believe our tool is the first to
utilize miRNA and mRNA correlation plotting combined with
multiple target prediction tools for the analysis of miRNA
contributions to transcription regulation in cancer. Although

the current work was limited to BLCA, the tool developed in
this study should also be valuable for studies of functional
miRNAs for other cancer datasets as well. The future work

will be extended to enhance our web-based tool by incorporat-
ing the functionality of matching seed regions of miRNA to
the mRNA targets. We would also like to incorporate other
enriched

GO ID Biological process

0051276 Chromosome organization

0016570 Histone modification

0016568 Chromatin modification

0016569 Covalent chromatin modification

0006325 Chromatin organization

0051726 Regulation of cell cycle

0007049 Cell cycle

0022402 Cell cycle process

0000082 G1/S transition of mitotic cell

cycle

0051329 Interphase of mitotic cell cycle

0051325 Interphase

0000278 Mitotic cell cycle

0022403 Cell cycle phase

0031098 Stress-activated protein kinase

signaling pathway

0007169 Transmembrane receptor protein

tyrosine kinase signaling

pathway

0007178 Transmembrane receptor protein

serine/threonine kinase signaling

pathway
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available TCGA cancer datasets and identify interesting signa-
tures of miRNA–mRNA pairs for other datasets as well. We
also plan to develop a visualization tool to present the relation-

ships between miRNAs and mRNAs for comparing tumor and
normal expression data sets.
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