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Calculating the number of confidently identified proteins
and estimating false discovery rate (FDR) is a challenge
when analyzing very large proteomic data sets such as
entire human proteomes. Biological and technical hetero-
geneity in proteomic experiments further add to the chal-
lenge and there are strong differences in opinion regard-
ing the conceptual validity of a protein FDR and no
consensus regarding the methodology for protein FDR
determination. There are also limitations inherent to the
widely used classic target–decoy strategy that particu-
larly show when analyzing very large data sets and that
lead to a strong over-representation of decoy identifica-
tions. In this study, we investigated the merits of the clas-
sic, as well as a novel target–decoy-based protein FDR
estimation approach, taking advantage of a heterogeneous
data collection comprised of �19,000 LC-MS/MS runs de-
posited in ProteomicsDB (https://www.proteomicsdb.
org). The “picked” protein FDR approach treats target and
decoy sequences of the same protein as a pair rather than
as individual entities and chooses either the target or the
decoy sequence depending on which receives the highest
score. We investigated the performance of this approach
in combination with q-value based peptide scoring to nor-
malize sample-, instrument-, and search engine-specific
differences. The “picked” target–decoy strategy per-
formed best when protein scoring was based on the best
peptide q-value for each protein yielding a stable number
of true positive protein identifications over a wide range of
q-value thresholds. We show that this simple and unbi-
ased strategy eliminates a conceptual issue in the com-
monly used “classic” protein FDR approach that causes
overprediction of false-positive protein identification in
large data sets. The approach scales from small to very
large data sets without losing performance, consistently

increases the number of true-positive protein identifica-
tions and is readily implemented in proteomics analysis
software. Molecular & Cellular Proteomics 14: 10.1074/
mcp.M114.046995, 2394–2404, 2015.

Shotgun proteomics is the most popular approach for
large-scale identification and quantification of proteins. The
rapid evolution of high-end mass spectrometers in recent
years (1–5) has made proteomic studies feasible that identify
and quantify as many as 10,000 proteins in a sample (6–8)
and enables many lines of new scientific research including,
for example, the analysis of many human proteomes, and
proteome-wide protein–drug interaction studies (9–11). One
fundamental step in most proteomic experiments is the iden-
tification of proteins in the biological system under investiga-
tion. To achieve this, proteins are digested into peptides,
analyzed by LC-MS/MS, and tandem mass spectra are used
to interrogate protein sequence databases using search en-
gines that match experimental data to data generated in silico
(12, 13). Peptide spectrum matches (PSMs)1 are commonly
assigned by a search engine using either a heuristic or a
probabilistic scoring scheme (14–18). Proteins are then in-
ferred from identified peptides and a protein score or a prob-
ability derived as a measure for the confidence in the identi-
fication (13, 19).

Estimating the proportion of false matches (false discovery
rate; FDR) in an experiment is important to assess and main-
tain the quality of protein identifications. Owing to its concep-
tual and practical simplicity, the most widely used strategy to
estimate FDR in proteomics is the target–decoy database
search strategy (target–decoy strategy; TDS) (20). The main
assumption underlying this idea is that random matches (false
positives) should occur with similar likelihood in the target
database and the decoy (reversed, shuffled, or otherwise
randomized) version of the same database (21, 22). The num-
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ber of matches to the decoy database, therefore, provides an
estimate of the number of random matches one should ex-
pect to obtain in the target database. The number of target
and decoy hits can then be used to calculate either a local or
a global FDR for a given data set (21–26). This general idea
can be applied to control the FDR at the level of PSMs,
peptides, and proteins, typically by counting the number of
target and decoy observations above a specified score.

Despite the significant practical impact of the TDS, it has
been observed that a peptide FDR that results in an accept-
able protein FDR (of say 1%) for a small or medium sized data
set, turns into an unacceptably high protein FDR when the
data set grows larger (22, 27). This is because the basic
assumption of the classical TDS is compromised when a large
proportion of the true positive proteins have already been
identified. In small data sets, containing say only a few hun-
dred to a few thousand proteins, random peptide matches will
be distributed roughly equally over all decoy and “leftover”
target proteins, allowing for a reasonably accurate estimation
of false positive target identifications by using the number of
decoy identifications. However, in large experiments compris-
ing hundreds to thousands of LC-MS/MS runs, 10,000 or
more target proteins may be genuinely and repeatedly iden-
tified, leaving an ever smaller number of (target) proteins to be
hit by new false positive peptide matches. In contrast, decoy
proteins are only hit by the occasional random peptide match
but fully count toward the number of false positive protein
identifications estimated from the decoy hits. The higher the
number of genuinely identified target proteins gets, the larger
this imbalance becomes. If this is not corrected for in the
decoy space, an overestimation of false positives will occur.

This problem has been recognized and e.g. Reiter and
colleagues suggested a way for correcting for the overesti-
mation of false positive protein hits termed MAYU (27). Fol-
lowing the main assumption that protein identifications con-
taining false positive PSMs are uniformly distributed over the
target database, MAYU models the number of false positive
protein identifications using a hypergeometric distribution. Its
parameters are estimated from the number of protein data-
base entries and the total number of target and decoy protein
identifications. The protein FDR is then estimated by dividing
the number of expected false positive identifications (expec-
tation value of the hypergeometric distribution) by the total
number of target identifications. Although this approach was
specifically designed for large data sets (tested on �1300
LC-MS/MS runs from digests of C. elegans proteins), it is not
clear how far the approach actually scales. Another correction
strategy for overestimation of false positive rates, the R factor,
was suggested initially for peptides (28) and more recently for
proteins (29). A ratio, R, of forward and decoy hits in the low
probability range is calculated, where the number of true
peptide or protein identifications is expected to be close to
zero, and hence, R should approximate one. The number of
decoy hits is then multiplied (corrected) by the R factor when

performing FDR calculations. The approach is conceptually
simpler than the MAYU strategy and easy to implement, but is
also based on the assumption that the inflation of the decoy
hits intrinsic in the classic target–decoy strategy occurs to the
same extent in all probability ranges.

In the context of the above, it is interesting to note that there
is currently no consensus in the community regarding if and
how protein FDRs should be calculated for data of any size.
One perhaps extreme view is that, owing to issues and as-
sumptions related to the peptide to protein inference step and
ways of constructing decoy protein sequences, protein level
FDRs cannot be meaningfully estimated at all (30). This is
somewhat unsatisfactory as an estimate of protein level error
in proteomic experiments is highly desirable. Others have
argued that target–decoy searches are not even needed
when accurate p values of individual PSMs are available (31)
whereas others choose to tighten the PSM or peptide FDRs
obtained from TDS analysis to whatever threshold necessary
to obtain a desired protein FDR (32). This is likely too
conservative.

We have recently proposed an alternative protein FDR ap-
proach termed “picked” target–decoy strategy (picked TDS)
that indicated improved performance over the classical TDS
in a very large proteomic data set (9) but a systematic inves-
tigation of the idea had not been performed at the time. In this
study, we further characterized the picked TDS for protein
FDR estimation and investigated its scalability compared with
that of the classic TDS FDR method in data sets of increasing
size up to �19,000 LC-MS/MS runs. The results show that the
picked TDS is effective in preventing decoy protein over-
representation, identifies more true positive hits, and works
equally well for small and large proteomic data sets.

MATERIALS AND METHODS

Data Sets and Data Processing—The data basis for this study was
a large collection of LC-MS/MS runs along with the derived human
protein identification data deposited in ProteomicsDB (https://www.
proteomicsdb.org). At the time of writing, this comprised 19,013
LC-MS/MS runs, the majority of which represent two recently pub-
lished drafts of the human proteome (9, 10). In ProteomicsDB, bio-
logical samples are grouped into experiments of varying number of
LC-MS/MS runs. Raw MS files from each experiment were searched
in parallel using Mascot (Matrixscience, London, UK) (16) and Max-
quant/Andromeda (15, 33) against a concatenated protein sequence
database containing the UniProtKB complete human proteome
(download date: September 5, 2012; 86,725 sequences) and cRAP
(common Repository of Adventitious Proteins; download date: Sep-
tember 5, 2012; 113 sequences) as described (9). Briefly, in the
Mascot workflow, MS files were processed using Mascot Distiller
using peak picking, deisotoping, and charge deconvolution. The re-
sulting peaklist files were searched with the target–decoy option
enabled (on-the-fly search against a decoy database with reversed
protein sequences), a precursor tolerance of 10 ppm and a fragment
tolerance of 0.5 Da for collision-induced dissociation (CID) spectra
and 0.05 Da for higher energy collision-induced dissociation (HCD)
spectra, an enzyme specificity of trypsin, LysC, GluC, or chymotryp-
sin (as appropriate), a maximum of two missed cleavages sites, the
Mascot 13C option of 1 and oxidation of Met as well as acetylation of
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protein amino terminus as variable modifications. Additional variable
and fixed modifications were set as appropriate for individual exper-
iments (e.g. stable isotope labeling with amino acids in cell culture,
tandem mass tag, or phosphorylation etc.). In the Maxquant work-
flow, MS files were searched against the same target–decoy protein
sequence database as described above but using the Andromeda
search engine. Proteases, variable and fixed modifications were
specified as above. Mass accuracy of the precursor ions was deter-
mined by the time-dependent recalibration algorithm of Maxquant,
and fragment ion mass tolerance was set to 0.6 Da and 20 ppm for
CID and HCD, respectively. Further details regarding sample handling
and data acquisition can be found in (9). All numerical data required to
reproduce the figures in this manuscript as well as the associated
protein lists are tabulated in supplemental Table S1. Mascot and
Andromeda database search parameters for selected reference data
sets detailed in Fig. 4B are listed in supplemental Table S2.

Procedure for Peptide Length-dependent Score Normalization—
Search engine-specific local peptide length-dependent score cutoffs
as reported in Wilhelm et al. (9) were calculated as follows. All peptide
spectrum matches (PSMs) of the same length were binned separately
for Mascot and Andromeda in intervals of one score point and
smoothed by a moving average with a window size of five to account
for fluctuations likely introduced by the scoring algorithm. The local
false discovery rates in each score bin were calculated by dividing the
number of decoy PSMs by the number of target PSMs and the
resulting distribution was smoothed using a moving average with a
window size of five to account for small fluctuations. The minimum
score over all bins with a local false discovery rate less than 0.05 was
defined to be the local peptide length-dependent cutoff. Normalized
scores of PSMs were calculated by dividing the Mascot ion score or
Andromeda score by the corresponding search-engine specific local
peptide length-dependent cutoff.

PCM Q-value Calculation—For the purpose of this study, a q-value
is defined to be the minimum FDR at which a PSM, peptide, or protein
will appear in the filtered output list. Such q-values are commonly
used to filter a list of observations to obtain a particular FDR. Instead
of using all PSMs for this purpose, we chose the PSM with the highest
normalized search engine score that represents one peptide se-
quence detected at one charge state and carrying a particular peptide
modification (termed PCM). PCMs for each LC-MS/MS run were then
sorted in decreasing order by their normalized Mascot or Andromeda
scores. Empirical q-values were calculated by traversing the list from
top to bottom and dividing the cumulative number of decoys by the
number of cumulative targets. To assure monotonicity a second
traversal from bottom to top changes the empirical q-value from the
top to bottom traversal to the minimum q-value observed so far. Next,
the relationship between logarithmic q-values and normalized scores
was modeled by a linear regression using the highest and lowest
scoring PCMs with an empirical q-value below 0.01 as fulcrums.
Then, all q-values were recalculated using the predicted slope (a) and
intercept (b) of the model: �log10 q-value � a * normalized score � b,
by multiplying the normalized score with the predicted slope a and
adding the predicted intercept b. Last, the resulting list of PCMs was
filtered at 1% FDR.

Protein Inference—Peptides matching to either one particular pro-
tein isoform (protein unique) or to multiple protein isoforms originating
from the same gene (gene unique) are classified as unique peptides.
All other peptides are classified as shared (supplemental Fig. S1).
Shared peptides were discarded from protein inference. For the pur-
pose of this study, it is not differentiated between the identification of
a specific protein isoform and the identification of at least one protein
isoform of a gene.

Protein Score Calculation—For data presented in Fig. 1A, protein
scores were calculated as the sum of Mascot ion scores of the best

scoring peptide matches below 1% PSM FDR. For all other analy-
ses, protein scores were calculated either as the sum of the Q-
scores (�log10 transformed q-values) of all matched PCMs that
passed a defined q-value threshold or by the maximum Q-score of
all PCMs. Again, all methods only considered unique peptides.

Protein Q-value Calculation—To estimate protein q-values, pro-
teins were sorted in decreasing order by their score. Empirical protein
q-values were calculated by traversing the list from top to bottom and
dividing the cumulative number of decoys by the number of cumula-
tive targets. To assure monotonicity, a second traversal from bottom
to top changes the empirical q-value to the minimum q-value ob-
served so far. This step was repeated each time a new data set was
introduced. For Fig. 1A, we started with the experiment containing the
largest number of identifications (IDs) followed by the experiment with
the second largest number of IDs and so forth. This was necessary to
illustrate that the number of protein IDs at 1% FDR initially rises,
reaches a maximum, and then decreases again. For data shown in
Fig. 3, data were aggregated in random order.

Picked Protein FDR Approach—In contrast to the classic TDS, the
picked TDS treats target and decoy sequences of the same protein as
a pair. If the protein score for the target (forward) amino acid se-
quence is higher than that of the respective decoy (reversed) se-
quence, the target sequence is counted as a hit and the decoy
sequence is discarded. Conversely, if the decoy sequence scores
higher than the target sequence, it counts as a decoy hit and the
target sequence is discarded. This way, no bias is introduced with
respect to how target and decoy proteins contribute to the protein
FDR. The protein FDR was estimated using the target and decoy hits
in the same way as in the classic approach.

RESULTS

Breakdown of the Classic Target–Decoy Protein FDR Mod-
el—In large proteomic studies identifying tens or hundreds of
thousands of peptides, the classic target–decoy strategy
(TDS) model overestimates protein FDR because the higher
the number of genuinely identified target proteins gets, the
more imbalanced the ratio of potential new target and decoy
protein identifications becomes, thus, inevitably leading to an
accumulation of decoy proteins and overestimated protein
FDR. To illustrate this problem, we used protein identification
results from 1974 aggregated Mascot searches (representing
a total of �18,000 distinct LC-MS/MS runs) and analyzed how
protein identification saturation impacts protein FDR predic-
tions using the classic TDS (Fig. 1A). Search results of each
LC-MS/MS run were filtered at 0.01 PSM FDR threshold and
all search results were subsequently ranked in descending
order according to the number of proteins identified. Individ-
ual protein scores were calculated by summing up Mascot ion
scores of the best PSM for all unique peptides of that protein.
Based on these criteria, the largest search result contained
8255 target proteins and 321 decoy proteins with 7250 iden-
tified proteins at �1% protein FDR. We then added the sec-
ond largest, third largest search result and so on and repeated
the protein FDR estimation procedure at each step. Fig. 1A
shows that the number of identified target proteins quickly
rose when adding further search results and that considerable
saturation occurred by the time 100–150 search results had
been combined. Decoy protein identifications rose at a slower
rate but nevertheless approached the number of target hits as
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the number of aggregated search results reached completion.
As an example, 14,137 target proteins were identified when
aggregating the first 50 search results but the protein FDR had
meanwhile reached 35%. Adding another 1924 search results
increased the target protein IDs by 4137 proteins but also
increased the classic TDS FDR to �89% implying that only
1936 of all proteins were true. It is obvious, that the latter
figure cannot be correct if the first search results alone already
contained 7250 proteins at 1% FDR.

The situation could only be partially remedied by introduc-
ing a protein FDR filter. When forcing a 1% protein FDR at
each aggregation step, protein coverage peaked at the 110th
search result (10,433 proteins) but then dropped to 6511
proteins when 1860 further search results were added. Given
this clear breakdown of the classic TDS protein FDR ap-
proach, we sought to investigate an alternative idea we refer

to as the “picked” target decoy strategy (picked TDS, see
below). Before introducing this concept, the heterogeneous
nature of the data in ProteomicsDB required data harmoniza-
tion that is described in the following section.

Data Harmonization Using Extrapolated Q-values—The hu-
man proteome data deposited in ProteomicsDB comes from
a wide variety of biological samples and biochemical experi-
ments and was acquired on different generations of Thermo
Orbitrap instruments and using different fragmentation meth-
ods as well as resolution settings. Therefore, the data needed
to be aggregated and harmonized in a way that allows a
consistent and unified treatment of the results. At the time of
writing ProteomicsDB contained 18,754 Thermo Orbitrap raw
files for which Mascot was used as a search engine and
17,471 raw files for which Andromeda was used. We found
profound differences in the score distribution of the two
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FIG. 1. Breakdown of the classic TDS and q-value calculation for data harmonization. A, To illustrate the breakdown of the classic TDS
we cumulatively aggregated 1970 Mascot search results (18754 raw files) filtered at 1% PSM FDR and calculated the number of proteins at
1% protein FDR at each step. Protein scores were derived by summing Mascot ion scores of the best peptide matches. The number of target
(blue) and decoy (red) proteins saturated quickly, whereas the number of proteins at 1% protein FDR (green) reached its maximum at an early
stage but then continuously decreased and stopped at fewer proteins than in the beginning. This indicates that the classic TDS is not working
when dealing with large data. B, The Mascot (dashed) and Andromeda (solid) target (blue) and decoy (red) PSM score distributions show vast
differences in the scoring scheme precluding their combination without prior normalization. C, To obtain continuous PCM q-values, we used
a linear extrapolation model (black) trained on the empirically calculated PCM q-values (orange). The inset shows that after extrapolation,
meaningful q-values can be assigned to PCMs that have a higher score than the best decoy. D, Following q-value extrapolation (Qscore is
defined as �log10(q-value)), Mascot (dashed) and Andromeda (solid) target (blue) and decoy (red) q-value distributions align well, particularly
in the q-value range where most false positive identifications are expected, and thus, allow the combination of the search results.
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search engines, which is rooted in the differences in the
underlying scoring schemes (Fig. 1B). In addition, we and
others have observed a bias in Mascot and Andromeda
scores for PSMs according to peptide length. To correct for
that, we normalized both scores using length dependent
thresholds (see experimental section for details and supple-
mental Fig. S2A, S2B) (9, 21, 33, 34).

We also observed that the target decoy score distributions
are strongly dependent on the type of sample analyzed and
the type of fragmentation method used (high or low resolution
CID, HCD). For instance, dimethyl labeled tryptic digests of
human embryonic stem cells measured by low resolution CID
yielded very different target–decoy distributions compared
with unlabeled tryptic digests of the melanoma cell line A375
measured by HCD (supplemental Fig. S2C, S2D). Thus it is
not sensible to use a single threshold value to achieve say 1%
PSM FDR in heterogeneous and large data sets. Instead,
these thresholds should be derived for each LC-MS/MS run
separately (supplemental Fig. S2E, S2F). This is achieved by
calculating q-values or posterior error probabilities, e.g. using
routines implemented in Maxquant (33) for Andromeda results
and Percolator (24) or PeptideProphet (35), for Mascot results.
In order to be consistent for both Andromeda and Mascot
data sets, we implemented a simple procedure for q-value
calculation compatible with both search engines. Instead of
using all PSMs for this purpose, we chose the highest scoring
PSM that represents one peptide sequence that can carry
modifications and is detected with a certain charge state
(termed PCM, the best PSM so to speak) because we and
others have observed that reducing the redundancy of the
PSM information (i.e. many spectra hitting the same peptide)
into the best PCMs (here) or the best peptide (21, 36) results
in more robust significance-threshold estimates that are less

affected by the oversampling of high abundance peptides
compared with using PSMs (37). Further, we found it neces-
sary to extrapolate the empirical q-values linearly and to then
recompute these values in order to appropriately deal with the
fact that the number of decoy hits is very small for high
scoring PCMs (Fig. 1C). Without extrapolation, there would be
no difference in q-value between say a PCM of Mascot score
of 70 and 150 even though the PCM with the higher score
should carry more weight than the lower scoring PCM (or
peptide for that matter). This procedure allowed us to com-
bine results from the two search engines because the distri-
butions of �log10 transformed q-values (referred to as Q-
scores) aligned very well (Fig. 1D), particularly at low q-values
where most of the false positives are expected. Target and
decoy PCMs that passed the q-value requirement of 0.01
showed only a weak saturation trend as a function of the size
of the data set and consequently lead to only a minimal
increase in global PCM FDR (supplemental Fig. S3A, S3B).

A “Picked” TDS Approach to Estimate Protein FDR—With
the data harmonization in hand, we next investigated overes-
timation of false positive protein identifications with the clas-
sic TDS approach. The PCM q-value cutoff was set to 0.01.
For protein scoring, we used the Q-score mentioned above
and note that we only used best scoring unique peptide for
every protein (the peptide with the best PCM Q-score). Al-
though other more sophisticated strategies exist for calculat-
ing protein scores (22, 28), using the best peptide hit or the
sum of peptide scores are common practice in the proteomics
community. The resulting Q-score distribution of target and
decoy proteins according to the classical TDS is shown in Fig.
2A. As one might expect, the bimodal appearance suggests
that the lower score range mainly contains false positive pro-
tein identifications (35). At the same time, the number of
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decoy proteins in that score range is massively higher than
that of the target proteins clearly illustrating the aforemen-
tioned overestimation of false positive proteins.

We therefore investigated an alternative approach that we
termed “picked” TDS (Fig. 2B). In contrast to the classic TDS,
the picked TDS treats target and decoy sequences of the
same protein as a pair rather than as individual entities. If the
protein score (Q-score) for the target sequence is higher than
that of the respective decoy sequence, the target sequence is
counted as a hit and the decoy sequence is discarded. Con-
versely, if the decoy sequence scores higher than the target
sequence, it counts as a decoy hit and the target protein is
discarded. This idea was in part inspired by the decoy fusion
approach used for peptides (38), and in part by the estab-
lished practice in the field of using a concatenated target and
decoy database in order to select only for those PSMs that
have the best score in either the target or the decoy space,
rather than selecting hits that pass a score threshold in both
target and decoy space (20, 36). This binary or picking ap-
proach is symmetrical as it has no built-in bias for the selec-
tion of either a decoy protein or a false positive target protein.
For the picked TDS, the target distribution is again bimodal
(Fig. 2C), but now, the decoy distribution is nearly identical to
the low Q-score range of the target distribution as would be
expected for well-functioning FDR approach (35). As a result,
the distribution of true positive protein identifications (i.e. the
difference between the target and decoy hits, dotted green
line in Fig. 2C) approaches zero for very low protein scores
indicating that the estimation of false positive IDs is accurate.
Results also compared favorably to the recently described
R-factor correction approach (29) that addresses overestima-
tion of decoy hits by an empirically derived correction factor.
The R-factor corrected decoy distribution alternates between
positive and negative values for true positive protein identifi-
cation at low protein scores, but still provides a much more
sensible overall picture than the classic approach (supple-
mental Fig. S4).

Interestingly, when using the sum of Q-scores of all PCMs
of a given protein as a score, we observed a much poorer
separation between the distribution of false positive and true
positive protein IDs (supplemental Fig. S5A, S5B), which
might be attributed to the fact that large decoy proteins can
accumulate high Q-scores by way of many low scoring
peptides.

Performance Evaluation of the Picked Target–Decoy Strat-
egy—We next compared the classic TDS and picked TDS
methods for their ability to detect true positive proteins in the
aggregated data. As one might expect, when comparing the
differences between target and decoy protein identifications
at different PCM q-value cut-offs Fig. 3A, very similar num-
bers of proteins were observed for low PCM q-values. How-
ever, at higher q-value cut-offs (starting at �10�4), the num-
ber of true positive identifications approaches zero for the
classic TDS. Conversely, the number of true positive protein

identifications for the picked TDS reaches a stable plateau at
15,817 proteins. The nondecreasing true positive trend as a
function of more permissive q-value cutoffs is a hallmark of a
well-functioning FDR estimation method (35). When examin-
ing protein FDR in the same way (Fig. 3B), the classic TDS
protein FDR approaches 1.0 for q-values of 0.001 and higher.
Instead, the picked TDS protein FDR plateaus at a maximum
of 10%. Interestingly, the picked TDS protein FDR using
summed Q-scores showed similar performance suggesting
that the picked TDS is a more reliable and generally applicable
protein FDR estimation method (supplemental Fig. S5C, S5D).

We next repeated the analysis shown in Fig. 1A and calcu-
lated the number of identified target and decoy proteins as a
function of aggregating more and more experiments. This
time, however, we applied a PCM q-value cutoff of 0.01, used
the best PCM for protein scoring as described above, aggre-
gated the experiments in a random order, and combined both
Mascot and Andromeda search results. The data was ana-
lyzed both using the classic as well as the picked TDS meth-
ods. It is apparent, that the picked TDS identifies fewer target
proteins than the classic TDS but, importantly, shows a mas-
sively lower number of decoy protein identifications too (Fig.
3C and supplemental Fig. S6A). We note that at some point,
the decoys increase faster than the targets when using the
classic TDS (supplemental Fig. S6B). For the picked TDS, the
decoy protein hits show the opposite trend: After an initial
very mild increase, the number of decoys actually decreases
(supplemental Fig. S6C) implying that addition of new data
holds the potential that a protein previously assigned as a
false positive (or not identified at all) is supported by a high
quality PCM in the new data. The above trends are mirrored in
the respective protein FDR calculations (Fig. 3D and supple-
mental Fig. S6D): As the protein FDR increases for the classic
TDS as the data set grows larger, it steadily decreases for the
picked TDS. When we then filter the data at 0.01 protein FDR,
the number of confidently identified proteins increases for
both the classic and the picked TDS as the analyzed data set
grows larger Fig. 3E. However, the picked TDS is consistently
more sensitive and the absolute difference of identified pro-
teins also steadily increases as the data set grows larger (Fig.
3F). In the complete data set, the classic approach detects
14,638 proteins at 1% protein FDR whereas 15,375 proteins
are found with the picked TDS. It is worth noting that the
before mentioned R-factor correction approach only partially
compensates for this difference (supplemental Fig. S7). We
next applied the described data analysis strategy to the sub-
set of data stored in proteomicsDB corresponding to our
earlier publication on a mass spectrometry based draft of the
human proteome (9). Using the classic FDR strategy 14,035
proteins were observed at 1% protein FDR compared with
14,714 proteins using the picked strategy. Applying the
picked strategy without any protein score threshold yielded
17,326 proteins of the target database at 11.3% protein FDR
corresponding to 15,290 true positive protein identifications in
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the data set. When analyzing the complete current content of
proteomicsDB (including the data of the Pandey proteome
(10) and a number of further data sets), the number of protein
identifications at 1% FDR increased to 14,638 (classic) and
15,375 proteins (picked) respectively. Applying the picked
strategy to this combined data set without any protein score
threshold yielded 17,518 proteins of the target database at

9.7% protein FDR corresponding to 15,817 true positive pro-
tein identifications in the data set (supplemental Table S3).

An interesting detail in the described analysis is the obser-
vation that using the best PCM for a protein is very robust with
respect to which PCM q-value threshold is applied, whereas
the results of protein identification using the sum of Q-scores
of PCMs for a protein are much more sensitive to picking an
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FIG. 3. Comparison of the classic TDS to the picked TDS. First, we compared the performance of the picked (solid) and classic (dashed)
approach when filtering the PCMs on various FDR cutoffs using the best PCM q-value as protein score. A, With increasing PCM q-value
cutoffs, the number of true positive protein identifications (number of target proteins � number of decoy proteins) increases and is comparable
between the picked and classic approach. At roughly 10�4 PCM q-value cutoff, the number of true positive proteins starts to decrease and
quickly drops to almost zero for the classic approach, whereas true positive proteins IDs increase further and converges at stable plateau of
15,817 proteins in the picked approach. B, The estimated protein FDR of the classic and picked approach mirrors the trend seen in panel A.
Although the estimated protein FDR increases constantly when increasing the PCM q-value cutoff and eventually reaches 100%, the picked
approach starts to rise much later and plateaus at roughly 10%. C, Then we compared the classic and picked approach when accumulating
experiments. The cumulative number of target (blue) protein identifications of the classic and picked approach increases with more data,
whereas the classic approach saturates more rapidly and reports higher numbers of proteins. Conversely, although the number of decoy (red)
protein identifications reported by the classic approach saturate and approach the number of target proteins, the number of decoy proteins
reported by the picked approach quickly reaches a maximum and decreases when adding more experiments. D, This is again mirrored in the
estimated overall protein FDR of the picked and classic approach. E, The number of proteins identified at 1% proteins FDR is increasing in both
picked and classic approach, but the picked approach consistently reports higher numbers of proteins. F, The difference between the number
of proteins reported at 1% proteins FDR between the picked and classic approach increases with increasing number of experiments reaching
close to 800 proteins.
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optimal PCM q-value threshold and may completely collapse
at high PCM q-values (supplemental Fig. S8). The picked TDS
using the sum of Q-scores does however perform as well as
the best Q-score approach at a PCM FDR of 0.0001 (supple-
mental Fig. S8). It is important to note though, that permissive
FDR thresholds (e.g. FDR � 0.01) lead to accumulation of
false peptide identifications in the data set and might impair
other aspects of data analysis such as quantification, identi-
fication of post translational modifications, and protein iso-
forms and therefore should be avoided in practice. Applying
too stringent PCM FDR criteria, however, can also impair
subsequent analyses, e.g. quantification, because a lot of
good peptide data are excluded. Filtering the PCMs for each
LC-MS/MS run in the data set to q � 0.01 and applying 1%
protein FDR yields 0.13% PCM FDR using the classic TDS
and 0.086% PCM FDR with the picked TDS and provides a
good balance between peptide coverage and FDR.

In the above sections, we have shown that the picked TDS
outperforms the classical TDS for very large data sets. Its
utility is, however, already evident for small or medium sized
individual studies (Fig. 4A). In no case does the picked TDS
result in less protein identifications and, interestingly, the gain
in protein IDs becomes larger as the number of protein iden-
tifications in a particular study increases. Finally, we applied
the picked TDS to the reanalysis of a number of published
large-scale protein identification projects (9, 39–45) and
found that the picked TDS consistently identified a larger
number of proteins than the classic TDS (Fig. 4B). We note
though that differences in data processing, the search engine,
and database used and other parameters might also contrib-

ute to the observed differences to published protein identifi-
cations (supplemental Table S2).

DISCUSSION

In this study, we investigated the scalability and perform-
ance of the “picked” target decoy strategy for estimating
protein false discovery rates in large proteomics data sets.
The picked TDS addresses decoy protein overestimation typ-
ically observed for the classic TDS and takes into account that
the probability of creating a false positive PSM is not equal for
all proteins. For example, large target and decoy proteins are
more prone to accumulating high scoring random matches
and are likely to accrue higher protein scores than small
proteins both of which artificially inflates the protein FDR.
Other parameters that may give rise to similar or related
effects are amino acid composition, the number of measura-
ble proteolytic peptides, the type of protease used, the num-
ber of tolerated missed cleavages sites, type of mass spec-
trometer and fragmentation technique used and so on. All of
these can be at least partially addressed by simple data
harmonizing steps and conceptually extending the line of
reasoning from the commonly employed approach of concat-
enating target and decoy sequences for database searching,
to treating target and decoy versions of a given protein se-
quence as a pair. For proteins that have PSMs/PCMs in both
their respective target and decoy sequences, our algorithm
will only “pick” the one with the highest score and discard the
other. As shown above, this approach does not create the
excess of decoy hits observed for the classic TDS FDR but
does not alter the target protein distribution. The almost per-
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FIG. 4. Effects of the picked approach on focused data sets. A, To investigate the effect of the picked approach on studies of varying size,
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approach for 76 data sets (green dots). The picked approach invariably identifies more proteins than the classic approach and the difference
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fect overlap of target and decoy distributions in the low-
scoring region suggests little or no bias and, therefore, ex-
plains the superior performance of the picked TDS, in line with
prior work on the theoretical treatment of the matter (35). The
obtained results also compare favorably to the previously
described R factor approach that corrects for over-represen-
tation of decoy hits by normalizing the distribution with an
empirically derived factor (29). The superior performance of
the picked TDS is likely because it avoids a bias intrinsic in
traditional target decoy strategies, whereas the R factor ap-
proach aims at compensating for this bias using a simple but
assumption-based model.

A major shortcoming of any decoy generation method is the
uncertainty regarding whether or not a decoy peptide is in fact
a decoy peptide. Although this is easily checked by compar-
ing all peptide sequences to the limited target space that is
typically used for protein identification (e.g. Uniprot), it is quite
difficult to exclude the possibility that a decoy sequence may
actually represent a genuine variant of a known peptide se-
quence or indeed a genuine but so far undetected or modified
peptide. Even if this number of peptides may be fairly low,
each might contribute one high scoring decoy protein identi-
fication and thus increase the protein FDR. If there are more
such cases, it may even substantially limit the number of
proteins that can be identified in a complete proteome be-
cause the control of protein FDR may create a glass ceiling, a
barrier that cannot be breached no matter how good the mass
spectrometric data may be.

The analysis further revealed that protein scoring using the
best PCM score for a given protein performed better than
summing up all PCM scores for a protein. This is partly
because the latter is more susceptible to protein length bias,
and that the inevitable accumulation of low-scoring peptide
matches observed in large data sets has a stronger impact on
sum-based protein scoring be it the number of PSMs, the
search engine score, or posterior error probabilities. Similar
observations have lead researchers to adopt the “best pep-
tide” approach, which is conceptually similar to our PCM
scoring (22). Applying extremely stringent peptide filters might
improve scalability of sum-based protein scoring, however
this will come at the loss of protein and peptide coverage.

For both protein scoring approaches (best Q-score or sum
of Q-scores), and in contrast to the classic TDS FDR estimate
that approaches 100% protein FDR as the data set grows
larger, the number of decoy hits is actually reduced upon
adding new experimental data when using the picked TDS.
This is an entirely expected behavior because a false positive
protein identification represented by a low scoring target or
decoy hit might “switch” to become a true positive, high
scoring target hit when new high quality experimental evi-
dence (i.e. a good tandem MS spectrum) is added to the data
set. It is often assumed that adding more data to an already
large data set will only add more false positives. This is a
misconception, at least as far as whole proteome identifica-

tion is concerned because the quality of the extra data will
determine if a novel protein can or cannot be identified (sup-
plemental Fig. S5C).

In our previous publication on a draft human proteome, (9)
we stated that, at the time of writing, the database contained
protein evidence for 18,097 of the 19,629 protein coding
genes in humans (using the filtering method we described in
detail). We further pointed out that we were unable to provide
a robust estimation of protein FDR for such a very large data
set at that time. The values we report now as a result of
applying the picked FDR approach described above provide a
more reasonable estimate of the total number of reliably iden-
tified proteins in proteomicsDB. To raise awareness that not
all protein identifications in proteomicsDB have the same
quality and to offer guidance to users of the data, we have
recently implemented a “traffic light” system that categorizes
the identifications in green, yellow, and red depending on
what confidence level the respective IDs attain.

An important conclusion from this analysis is that it should
be possible, at least in principle, to identify confidently all
proteins in a proteome by accumulating large quantities of
high quality LC-MS/MS data provided that all the relevant
biological protein sources of an organism have been sampled
with sufficient depth. Given the fact that the picked TDS FDR
approach performed consistently better than the classic TDS
FDR for any size of data, we conclude that this approach is
generally applicable and recommend its broad implementa-
tion in proteomic software.
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