Skip to main content
. 2015 Mar;5(1):7–26. doi: 10.1557/mrc.2015.6

Table I.

Comparison between CH3NH3PbI3-based perovskites and other photovoltaic technologies. Perovskites have many of the advantages of polycrystalline semiconductors such as CIGS and CdTe, but they are processed from solution-like organic materials or quantum dots. Material characteristics refer to values measured for materials similar to those used in the highest performing solar cells

Photovoltaic technology Power conversion efficiency* (%)[1] Absorption coefficient (cm−1)† Diffusion length (μm)‡ Carrier mobility (cm2 Vs)‡ Carrier lifetime Band gap (eV) Loss-in- potential (eV)§ External radiative efficiency (%) Stability∥ Main element Energy-pay-back time (years)
Critical Toxic
c-Sib–f 25.6 ± 0.5 102 100–300 10–103 4 ms 1.1 0.4 1.3 >25 years 1.7–4
GaAs (thin film)g–j 28.8 ± 0.9 104 1–5 >103 50 ns¶ 1.4 0.3 25 >20 years Ga As 2.3–5
CIGSk–r 21.7 ± 0.6 103–104 0.3–0.9 10–102 250 ns 1.1 0.3 10−1 >8 years In, Ga 0.3
CdTes–v 21.0 ± 0.4 103 0.4–1.6 10 20 ns 1.5 0.6 10−3 >4.5 years Te Cd 0.5–1.1
Dye-sensitizedw–y 13.0 ± 0.5 y 103–104 0.005–0.02 10−2–10 1 ns** 1.6 0.7 10−6 <20 months Co 0.5–1.5
Organicz–hh 11.1 ± 0.3 103–105 0.005–0.01 10−5–10−4†† 10-100 μs†† 1.6 0.7 10−7 <25 days 0.2–4
Quantum dot (PbS)ii–nn 9.2 ± 0.2ii 102–103 0.08–0.2 10−4–10−2 30 μs 1.3 0.8 10−4 <6 days Pb 1.51
Perovskiteoo–rr 20.1 ± 0.4 103–104 0.1–1.9 2–66 270 ns 1.6 0.5 10−2 4–42 days Pb 0.9

* Under AM 1.5, 100 mW/cm2; † At 300 K in the vicinity of the band edge; ‡ Of the minority carrier (c-Si, GaAs, CIGS, CdTe, perovskite) or the exciton (dye-sensitized, organic, quantum dot); § EGqVoc (band gap—open circuit voltage); ∥ Period at which the efficiency becomes 80% of the initial value; ¶ Corrected for photon-recycling effects; ** Of a dye in solution, not on TiO2; †† Of the donor–acceptor blends, not the pristine material.

a [1]. b Geist, J., Migdall, A., & Baltes, H. Appl. Opt. 27, 3777 (1988). c [76]. d Modanese, C. et al. Prog. Photovolt: Res. Appl. 21, 1469 (2012). e Tiedje, T. et al. IEEE Trans. Electron Devices 31, 711 (1984). f Kegel, J. et al. Appl. Surf. Sci. 301, 56 (2014). g [78]. h Rey-Stolle, I. & Algora, C. Prog. Photovolt: Res. Appl. 11, 249 (2003). i Friedman, D.J., Olson, J.M., & Kurtz, S. High-efficiency III–V multijunction solar cells. (John Wiley & Sons, 2011). j Lumb, M. P. et al. J. Appl. Phys. 116, 194504 (2014). k [75]. l Chirilă, A. et al. Nature Mater. 12, 1107 (2013). m Repins, I. et al. Conference paper NREL/CP-520-46235 (2009). n Shah, A. et al. Science 285, 692 (1999). o [74]. p Metzger, W.K., Repins, I.L., & Contrearas, M.A. Appl. Phys. Lett. 93, 1 (2008). q Marple, D.T.F. Phys. Rev. 150, 728 (1966). r Mitchell, K., Fahrenbruch, A.L., & Bube, R.H. Appl. Phy. Lett. 48, 1 (1977). s Batzner, D.I. et al. Thin Solid Films 387, 151 (2001). t Kato, K. et al. Sol. Energy. Mat. Sol. Cells. 67, 279 (2001). u [87]. v Ma, J. et al. Phys. Rev. Lett. 111, 1 (2013). w Lindstrom, H. et al. J. Phys. Chem. 100, 3084 (1996). x Gebeyehu, D. et al. Synt. Met. 125, 279 (2002). y Mathew, S. et al. Nature Chem. 6, 242 (2014). z Kim, Y. et al. Nature Mater. 5, 197 (2006). aa Chen, C-P. et al. J. Am. Chem. Soc. 130, 12828 (2008). bb Espinosa, N. et al. Sol. Energy Mat. Sol. Cells. 95, 1293 (2011). cc He, Z. et al. Nature Photon. 6, 591 (2012). dd Jorgensen, M. et al. Adv. Mater. 25, 580 (2012). ee [88]. ff [70]. gg Roes, A.L. et al. Prog. Photovolt: Res. Appl. 17, 372 (2009). hh Pivrikas, A. et al. Prog. Photovolt: Res. Appl. 15, 677 (2007). ii Labelle, A. J. et al. Nano Lett. 15, 1101 (2015). jj Wang, X. et al. Nature Photon. 5, 480 (2011). kk Chuang, C-H. M. et al. Nature Mater. 13, 796 (2014). ll [89]. mm [72]. nn Jeong, K. S. et al. ACS Nano 6, 89 (2012). oo [106]. pp [134]. qq [135]. rr D’Innocenzo, et al. Nat. Commun. 5, 3586 (2013).