Table I.
Photovoltaic technology | Power conversion efficiency* (%)[1] | Absorption coefficient (cm−1)† | Diffusion length (μm)‡ | Carrier mobility (cm2 Vs)‡ | Carrier lifetime | Band gap (eV) | Loss-in- potential (eV)§ | External radiative efficiency (%) | Stability∥ | Main element | Energy-pay-back time (years) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Critical | Toxic | |||||||||||
c-Sib–f | 25.6 ± 0.5 | 102 | 100–300 | 10–103 | 4 ms | 1.1 | 0.4 | 1.3 | >25 years | – | – | 1.7–4 |
GaAs (thin film)g–j | 28.8 ± 0.9 | 104 | 1–5 | >103 | 50 ns¶ | 1.4 | 0.3 | 25 | >20 years | Ga | As | 2.3–5 |
CIGSk–r | 21.7 ± 0.6 | 103–104 | 0.3–0.9 | 10–102 | 250 ns | 1.1 | 0.3 | 10−1 | >8 years | In, Ga | – | 0.3 |
CdTes–v | 21.0 ± 0.4 | 103 | 0.4–1.6 | 10 | 20 ns | 1.5 | 0.6 | 10−3 | >4.5 years | Te | Cd | 0.5–1.1 |
Dye-sensitizedw–y | 13.0 ± 0.5 y | 103–104 | 0.005–0.02 | 10−2–10 | 1 ns** | 1.6 | 0.7 | 10−6 | <20 months | Co | – | 0.5–1.5 |
Organicz–hh | 11.1 ± 0.3 | 103–105 | 0.005–0.01 | 10−5–10−4†† | 10-100 μs†† | 1.6 | 0.7 | 10−7 | <25 days | – | – | 0.2–4 |
Quantum dot (PbS)ii–nn | 9.2 ± 0.2ii | 102–103 | 0.08–0.2 | 10−4–10−2 | 30 μs | 1.3 | 0.8 | 10−4 | <6 days | – | Pb | 1.51 |
Perovskiteoo–rr | 20.1 ± 0.4 | 103–104 | 0.1–1.9 | 2–66 | 270 ns | 1.6 | 0.5 | 10−2 | 4–42 days | – | Pb | 0.9 |
* Under AM 1.5, 100 mW/cm2; † At 300 K in the vicinity of the band edge; ‡ Of the minority carrier (c-Si, GaAs, CIGS, CdTe, perovskite) or the exciton (dye-sensitized, organic, quantum dot); § EG–qVoc (band gap—open circuit voltage); ∥ Period at which the efficiency becomes 80% of the initial value; ¶ Corrected for photon-recycling effects; ** Of a dye in solution, not on TiO2; †† Of the donor–acceptor blends, not the pristine material.
a [1]. b Geist, J., Migdall, A., & Baltes, H. Appl. Opt. 27, 3777 (1988). c [76]. d Modanese, C. et al. Prog. Photovolt: Res. Appl. 21, 1469 (2012). e Tiedje, T. et al. IEEE Trans. Electron Devices 31, 711 (1984). f Kegel, J. et al. Appl. Surf. Sci. 301, 56 (2014). g [78]. h Rey-Stolle, I. & Algora, C. Prog. Photovolt: Res. Appl. 11, 249 (2003). i Friedman, D.J., Olson, J.M., & Kurtz, S. High-efficiency III–V multijunction solar cells. (John Wiley & Sons, 2011). j Lumb, M. P. et al. J. Appl. Phys. 116, 194504 (2014). k [75]. l Chirilă, A. et al. Nature Mater. 12, 1107 (2013). m Repins, I. et al. Conference paper NREL/CP-520-46235 (2009). n Shah, A. et al. Science 285, 692 (1999). o [74]. p Metzger, W.K., Repins, I.L., & Contrearas, M.A. Appl. Phys. Lett. 93, 1 (2008). q Marple, D.T.F. Phys. Rev. 150, 728 (1966). r Mitchell, K., Fahrenbruch, A.L., & Bube, R.H. Appl. Phy. Lett. 48, 1 (1977). s Batzner, D.I. et al. Thin Solid Films 387, 151 (2001). t Kato, K. et al. Sol. Energy. Mat. Sol. Cells. 67, 279 (2001). u [87]. v Ma, J. et al. Phys. Rev. Lett. 111, 1 (2013). w Lindstrom, H. et al. J. Phys. Chem. 100, 3084 (1996). x Gebeyehu, D. et al. Synt. Met. 125, 279 (2002). y Mathew, S. et al. Nature Chem. 6, 242 (2014). z Kim, Y. et al. Nature Mater. 5, 197 (2006). aa Chen, C-P. et al. J. Am. Chem. Soc. 130, 12828 (2008). bb Espinosa, N. et al. Sol. Energy Mat. Sol. Cells. 95, 1293 (2011). cc He, Z. et al. Nature Photon. 6, 591 (2012). dd Jorgensen, M. et al. Adv. Mater. 25, 580 (2012). ee [88]. ff [70]. gg Roes, A.L. et al. Prog. Photovolt: Res. Appl. 17, 372 (2009). hh Pivrikas, A. et al. Prog. Photovolt: Res. Appl. 15, 677 (2007). ii Labelle, A. J. et al. Nano Lett. 15, 1101 (2015). jj Wang, X. et al. Nature Photon. 5, 480 (2011). kk Chuang, C-H. M. et al. Nature Mater. 13, 796 (2014). ll [89]. mm [72]. nn Jeong, K. S. et al. ACS Nano 6, 89 (2012). oo [106]. pp [134]. qq [135]. rr D’Innocenzo, et al. Nat. Commun. 5, 3586 (2013).