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Targeted mass spectrometry is an essential tool for de-
tecting quantitative changes in low abundant proteins
throughout the proteome. Although selected reaction
monitoring (SRM) is the preferred method for quantifying
peptides in complex samples, the process of designing
SRM assays is laborious. Peptides have widely varying
signal responses dictated by sequence-specific physio-
chemical properties; one major challenge is in selecting
representative peptides to target as a proxy for protein
abundance. Here we present PREGO, a software tool that
predicts high-responding peptides for SRM experiments.
PREGO predicts peptide responses with an artificial neu-
ral network trained using 11 minimally redundant, maxi-
mally relevant properties. Crucial to its success, PREGO
is trained using fragment ion intensities of equimolar syn-
thetic peptides extracted from data independent acquisi-
tion experiments. Because of similarities in instrumenta-
tion and the nature of data collection, relative peptide
responses from data independent acquisition experiments
are a suitable substitute for SRM experiments because they
both make quantitative measurements from integrated
fragment ion chromatograms. Using an SRM experiment
containing 12,973 peptides from 724 synthetic proteins,
PREGO exhibits a 40–85% improvement over previously
published approaches at selecting high-responding pep-
tides. These results also represent a dramatic improvement
over the rules-based peptide selection approaches com-
monly used in the literature. Molecular & Cellular Pro-
teomics 14: 10.1074/mcp.M115.051300, 2331–2340, 2015.

Targeted proteomics using selected reaction monitoring
(SRM)1 and parallel reaction monitoring (PRM) is increasingly

becoming the gold-standard method for peptide quantitation
within complex biological matrices (1, 2). By focusing on
monitoring only a handful of transitions (associated precursor
and fragment ions) for targeted peptides, SRM experiments
filter out background signals, which in turn increases the
signal to noise ratio. SRM experiments are almost exclusively
performed on triple-quadrupole instruments. These instru-
ments can isolate single transitions as an ion beam and mea-
sure that beam with extremely sensitive ion-striking detectors.
As a result, SRM experiments generally exhibit significantly
more accurate quantitation when compared with similarly
powered discovery based proteomics experiments, and fre-
quently benefit from a much wider linear range of quantitation
(3). SRM experiments often require less fractionation and can
be run in shorter time on less expensive instrumentation.
These factors allow researchers to greatly scale up the num-
ber of samples they can run, which in turn increases the
power of their experiment.

However, the process of developing an effective SRM as-
say is often cumbersome, as subtle differences in peptide
sequence can have a profound impact on the physiochemical
properties and subsquent SRM responses of a peptide. To
successfully develop an SRM assay for a protein of interest,
unique peptide sequences must be chosen that also produce
a high SRM signal (e.g. high-responding peptides). Once
identified, these high-responding peptides are often synthe-
sized or purchased, and independently analyzed to determine
the most sensitive transition pairs. Finally, the selected pep-
tide and transition pairs must be tested in complex mixtures
to screen for transitions with chemical noise interference
and to validate the sensitivity of the assay within a particular
sample matrix. Peptides and transitions that survive this
lengthy screening process can then undergo absolute quan-
titation by calibrating the signal intensity against standards of
known quantity.

Although experimental methods have been developed to
empirically determine a set of best responding peptides (4),
these strategies can be time consuming and require analytical
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standards, which are currently unavailable for all proteins.
More often than not, representative peptides are essentially
chosen at random, using only a small number of criteria, such
as having a reasonable length for detection in the mass spec-
trometer, a lack of methionine, and a preference for peptides
containing proline (5). It is not uncommon for SRM assays to
fail at the final validation steps simply because the peptides
chosen in the first assay creation step happened to be unex-
pectedly poor responding peptides.

In an effort to speed up the process of generating robust
assays, several groups (6–9) have designed approaches to
predict sets of proteotypic peptides using machine-learning
algorithms. Proteotypic peptides are peptides commonly
identified in shotgun proteomics experiments for a variety of
reasons including high signal, low interference, and search
engine compatible fragmentation. Enhanced Signature Pep-
tide (ESP) Predictor (7) was the first successful modification of
this prediction approach to use proteotypic peptides as a
proxy for high-responding peptides for SRM-based quantita-
tion. In brief, Fusaro et al. built a training data set from data-
dependent acquired (DDA) yeast peptides and a proxy for
their response was quantitated using extracted precursor ion
chromatograms (XICs). The authors calculated 550 physio-
chemical properties for each peptide based on sequence
alone and built a random forest classifier to differentiate be-
tween the high and low response groups. Other peptide pre-
diction tools follow the same general methodology for devel-
oping training data sets. CONSeQuence (8) applies several
machine learning strategies and a pared down list of 50 dis-
tinct peptide properties. Alternately, Peptide Prediction with
Abundance (9) (PPA) uses a back-propagation neural network
(10) trained with 15 distinct peptide properties selected from
ESP Predictor’s 550. The authors of CONSeQuence and PPA
found that their approaches outperformed the ESP Predictor
on a variety of data sets.

As with most machine learning-based tools, the generality
of the training set to real-world data is key to the effectiveness
of the resulting prediction tool. Although MS1 intensities ex-
tracted from DDA data can be useful for predicting high-
responding peptides (11, 12), several factors make them less
than ideal for generalizing to SRM and PRM experiments. In
particular, DDA peptides must be identified before being
quantified and key biochemical features beneficial for tar-
geted analysis of transitions can reduce overall identification
rates by producing fragment spectra that are difficult to inter-
pret with typical search engines. By building training data sets
on precursor intensities alone these tools ignore the fact that
targeted assays actually use fragment ions for quantification.
We propose that constructing training sets from DIA fragment
intensities (13) will produce machine-learning tools that are
more effective at modeling peptides that produce detectible
transitions, rather than just proteotypic peptides.

The use of digested proteins in training sets presents ad-
ditional concerns. The observed variance in peptide intensi-

ties is confounded by variation in protein abundance. Con-
verting peptide intensities to ranks can remove the
dependence on varying protein levels at the cost of corrupting
the training set with proteins that biochemically contain no
high-responding peptides. PPA attempts to ease this concern
by training with Intensity Based Absolute Quantitation values
(14) for DDA peptides estimated from XICs. We hypothesize
that constructing a training set from equimolar synthetic pep-
tides removes most adverse effects of digestion from the
training set, making it possible to construct a more general-
izable tool.

EXPERIMENTAL PROCEDURES

Training Set Stable Isotope Peptides—A total of 1679 stable iso-
tope labeled (SIL) peptides (C-terminal K* � Lys (U-13C6;U-15N2) or
C-terminal R* � Arg (U-13C6;U-15N4)) were obtained as a crude
(SpikeTide L) mixture from JPT Peptide Technologies GmbH (Berlin,
Germany). All peptides are tryptic digestion products of human pro-
teins that have been observed in previous shotgun DDA runs of
human samples. This peptide selection may introduce a small bias
toward peptides that can be interpreted with DDA, although signifi-
cant fractionation was required to initially assign many of the pep-
tides. Peptides were acquired with all cysteines alkylated to
carbamidomethyl cysteine. In general, the training peptides are rep-
resentative of normal peptides with one exception: the training data
set does not contain peptides with a methionine. One aliquot of the
peptide mixture (� 0.1 nmol of each peptide) was resuspended in 100
�l of 80% 0.1 M ammonium bicarbonate and 20% acetonitrile. The
mixture was bath sonicated for 5 min, vortexed at 37 °C for 5 min.
One microliter of the �1 picomole/�l solution was diluted in 99 �l of
0.1% formic acid for a 10 fmol/�l solution, which was spun down prior
to transferring to a sample vial for liquid chromatography tandem MS
(LC-MS/MS) analysis.

Training Set LC-MS/MS Analysis—A 1.5 �l (15 fmol runs) or 4.5 �l
(45 fmol runs) aliquot of the SIL mixture was loaded onto a 2 cm � 150
�m Kasil-fritted trap packed with 4 �m Jupiter C12 90A material
(Phenomenex, Torrance, CA). The sample was loaded and desalted
using 5 �l of a 0.1% formic acid, 2% acetonitrile solution. The trap
was brought on-line with the analytical column. The analytical column
was a fused-silica capillary (75 �m inner diameter) with a tip pulled
using a CO2 laser-based micropipette puller (P-2000; Sutter Instru-
ment Company; Novato, CA). The analytical column was packed with
15 cm of 3 �m Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH,
Germany). The analytical column was coupled in-line to a Waters
nanoAcquity UPLC pump and autosampler (Waters Corp, Milford,
MA). Peptides were eluted off of the column at a flow rate of 300
nL/min using a 90 min gradient of 2–35% acetonitrile in 0.1% formic
acid, followed by 35–60% acetonitrile in 0.1% formic acid over 5 min.
Peptides were ionized by electrospray (2kV spray voltage) and emit-
ted into a Q-Exactive HF mass spectrometer (Thermo Scientific;
Bremen, Germany). Data were acquired using one of two acquisition
methods: data-dependent acquisition (DDA) or data-independent ac-
quisition (DIA).

Training Set DDA Acquisition—The DDA method acquires an MS
scan analyzing 485–925 m/z with resolution 120,000 (at 200 m/z),
automated gain control (AGC) target 3 � 106 charges, and maximum
injection time 50 ms. Next, up to 20 MS/MS scans were triggered
from the top 20 most intense precursors detected in the MS master
scan. The MS/MS scans have resolution 15,000 (at 200 m/z), AGC
target 1 � 105 charges, maximum injection time 25 ms, isolation
width 1.5 m/z, normalized collision energy 27. Precursors with an
intensity below 2 � 105, an unassigned charge state, charge state 1,
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or charge �5 were excluded. The dynamic exclusion time was 10 s,
with isotope peaks of targeted precursors being excluded and the
underfill ratio set to 5%.

Training Set DIA Acquisition—A full MS scan was acquired analyz-
ing 495–905 m/z with resolution 60,000 (at 200 m/z), AGC target 3 �
106 charges, and maximum inject time 100 ms. After the MS scan, 20
MS/MS scans were acquired, each with a 20 m/z wide isolation
window, resolution 30,000 (at 200 m/z), AGC target 1 � 106 charges,
maximum injection time 55 ms, normalized collision energy 27, with
the default charge state set to 2. The 20 MS/MS scans were contig-
uous and collectively cover the m/z range from 500–900 m/z. The
cycle of 20 scans (center of isolation window) was as follows (m/z):
510.4819, 530.4910, 550.5001, 570.5092, 590.5183, 610.5274,
630.5365, 650.5456, 670.5547, 690.5638, 710.5729, 730.5820,
750.5911, 770.6002, 790.6093, 810.6183, 830.6274, 850.6365,
870.6456, and 890.6547. The entire cycle of MS and MS/MS scan
acquisition takes roughly 2 s and was repeated throughout the LC-
MS/MS analysis.

Training-Set Data Processing—The DDA data was searched using
Comet 2014.02 rev. 2 against a database containing the heavy-
labeled peptide sequences. Prior to searching with Comet, the
MS/MS spectra had been processed using Hardklor (15) v. 2.16 and
Bullseye (16) v. 1.30 to assign more accurate precursor matches
based on analysis of MS spectra and remove MS/MS spectra without
a matching MS1 precursor. The peptide-spectrum matches were
processed with Percolator (17) v. 2.07 to assign q-values to peptide
spectrum matches and peptide identifications. Bibliospec (18) v. 2.0
was used to combine the peptide-spectrum matches into a spectral
library containing any spectra with q � 0.3. The score cutoff is
extremely loose because the spectral library is simply used as an aide
for manually choosing peaks during processing of the DIA data.

The DIA data were analyzed using the Skyline (19) software pack-
age. In Skyline, chromatograms were extracted for the �2 and/or �3
charged precursor of each peptide that fell within the analyzed 500–
900 m/z range. For each peptide precursor, chromatograms were
extracted for the M, M�1, and M�2 precursor ions from the MS data,
and chromatograms for the y-ion series (ion 2 to last ion �1) were
extracted from the MS/MS data. The chromatographic peaks for each
peptide precursor were manually selected and integrated in each of
the four DIA data sets acquired. The retention time of library matches
from the DDA data were overlaid on the DIA data to aid in selecting
the correct peak. Additionally, the mass measurement error (� 10
ppm), similarity in ratios of the area of the precursor peaks to the
theoretical isotope distribution, and similarity in the ratios of the area
of the extracted fragment ion chromatograms from the DIA data to
matches in the spectral library were used to verify that the correct
chromatographic peak was being integrated. In the vast majority of
cases, there was a single, intense peak meeting all of these criteria.
When this was not the case, the peptide precursor was discarded,
resulting in a total of 1331 confidently detected peptides remaining.
Fragment ions showing interference were also discarded.

SRM Testing Set and Training Cross Validation Set—The data
presented in Stergachis et al. was used as a primary testing data set.
A new SRM training cross validation data set was constructed using
the protocols presented in Stergachis et al. Briefly, clones for GST
fusion proteins from the pANT7_cGST clone collection (20) were
synthesized in vitro using the Pierce 1-step Human Coupled in vitro
protein synthesis kit (Thermo Scientific; Bremen, Germany). In in-
stances where a cDNA clone was unavailable, recombinant proteins
were purchased from a commercial source. GST tagged proteins
were captured using glutathione Sepharose 4B beads (GE Healthcare
Life Sciences; Pittsburgh, PA), and iteratively washed to remove
nonspecific binders. Bead bound GST fusion proteins were individu-
ally denatured with 5 mM dithiothreitol (DTT) for 30 min at 60 °C and

alkylated with 15 mM iodoacetamide for 30 min at room temperature.
Proteins were then digested with 1 �g of sequencing grade modified
porcine trypsin (Promega, Madison, WI) for 2 h at 37 °C.

Protein digests were resolved on a 12 cm � 150 �m analytical
column packed with ReproSil-Pur 3 �m C18-AQ beads (Dr. Maisch
GmbH, Germany). The analytical column was coupled in-line to a
Waters nanoAcquity UPLC pump and autosampler (Waters Corp).
Peptides were eluted off the column at a flow rate of 0.75 �l/min using
0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B)
following this linear solvent schedule: 0–7 min, 95–60% A; 7.0–7.1
min, 60–32% A; 7.1–8.0 min, 32% A; 8.0–8.1 min, 32–5% A; 8.1–
11.0 min, 5% A; 11.0–11.1 min, 5–95% A; 11.1–18.0 min, 95% A.
Peptides are ionized by electrospray and emitted into a TSQ-Vantage
triple quadrupole instrument (Thermo Scientific). Doubly charged,
fully tryptic peptides of length 7 to 23 for each protein were analyzed
using the Skyline software package. Peptide fragment chromato-
grams for the y-ion series (ion 3 to last ion �1) were extracted from
the MS/MS data and quantified. Forty-four of the proteins were used
for training cross validation to protect against over fitting. The 18
remaining proteins were reserved exclusively for a secondary testing
data set and used only after training was complete.

Peptide Response Prediction—Peptide responses for peptides in
the Stergachis et al. SRM testing data set were predicted using PPA,
CONSeQuence, and ESP Predictor. PPA RC4 (available online at
http://software.steenlab.org/rc4/PPA.php) was used using the default
parameters (peptide mass from 600 to 6000 and minimum peptide
length of 5). The artificial neural network and linear support vector
machine components of CONSeQuence (available online at http://
king.smith.man.ac.uk/CONSeQuence/) were run independent of the
consensus binary score. The consensus binary score was not used
because it produces only four discrete values, which made it impos-
sible to compare against the other scoring systems. ESP Predictor
version 3 (available online at http://www.broadinstitute.org/cancer/
software/genepattern/esppredictor) is parameter-free.

RESULTS

Challenges in Predicting Peptide Responses—Peptide re-
sponse factors within proteins vary widely: on average by over
three orders of magnitude between the highest and lowest
responding peptides. Stergachis et al. has presented previ-
ously an experimental method for determining the best re-
sponding peptides to monitor proteins in targeted experi-
ments. This method was shown by synthesizing over 700
human transcription factors in vitro and generating SRM as-
says for all singly charged, monoisotopic y3 to yn�1 ions from
virtually every tryptic peptide. Because of variations in trans-
lation, proteins in this experiment were not produced at the
same level. However, all peptides within a given protein were
guaranteed to be present at equimolar levels, and using this
knowledge, the authors were able to determine which pep-
tides produced the best SRM transitions for in vivo monitor-
ing. In this work, we use the Stergachis et al. data set as an
independent test set to validate our methods. Some potential
limitations of this data set for benchmarking include that it
was acquired only considering precursor charge state �2
peptides (that may bias against high basicity peptides and
very long peptides), and that analyzed fragment ions were
limited to only y-type ions. We feel that the benefits of the
scale of this data set outweigh these limitations.
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The Stergachis et al. data set provides an excellent testing
ground for understanding the challenges in predicting peptide
responses. Fig. 1 illustrates the range of peptide transition
responses in the Stergachis et al. SRM data set. Although the
median dynamic range of peptide responses within a protein
was 3.4 orders of magnitude, some rare proteins shown re-
sponse ranges of up to five or six orders of magnitude. An
example distribution for CASZ1, a typical transcription factor
with an apparent dynamic range of 4.1 orders of magnitude, is
shown in supplemental Fig. S1. This wide diversity of re-
sponses underlines the need for a robust mechanism for
choosing peptides to target. In this work, we leverage the
Stergachis et al. data set containing 12,973 peptides from 724
proteins (with a median of 15 peptides per protein and a mode
of 10) to test our approach for predicting peptide responses
for SRMs and PRMs.

Training Set Preparation—Training data sets that are gen-
eralizable to real world applications are critical for effective
machine learning. However, creating an exhaustive targeted
data set of equimolar peptides for training a peptide response
prediction model is extremely time consuming as it would
require very many SRM experiments to account for all poten-
tial transition ions for every peptide. We have developed a
strategy for generating large-scale, realistic SRM and PRM-
like training sets using DIA MS/MS experiments acquired on a
QExactive-HF (Thermo Scientific) using HCD fragmentation.
For the purposes of determining a training data set, DIA
MS/MS has the advantage that all sequence specific frag-
ments are measured, making it easy to identify the most
promising transitions. Additionally, we used beam-type higher
energy collisional dissociation (HCD) fragmentation to gener-
ate fragments, which is very similar to triple-quad fragmenta-
tion used in most SRM experiments (21). We derived the
training set from the most intense singly charged y-type frag-
ment intensity for each of 1679 stable isotope labeled peptide

detections made by Skyline, given certain restrictions. Only
singly charged y-type fragments were used because b-type
fragments can lose carbon monoxide to form a-type frag-
ments, resulting in both lowered response and increased
variability. Also, typically the b-ion series undergoes multiple
collisions in beam-type instruments and fragments to smaller
product ions until it stops at the b2 ion. This fragment ion is
frequently one of the most intense but least selective product
ions in the spectrum. First, we filtered our list of potential
signature y-type fragment ions to remove nonspecific y2 frag-
ments. Then, for each acquisition, we removed the 2.5%
worst fragment ions by mass accuracy in both directions
(supplemental Fig. S2). At this point, we estimated the maxi-
mum y-type fragment for each peptide as a proxy for the
maximum transition response.

Because peptide detections were made from two pairs of
acquisitions at different amounts (�45 fmol and 15 fmol on-
column), we were able to use the distribution of parent-inten-
sity quantitative ratios to indicate outlier peptides (supple-
mental Fig. S3). Based on this analysis, we removed 69 SIL
peptides from the initial 1331 detected peptides that eluted
earlier than 30 min or later than 85 min from further analysis.
In our runs, early eluting peptides tended to saturate in ratio
between 45 fmol and 15 fmol injections, suggesting that their
intensities were unreliable. Peptides eluting after 85 min were
excluded because our instrument tuning parameters made
their intensities also unreliable. After removing these peptides,
we recalculated the median ratio of the two pairs of acquisi-
tions to be 2.45, slightly under the expected 45:15 fmol ratio.
We estimated the overall intensity for each peptide as the
average of the intensities from the 45 fmol acquisition and
2.45 times the 15 fmol intensities and removed the peptides
with the 2.5% highest and 2.5% lowest ratios to compensate
for peptides with unstable responses. This resulted in a final
training data set of 1186 well-behaved peptides, which are
presented in supplemental Table S1. Summary statistics
about these peptides are presented in supplemental Fig. S4.
Finally, we ranked the peptides in the training set based on
these aggregate fragment ion intensities and linearly normal-
ized the ranks to be between zero and one.

Physiochemical Property Selection and Artificial Neural Net-
work Training—For each peptide sequence we calculated 550
physiochemical properties used by ESP Predictor, the large
majority of which were derived from the Amino Acid Index
Database (22). We point out that one potential source of
variability is that cysteines used in this work (and in proteo-
mics generally) are alkylated, whereas the majority of the
Amino Acid Index Database properties assume cysteines are
unmodified. We normalized the values for these properties to
be between zero and one. We selected meaningful physio-
chemical properties using a minimum redundancy, maximum
relevance (mRMR) algorithm (23, 24). For each property, we
calculated the Pearson’s correlation coefficient of ranked
peptides with the property values derived from their respec-

FIG. 1. A histogram of the dynamic ranges calculated for 724
proteins. The dynamic range is estimated as the number of orders of
magnitude separation for each protein. This value is calculated as the
difference between the log10 intensities of the highest responding
peptide and the lowest responding peptide. The median dynamic
range is 3.4 orders of magnitude, with an interquartile range of 1.2
orders. All protein intensity data was drawn from the Stergachis et al.
SRM testing data set.
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tive peptide sequences. The property with the highest corre-
lation was selected as a meaningful feature and all other
properties that correlate with that feature at an absolute Pear-
son’s correlation coefficient of �0.3 are removed. This pro-
cess is iterated using the remaining properties until all prop-
erties that have any positive correlation to the intensity ranks
are either selected or removed.

The mRMR algorithm produced 11 most relevant physio-
chemical properties. These properties and their correlation to
the ranked training intensities are listed in Table I. As the
mRMR algorithm chooses the most representative of several
properties, the specific properties themselves are less impor-
tant than their higher-level classification. Peptides with lower
molecular weights correlated strongest with high transition
intensities in our training set, followed by various structural
and hydrophobicity properties.

The final training set consisted of the top 25% (high respond-
ers) and the bottom 25% (low responders) of peptides to pro-
mote differentiation between high and low responding peptides,
where the expected output was the percentage intensity rank.
We constructed a back-propagation neural network with 11
input neurons corresponding to the 11 mRMR-selected relevant
physiochemical properties, eight hidden neurons in a single
layer, and a single output neuron. We configured the neural
network for a 10% learning rate and trained it to reach a mini-
mum recall error level of 1%. Neural networks typically produce
a score between zero and one, indicating the classification of
the input feature set. Instead of using the neural network score
directly, the PREGO score was assigned to:

PREGO Score � log10� ANN score
1 � ANN score� (Eq. 1)

in an effort to stratify scores that clump around zero and one.
This score is analogous to the log-likelihood ratio statistic for

comparing two classification models. Pseudo code of the
PREGO algorithm is presented in Fig. 2.

There are many decisions to make when picking a super-
vised machine learning architecture. As with PPA and
CONSeQuence, we chose to implement an artificial neural
network because “deep architectures” (like ANNs) tend to
perform better than “shallow architectures” (e.g. support vec-
tor machines) on “deep learning” tasks (25). However, unlike
the support vector machine approach to gradient descent,
back-propagation gradient descent is random in nature, caus-
ing artificial neural networks to often converge on local min-
ima, rather than global minima. Consequently, we trained
1000 different ANNs and cross validated them using 44 pro-
teins selected from an exhaustive SRM data set modeled after
the Stergachis et al. experiment. We selected the best model
that maximized the area of the receiver operating character-
istic (ROC) that compared the number of peptides picked per
protein versus the number of proteins where at least one
high-responding peptide was picked. For each protein, pep-
tides were considered high responders if they produced a
single most intense y-type fragment ion for each peptide in
the top 20% of peptides from that protein. This approach also
provides a buffer against over-fitting because we trained us-
ing DIA data and cross validated the training models with
SRM data acquired in a completely different manor.

Evaluation of PREGO—We evaluated PREGO using the
Stergachis et al. data set, which describes experimental SRM
transition responses acquired for almost 13,000 peptides
found in over 700 proteins. For consistency with our current
practice we reprocessed this data set to quantitate using the
only the single most intense fragment ion (y3 to yn�1), whereas
the original publication used the sum of those ions. Fig. 3
shows PREGO scoring for CASZ1, a representative protein in
this data set. CASZ1 has a Pearson’s correlation coefficient of

TABLE I
Most relevant physiochemical peptide properties

Rank
Correlation
Coefficienta

Peptide property Property typeb

1 -0.53 Peptide mass Size
2 -0.36 Average relative preference value at C1 (28) Structural
3 -0.33 Average activation Gibbs energy of unfolding, pH7.0 (29) Hydrophobicity
4 -0.27 Average hydrophobicity coefficient in RP-HPLC, C4 (30) Hydrophobicity
5 -0.20 Average normalized frequency of zeta R (31) Structural
6 0.20 Average linker propensity from 1-linker data set (32) Structural
7 0.16 Average hydrophobicity coefficient in RP-HPLC, C18 Hydrophobicity
8 0.15 Average AA composition of EXT2 of single-spanning proteins (33) Structural
9 -0.14 Average normalized frequency of �-helix in all-� class (34) Structural
10 0.08 Average relative population of conformational state A (35) Structural
11 0.07 Average surface composition of AAs in intracellular proteins of thermophiles (36) Structural

a Peptide properties were iteratively selected from a pool of 550 total properties based on their Pearson’s correlation with the intensity ranks
in the training data set. Properties are sorted based on the absolute value of the correlation coefficient, which is an indication of their
importance for classification. Negative correlations indicate inverse relationships. As each feature was selected, redundant features with
interproperty correlation coefficients �0.3 were removed.

b Peptide properties were loosely categorized into three types, those corresponding with peptide size, secondary structure, and
hydrophobicity.
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0.65 when compared with the experimental intensity ranks,
the mode of the correlation distribution across all proteins in
the data set (supplemental Fig. S5). Although there is signifi-
cant deviation in any individual measurement, PREGO scores
are generally high in cases of high-responding peptides, and
low with less responsive peptides. Supplemental Fig. S6 il-
lustrates the range of PREGO scores for a variety of proteins
that show similar trends with correlation coefficients ranging
from 0.9 to 0.2.

We combined traces like those shown in Fig. 3 across all
proteins in the Stergachis et al. data set. Fig. 4A depicts the
distribution of PREGO scores for peptides at various ranks in
all of the proteins, where the black line indicates the median
score and the gray shaded area indicates the interquartile
range. Following the trend shown in Fig. 3, there is wide
scatter at each individual rank. However, the downward trend
in scores as rank decreases suggests that PREGO is able to
differentiate peptide responses in SRM experiments.

Fig. 4B shows a similarly generated scoring profile for PPA
on the same set of proteins. Although there is a slight down-
ward trend in the median, PPA assigns high scores to pep-
tides at all ranks. The spreading shape of the distribution
suggests that PPA is more likely to assign low scores to low
responding peptides. For any given protein, PPA eliminates
some of these low responding peptides from the pool of
options and thus increases the odds for choosing a high-
responding peptide. CONSeQuence score distributions using
both the artificial neural network option and the SVM option
are depicted in Fig. 4C and 4D, respectively. In this data set,
CONSeQuence produces a slight downward trend in scores
with poorer responding ranks, although the scatter in the
distributions overwhelms any major trends.

Although it is important that response prediction scoring
schemes correlate with experimental peptide intensities,
these algorithms will mainly be used to select multiple pep-
tides to quantitate a protein in the hopes that at least one
produces a strong response. The approaches need not iden-
tify the highest responding peptide every time; to be effective
they must be able to select at least one relatively strong
responding peptide in a handful of guesses. Fig. 5A asks the
question: “If we selected N peptides for any given protein,

FIG. 2. Algorithmic outline of the
PREGO method. A, Algorithmic outline
describing feature selection using an
mRMR style algorithm to identify nonre-
dundant features with maximum rele-
vance. Feature sets with low redundancy
often decrease the potential for over-
training in machine learning algorithms.
B, Algorithmic outline for neural network
construction using the mRMR-selected
feature set. C, Testing of the algorithm
was performed using the Stergachis et
al. SRM testing data set.

FIG. 3. PREGO Scores for peptides in CASZ1. Peptides in CASZ1
(also known as cDNA FLJ20321) are ranked on their experimentally
acquired transition fragment intensity from the Stergachis et al. SRM
testing data set where the peptide with the strongest response is
awarded a rank of one. The top 20% of peptides by intensity rank are
considered “high-responding peptides” and are shaded in blue. The
top five peptides chosen by PREGO are marked with red borders.
Although there is large variation in predicting response intensities for
any given peptide (solid line), there is a definite trend (dashed line) to
score first ranked peptides somewhat higher than worse ranked
peptides. Consequently, the highest scoring peptides picked by
PREGO are often also high-responding peptides. CASZ1 represents a
“typical” protein with a correlation score of 0.65.
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would at least one of those peptides show high response?”
We defined high response as being in the top 20% of peptides
for each protein by rank-response. Given these criteria, on
average PREGO correctly selects a high-responding peptide
57% of the time on the first selection. Similarly, if two peptides
per protein are selected, then at least one is a high responder
80% of the time, and on average selecting three peptides
produces a high responder 90% of the time. At each of these
three stages, PREGO selects high responders �40% to 85%
more often than the best competing methods.

As a baseline, Fig. 5A includes statistical calculations for
selecting peptides entirely at random. However, typically sci-
entists select peptides to build SRM and PRM assays by
employing several simple selection rules and choosing ran-
domly among the peptides that pass those rules. We built a
simple scoring scheme to capture the Bereman et al. rules
strategy that has bonuses for prolines (that produce strong
fragmentation signatures) and penalties for methionine (that
can be oxidized), asparagine/glutamine (that can be deami-

dated), glutamine/glutamic acid in the N-terminal position
(that can cyclize to form pyroglutamic acid), and carbamido-
methyl-cysteine in the N-terminal position (that can also cy-
clize). The rules-based “score” is a summation of values
across all of the n amino acids in a peptide:

Rules based score � �
i�1

n �
Pi

Mi

Ni, Qi

Q1, E1, C1

otheri

�
5

� 10
� 1

� 10
0

�
(Eq. 2)

Not surprisingly this strategy performs somewhat better than
the baseline of randomly guessing. Fig. 5B illustrates the
relative improvement of PREGO and the other various trained
approaches over the rules based approach. All of the trained
approaches improve over the rules based approach when
only considering the top peptide. However, it is rare that
scientists choose only a single peptide per protein for tar-

FIG. 4. Score distributions for four scoring methods by peptide rank. A, The PREGO score distribution for peptides of descending rank
across the entire Stergachis et al. SRM testing data set. The median ranks are annotated as dots, where the nearest-neighbor-smoothed trend
is plotted as a black line. The interquartile range (Q1 to Q3) is shaded blue. In general, first ranked peptides with the highest responses tend
to get higher scores than those of lower ranks, as indicated by the downward trend from left to right. The B, PPA score distribution as well as
the CONSeQuence; C, artificial neural network (ANN); and D, support vector machine (SVM) score distributions all show weaker downward
trends.
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geted assays. As one chooses more peptides at random,
there is an increasing chance that at least one is a high-
responding peptide and that correspondingly makes it in-
creasingly harder to do a better job. An unexpected result is
that when choosing two or more peptides from the Sterga-
chis et al. data set, simply using the Bereman et al. rules
performs essentially equivalently to the PPA and CONSe-
Quence methods. PREGO, on the other hand, continues to
show increased performance over the rules based approach

when choosing a typical number of peptides for targeted
assays. supplemental Fig. S7 shows similar results using the
reserved 18 proteins from the secondary testing SRM exper-
iment collected separately.

DISCUSSION

It is important to note that in the situation of predicting
peptides for building SRM and PRM assays any level of
success is still success. The factors that determine peptide
response are largely unknown and are likely staggering in
number and complexity. Consequently, the vast majority of
labs generating targeted assays do so by selecting peptides
virtually at random using some variation of the rules described
in Bereman et al. Improvement over these rules is the main
measuring stick that peptide response prediction algorithms
should be compared with.

Despite dramatically different training sets and machine
learning architectures, PPA and both CONSeQuence scoring
systems produce essentially identical success rates. We
show that these software tools perform somewhat better than
randomly selecting tryptic peptides for SRM assays, but not
significantly better than using a rules-based random guessing
approach for estimating peptide response characteristics.
This suggests that there may be a glass ceiling for predicting
SRM response behavior based on peptide responses in large-
scale DDA data sets. Our results indicate that the PREGO
algorithm produces a dramatic improvement over these other
methods for building SRM assays.

Although the algorithmic improvements we propose likely
provide some incremental improvement, we suspect that the
large majority of PREGO’s success stems from our training
data set selection. In particular, we believe that training from
DIA data sets using the QExactiveHF allows us to more
closely represent data acquisition strategies employed by
traditional SRM triple-quad instruments. In addition, DIA al-
lows us to more accurately predict transition response directly
from peptide fragmentation, instead of assuming that precur-
sor intensities equate with fragment intensities. We find that
there is an order of magnitude variation between product and
precursor intensities (supplemental Fig. S8), which suggests
that training using transition responses ought to be more
accurate than training from precursors alone. Another key
improvement is that PREGO ensures robust generalization by
cross validating the DIA trained artificial neural network with
SRM data. As different mass spectrometers and LC condi-
tions can have a profound effect on peptide ionization, train-
ing using multiple diverse types of data from different sources
is essential.

We also note that the underperformance of PPA and
CONSeQuence may be partially driven by two aspects of our
evaluation approach. First, data acquisition in the testing data
set was restricted to only doubly charged precursor ions, and
second, peptide response was evaluated using only the single
most intense y-type fragment ion from each peptide. These

FIG. 5. Percentage of proteins with at least one high-respond-
ing peptide, given N peptides picked. A, PREGO (blue), PPA (red),
CONSeQuence artificial neural network (ANN, orange), and support
vector machine (SVM, purple) machine learning-based scorers are
compared with randomly guessing to select peptides (green) and the
simple scoring function described in Equation 2 (cyan) based on
common rules in the literature. Scorers are graded based on the
likelihood that for any given protein, they could predict at least one
high-responding peptide given N guesses. This is analogous to the
strategy of picking N peptides to produce at least one useful pep-
tide for each protein. For example, in Fig. 3 the top 1–5 peptides
picked in CASZ1 have red borders and the high-responding peptides
are shaded in blue. B, The same four learning-based scorers as a
percentage improvement over rules based peptide selection. PREGO
is dramatically better than the other approaches tested here at pre-
dicting high-responding peptides given five or fewer chances. All
scoring data is based on the Stergachis et al. SRM testing data set.
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aspects represent important practical considerations com-
monly employed in SRM assays and were incorporated into
the training of PREGO but not in PPA or CONSeQuence.

Peptide response prediction can also be used to improve
peptide-centric DIA search engines. Search engines that take
this approach to querying DIA data sets can benefit from
increased sensitivity using an SRM-like data analysis work-
flow. However, by individually considering every peptide for
all proteins in a database, the peptide-centric approach suf-
fers from a significantly increased false discovery rate that
must be accounted for using multiple hypothesis testing cor-
rections, which consequently decrease any sensitivity gains.
Instead of looking for every possible peptide, PREGO can
drastically help narrow down the search space by first con-
sidering only a handful of high-responding peptides per pro-
tein. A peptide-centric DIA search engine then only needs to
look for low-responding peptides if high-responders are seen.

Critical Evaluation—We make one major assumption in the
construction of our DIA training data: we assume that crude
peptides in our mixture are essentially at equimolar concen-
trations. We make this assumption because developing a
training set from purified peptides would be prohibitively ex-
pensive. JPT estimates that these peptides are between 20
and 90% pure, suggesting that there is somewhat less than
fivefold variation in their original concentrations. We believe
that, although this variation is significant, the unknown level of
variation in proteoforms present for each gene product would
overwhelm it if we were to use biological samples, such as
with the PPA or CONSeQuence methods. We also believe that
the benefits of removing the assumption that high ranked
peptides in each protein produce equivalently high fragment
ion intensities outweighs any detriments in using crude pep-
tides. On the other hand, training using the single most in-
tense y-type fragment ion for each peptide might bias PREGO
toward preferring peptides with dominant fragmentation path-
ways. Also, the most intense fragment ion by DIA might differ
from the most intense fragment ion by SRM where collision
energies can be tuned to produce the most reliable and easy
to detect fragmentation on a peptide-by-peptide basis.

Similarly, varying efficiencies in tryptic digestion are also
not accounted for with synthetic peptides. This may be an
advantage from the standpoint of machine learning in that
training goals are focused solely on identifying peptide se-
quences that produce strong signals rather than being com-
plicated by trying to interpret multiple layered sources of
variation at the same time. The effects of incomplete digestion
are difficult to ascertain in this experiment because the Ster-
gachis et al. SRM data set only assayed 1445 peptides with
missed cleavages (1.2%). However, incomplete digestion can
be a significant concern when interpreting particular classes
of peptides, for example phosphopeptides. In the future ad-
ditional layers of focused training or filtering may help account
for digestion efficiency.

It is important to note that although PREGO performs better
than alternative methods, there is still considerable variability
in the scores produced for each peptide. This is primarily
because peptide transition response is the product of many
complex factors, only some of which can be captured using
amino acid frequency-based physiochemical properties. The
gold standard for predicted peptide response remains as
experimental evidence derived from synthetic proteins. The
utility of PREGO is primarily in situations where experimental
data from controlled systems is expensive, time-consuming,
or even impossible to generate. Considerable room for im-
provement still remains with future prediction methods to use
more diverse training data sets and more complex properties
crafted for modern proteomics methods that consider sec-
ondary and tertiary gas-phase structure and interactions.

CONCLUSIONS

We present a new method, PREGO, to predicting high-
responding peptides to aid in generating SRM and PRM as-
says. Our approach uses DIA experimental data of equimolar
synthetic peptides to train an artificial neural network using 11
features selected with a Pearson correlation-based minimum
redundancy, maximum relevance algorithm. We have vali-
dated our software using a massive SRM data set measuring
virtually every possible tryptic peptide from over 700 proteins.

We designed PREGO to make it easy to train new neural
network models based on future data sets. We expect that as
comprehensive DIA or PRM experiments of synthetic pep-
tides are performed, the resulting data sets could be used to
improve the accuracy of the approach. New models can be
constructed based on specific experimental conditions; in
particular we imagine designing models to predict PTM mod-
ified peptide responses, such as those of captured phospho-
peptides using immobilized metal affinity chromatography or
titanium dioxide enrichment. All that is required to retrain
PREGO is a tab-delimited text file containing two columns:
peptide sequences and experimental intensities. PREGO can
score peptides for predicted response levels using a text file
containing a single column of sequences.

Although PREGO can be used for predicting the best re-
sponding SRM peptide; it makes no attempt to predict the
best responding transition. Other modeling software, such as
the thermodynamic peptide fragmentation model presented
by Zhang (26, 27) will be required to make those predictions.
Here we see inexpensive synthetic crude peptides as another
answer. Because of the variability in actual abundance, it is
hard to estimate specific best responding SRM peptides from
a massively parallel crude mixture. However, we intend to use
PREGO to predict generally which peptides will be worth
targeting and using inexpensively purchased synthetic crude
peptides to identify preferred y-type ion transitions from
MS/MS experiments. These issues are rendered moot with
regards to PRM experiments because in that methodology all
fragment ions are measured.
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PREGO is written in Java and is available as an external tool
for Skyline. We have also released source code and cross
platform binaries for PREGO on GitHub at https://github.com/
briansearle/intensity_predictor under the Apache 2 license.
The MS/MS data files used to train PREGO are available in
mzML standard format at http://proteome.gs.washington.
edu/SearleMCP and in RAW format at https://chorusproject.
org/anonymous/download/experiment/-8935943952383739133.
The exhaustive SRM training cross validation data is avail-
able on PanoramaWeb at https://panoramaweb.org/labkey/
PREGO_manuscript.url.
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