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Abstract

Given conceptual frameworks of addiction as a disease of intercommunicating brain networks, 

examinations of network interactions may provide a holistic characterization of addiction-related 

dysfunction. One such methodological approach is the examination of resting-state functional 

connectivity, which quantifies correlations in low frequency fluctuations of the blood oxygen 

level–dependent magnetic resonance imaging signal between disparate brain regions in the 

absence of task performance. Here, evidence of differentiated effects of chronic nicotine exposure, 

which reduces the efficiency of network communication across the brain, and acute nicotine 

exposure, which increases connectivity within specific limbic circuits, is discussed. Several large-

scale resting networks, including the salience, default, and executive control networks, have also 

been implicated in nicotine addiction. The dynamics of connectivity changes among and between 

these large-scale networks during nicotine withdrawal and satiety provide a heuristic framework 

with which to characterize the neurobiological mechanism of addiction. The ability to 

simultaneously quantify effects of both chronic (trait) and acute (state) nicotine exposure provides 

a platform to develop a neuroimaging-based addiction biomarker. While such development 

remains in its early stages, evidence of coherent modulations in resting-state functional 

connectivity at various stages of nicotine addiction suggests potential network interactions on 

which to focus future addiction biomarker development.
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Introduction

Despite both the prevalence of nicotine addiction and the well-known negative health 

consequences of long-term smoking, only approximately one in five smokers attempting to 

quit is successful using currently available pharmacotherapies. Among the explanations for 

this difficulty in maintaining long-term abstinence are a poor understanding of the 

neurobiological underpinnings of the disease, an inability to quantify the severity of 

addiction beyond behavioral reports of cigarettes per day and usage patterns, and an inability 
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to proactively identify the most appropriate therapeutic plan for an individual (though see 

Refs. 1 and 2 for recent advances).

Nicotine addiction, much like other pharmacological addictions, is conceptualized as a 

heterogeneous collection of plastic effects that occur throughout various brain circuits and 

networks subserving disparate cognitive and affective processes (e.g., reward, learning, 

affect, executive control).3 As such, the neuroanatomical foci of dysfunction are not likely to 

be specific lesions or activation patterns in circumscribed brain regions, but instead 

interactions within and between several affected circuits and systems. Thus, network-based 

analysis paradigms employing resting-state functional connectivity may be able to more 

fully characterize these interactions in smokers and non-smokers, both within specific 

connections and across large-scale brain networks.

Resting-state functional connectivity

Resting-state functional connectivity (rsFC) is a task-independent metric of brain activity 

that is based on correlations between low-frequency fluctuations of the blood oxygen level–

dependent (BOLD) signal between disparate brain areas in the absence of explicit task 

engagement.4 Increased temporal coherence in these signal fluctuations has been interpreted 

to reflect the strength of a functional connection between regions which, although generally 

in good agreement with the classical underlying neuroanatomy, often extend beyond simple 

monosynaptic connections and provide a systems-level understanding of brain function.5–7

The power of this method lies in its relative ease of acquisition and stability within and 

across scan sessions,8–11 making it ideal for longitudinal experimental designs, including 

pre–post treatment assessments. Data acquired at “rest” has been shown to correlate with 

both subsequent behavioral performance on a task and activation of brain regions that 

support task performance.12–14 Finally, task-free acquisition precludes equating levels of 

performance—or motivation—between individual participants or across comparison groups. 

This task independence also allows for better comparison across data sets, as the correlations 

in time course are not subject to the idiosyncrasies of a specific task design. Note, however, 

that this is mostly the case when resting scans are performed at the beginning of a scan 

session. Recent data suggest that cognitive efforts may “bleed” into the resting data when 

scans are performed immediately after especially effortful or emotionally powerful 

tasks.15–18

As the research community’s interest in rsFC grows, it becomes more challenging to fully 

review and interpret the extant literature. As such, we focus our discussion on nicotine 

addiction as an exemplar of common processes in drug addiction in general, and 

subsequently address theoretical aspects of rsFC in biomarker development. Here, we use 

the definition of a biomarker as a measurable biological signal that quantifies (1) normal or 

abnormal function and/or (2) response to treatment.19

While acquisition of rsFC data is relatively straightforward, data analysis is anything but, 

with head movement increasingly shown to present a large confound in data analysis and 

interpretation.20–22 In addition, the effects of global signal regression,23,24 confounds from 

cerebrospinal fluid and white matter signals,25 low-frequency cardiac signal fluctuations,26 
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and the effects of temporal filtering of rsFC data at various frequency bands27 must be taken 

into account during rsFC data processing. While numerous options for data analysis remain, 

recent work has sought to outline a set of preprocessing parameters that maximizes signal-

to-noise ratio and data reliability.27 That said, in-depth description of rsFC analysis methods 

is beyond the scope of this review, and the reader is referred to a number of recent 

discussions of rsFC data–analysis methodology27–30 as well as cogent surveys of resting-

state MRI more generally.31,32

Nonetheless, in order for the general reader to best appreciate the research described in this 

review, we briefly outline the three major types of rsFC analysis: seed-based, graph-

theoretical, and independent component analysis. As is true with most neuroscience 

methods, there are advantages and trade-offs with each analysis tool.31 Seed-based analyses 

look at the correlation strength in the time courses between an a priori seed voxel or 

multivoxel region of interest and the rest of the brain.4 Seed-based analyses provide 

anatomically based, hypotheses-driven results, with the caveat of restricting brain 

exploration based on the seed selection. In contrast, graph-theoretical measures are based on 

hundreds or thousands of selected brain regions of interest (or indeed every voxel in the 

brain) and seek to characterize entire brain network topology.32,33 However, interpreting the 

sometimes abstract network parameters (e.g., modularity, small-worldness, partition 

coefficient), or relating them to known brain systems that underlie cognitive processes or 

that are affected in disease can be a challenge. Finally, independent component analysis 

(ICA) is a data-driven computational method to decompose an overall signal into 

independent, orthogonal components, segmenting the brain into large-scale components or 

networks that are generally well conserved across individuals.34,35 ICA provides a rich 

description of multiple spatially separated brain networks, but does not easily allow for the 

interrogation of a specific, predefined region.

Large-scale brain networks

Whether identified by ICA, graph methods or even a priori seeds, three consistently 

observed, large-scale brain networks are of particular relevance to the discussion of nicotine 

addiction. These networks include the default mode network (DMN),36–39 which is centered 

on nodes in the medial prefrontal cortex (mPFC), midline posterior cingulate cortex (PCC), 

and parahippocampal gyrus and has been implicated in ruminations, mind wandering, 

planning the future, and reflections on the past. The executive control network (ECN),40,41 

centered on nodes in the dorsolateral prefrontal cortex (dlPFC) and the lateral posterior 

parietal cortex (PPC), has been associated with attending to and processing exogenous, 

attentionally driven executive functions, while the salience network (SN),42,43 centered on 

nodes in the dorsal anterior cingulate cortex (dACC) and the frontoinsular cortex 

(sometimes also including the ventral striatum), has been implicated in the facilitation of 

attentional orientation to internal or external stimuli. This tripartite network parcellation is 

seen not only in awake humans, but consistently and homologously in both awake and 

appropriately anesthetized rodents and non-human primates,44–46 suggesting a potentially 

important link for translational preclinical human research.
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In general, the SN and ECN are identified as task-positive networks, in that these regions 

identified at rest are activated during performance of most cognitive tasks, while the DMN 

deactivates (i.e., reduces its activation level) during task performance. This antagonism is 

reflected in DMN and ECN time courses, which are anticorrelated at rest.36,40,43,47 The 

extent of this anticorrelation has been associated with subsequent task performance, with 

overactivation (i.e., reduced deactivation) of the DMN—at the cost of reduced ECN 

activation—leading to decrements in task performance both for healthy controls12,48,49 and 

those diagnosed with various neuropsychiatric diseases,50–52 including nicotine addiction.53 

These networks are particularly relevant to nicotine addiction, as reflected by increases in 

expression of nicotinic receptors in the anterior cingulate and insular cortices—principal 

nodes of the SN.54

With this modest primer, we next synthesize recent findings on rsFC and nicotine addiction. 

Based on the patterns of dysfunction related to both chronic and acute nicotine exposure, we 

conclude by suggesting rsFC-based measures on which to focus future development of 

brain-based biomarkers of addiction. While the development of such rsFC biomarkers is in 

its early stages, the patterns of rsFC dysfunction described in the following sections provide 

potential avenues for future research.

Available biomarkers, such as the presence of drug in bodily fluid, cannot differentiate 

between chronic and incidental drug use, and are limited by the pharmacokinetics of drug 

metabolism in their detection time window. A number of measures, including subjective 

self-reports of nicotine craving55–57 and baseline nicotinic acetylcholine receptor (nAChR) 

upregulation as measured by positron emission tomography (PET),58 have been correlated 

with treatment outcomes. However, as stated above, cessation treatment outcomes remain 

poor, and a more mechanistic understanding of the dysfunctions across the brain networks 

associated with nicotine addiction is warranted. In contrast with other potential biomarkers, 

a single rsFC dataset can simultaneously characterize both state and trait differences among 

smokers, increasing the predictive efficacy of these measures. To this end, rsFC measures 

have the potential to provide more clinically useful diagnostic and, critically, predictive 

biomarkers of nicotine and other types of substance abuse.59,60

The relative ease and brief duration of data acquisition coupled with the stability of rsFC 

over extended periods of time suggests that such measures may also be useful to track 

disease progression over the course of treatment. Thus, rsFC measures have the potential to 

predict treatment outcomes as well as to fractionate individual smokers based on the specific 

network dysfunctions present, which would facilitate differential diagnosis of smokers based 

on specific network dysfunctions. Recent evidence has shown that personalized treatment 

for nicotine addiction is possible,1,2 and rsFC measures may thus serve to improve outcomes 

by identifying ideal treatment options for individuals. Thus, measures of chronic use and—

perhaps more importantly—measures that track disease severity and trajectory are important 

missing pieces in the clinical arsenal of addiction medicine today.61,62
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Chronic nicotine effects on rsFC

Long-term use of nicotine is associated with deficits in multiple cognitive domains.63 Such 

widespread effects suggest that chronic nicotine exposure and resulting addiction affect 

brain networks associated with executive function—a cognitive construct strongly linked 

with addiction.64,65 As has been shown for task activation,66–68 separable effects of chronic 

and acute administration of nicotine have been observed in a variety of resting-state 

measures. In the studies outlined in the section below, rsFC data was collected from sated 

smokers. Satiety is thought to characterize smokers in their baseline condition, in the 

absence of withdrawal, and provide evidence for the effects of chronic nicotine exposure 

that are separable from the effects of acute nicotine administration.

In seed-based rsFC analysis, reduced dACC–ventral striatum connectivity is correlated with 

increased addiction severity, independent of acute nicotine administration.69 Notably, Hong 

et al.69 identified a double dissociation such that acute nicotine (in the form of a transdermal 

nicotine patch) increased coherence strength in various cingulate–cortical circuits while 

having no effect on the dACC–ventral striatal circuit that correlated with FTND, perhaps 

helping to explain the poor efficacy of nicotine replacement therapy (NRT) in the vast 

majority of smokers. Predicated on these results, recent findings employing a range of rsFC 

methods show trait-level reductions in connectivity in smokers as compared to non-smokers.

Smokers, but not non-smokers, show an inverse relationship between the strength of rsFC 

between a right anterior insula seed and the vmPFC and higher personality trait alexithymia, 

which is in turn associated with a deficiency in subjective awareness and regulation of 

emotions.70 These effects, while correlated with nicotine craving during withdrawal, are 

observed independent of the presence or absence of nicotine. Thus, the reduction in rsFC is 

related to chronic nicotine exposure, and implicates reduced insula–vmPFC circuit strength 

with reduced affective processing and an increased incidence of negative personality traits in 

smokers. These findings are consistent with evidence implicating the anterior insula in self-

regulation via modulations in functional connectivity.71

Studies examining smoking-related rsFC in patients with schizophrenia (SZ) have 

characterized separable and distinct effects of chronic nicotine exposure and disease 

comorbidities.72 These findings are in contrast to the related effects of SZ and smoking seen 

in previous studies.73,74 While the self-medication hypothesis has been a prevalent 

explanation of the coincidence of SZ and smoking,75,76 recent challenges77,78 and evidence 

of high rates of smoking in unaffected twins of SZ patients79 suggest that increased smoking 

comorbid with SZ may be related to a shared neurobiology.72 In fact, a dACC seed showed 

reduced rsFC in non-SZ smokers across a range of circuits, including a right limbic region 

subsuming ventral striatum, parahippocampal, amygdalar, and posterior insular areas.72 

Importantly, these results were independent of SZ diagnosis, and replicate previous evidence 

showing this dACC–right limbic circuit to have reduced connectivity in smokers correlated 

with addiction severity.69,74

Across large-scale networks encompassing whole-brain analyses, similar disruptions in 

connectivity are observed. In a study of more than 600 individuals, smokers showed reduced 
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connectivity between nodes of previously defined large-scale functional networks.80 For 

both the DMN and the left ECN, chronic smokers as compared to non-smokers showed 

reduced connectivity within each network. Furthermore, within key hub ROIs of both the 

ECN (dlPFC and parietal nodes) and DMN (mPFC and PCC nodes), network connectivity 

was degraded. The reduced connectivity strength in these key hubs was correlated with 

duration and frequency of chronic smoking.

Graph-theoretical measures also show disruptions in topological organization and network 

properties in chronic smokers. Heavy smokers have lower values for a number of parameters 

associated with global connectivity across disparate brain networks, as well as higher values 

than non-smokers for a number of network properties associated with local connectivity.81 

Specifically, decreased global and increased local efficiencies in network connectivity were 

observed in heavy smokers in ROIs associated with the DMN, including the PCC and the 

medial superior frontal gyrus (SFG). In addition, increases in local efficiency were observed 

in visual areas, including the bilateral occipital cortex. This suggests that chronic exposure 

to nicotine reduces communication across the brain, while increasing the local connectivity 

within specific network nodes.81 As is seen with the decreases in DMN and ECN hub 

connectivity discussed above,80 each of these parameters was correlated with duration of 

lifetime cigarette use, suggesting that the deficits in network efficiency observed in chronic, 

heavy smokers were related to the duration of their nicotine exposure.

Beyond downregulation in rsFC across the brains of smokers, other evidence shows 

selective increases in rsFC associated with chronic exposure to nicotine. In many cases, 

these increases are related to cue reactivity and implicate nodes of the ECN attentional 

network. For example, coupling between a left frontoparietal network and an mPFC network 

were enhanced in female smokers when compared to non-smoking controls.82 The strength 

of this connectivity was correlated with smoking cue reactivity, suggesting that the enhanced 

coupling within networks associated with attentional control may contribute to cue reactivity 

in smokers. Subsequent work by the same group83 showed that increased cue reactivity was 

also correlated with increased connectivity between the insula and the dACC. The insula and 

dACC are key nodes of the SN,42 and their connectivity has been previously linked with 

smoking severity.69 Importantly, this insula–dACC coupling was insensitive to acute 

abstinence and thus may reflect a trait difference in network coherence for chronic smokers. 

Together, these results suggest that a component of the disordered resting connectivity seen 

in chronic smokers is an exaggerated coupling in attentional networks that may explain 

previously observed imbalances in cue reactivity.84

Regional homogeneity (ReHo)85 is an analysis method that characterizes intraregional 

resting-state BOLD fluctuations as opposed to coupling between spatially separate network 

nodes. Much like ICA and graph-theoretical methods, ReHo is a data-driven method and 

allows for interrogation of resting activity in the whole brain without any a priori 

neurobiological assumptions. To that end, smokers show decreased ReHo in brain regions 

associated with previously established networks relevant to addiction. Wu et al.86 found 

reduced ReHo within the DMN, frontoparietal attention, and inhibitory control networks. 

This rsFC data aligns with previous task-activation data in smokers showing decreased 

sensitivity in ROIs that are also nodes within the DMN,87 attention,88 and inhibitory control 
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networks. 89 Using ReHo, reduced local synchronization in prefrontal regions, specifically 

the right inferior frontal cortex,90 right lateral prefrontal cortex, and left medial prefrontal 

cortex,91 have also been characterized. While these findings are in line with the decreases in 

rsFC reviewed above,80,81 ReHo has also revealed selectively increased intraregional 

connectivity strength in smokers in parietal,90 motor,86 posterior cingulate, and posterior 

insular regions.91

Gender differences in resting circuits have also been observed in smokers. Using arterial 

spin labeling (ASL), an alternative measure of cerebral blood flow,92 to quantify changes in 

resting connectivity, female smokers show stronger coupling between a variety of frontal 

and parietal networks.93 These findings are consistent with previous evidence in female 

smokers showing enhanced coupling between left frontoparietal and mfPFC networks,82 as 

well as evidence of reduced gray matter volume in the vmPFC and OFC in female 

smokers.94 These gender-specific differences may provide insight into the enhanced cue 

reactivity95,96 and lower cessation success rates for female smokers.56,97,98

In summary, chronic nicotine exposure leads to disordered functional connectivity across 

specific circuits and large-scale networks. These results are seen in seed-based,70,72 large-

scale network,80 regional homogeneity,86,90,91 and graph-theoretical81 connectivity 

analyses. Evidence of both limited increases and more widespread decreases in rsFC in 

smokers are in line with evidence from other neuropsychiatric conditions like Alzheimer’s 

disease and schizophrenia, which generally show disordered network communication in 

patients.50,51 However, in nicotine addiction, the disruptions in functional connectivity 

appear to be focused within specific circuits centered on the ACC and insula and large-scale 

networks associated with attention and cognitive control.

Acute nicotine effects on rsFC

In contrast to a number of other clinical disorders, nicotine (and other drug) addiction allows 

for the characterization of the effects of acute exposure in addition to chronic consequences. 

Recent meta-analysis68 and reviews67,99 have articulated a two-faceted effect of acute 

nicotine administration, enhancing cognition in both smokers and non-smokers while also 

assuaging withdrawal in abstinent smokers alone. The foci of the effects of acute nicotine 

administration largely overlap with nodes of large-scale brain networks relevant to cognition 

and addiction.68 Thus, acute nicotine intake may selectively enhance rsFC in the disordered 

networks of smokers and mitigate the deleterious effects of chronic exposure described 

above, at least in the short term.

Cognitive and circuit consequences of acute nicotine administration

Previous findings (see Refs. 30 and 100 for review) show that acute nicotine administration 

depresses DMN activity (i.e., more deactivation)87,101 and enhances cingulate–cortical 

connectivity across specific circuits in smokers.69 For non-smokers, in addition to enhanced 

deactivation of DMN activity, acute administration of nicotine enhances local network 

efficiency, as measured by graph-theoretical parameters.102 These effects are focused within 

the limbic and paralimbic areas and seem to be more pronounced in the right hemisphere, 
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suggesting that, for non-smokers, local information transfer is facilitated in the presence of 

acute nicotine as the clustering of local connections is increased.

In smokers, the administration of acute nicotine enhances functional connectivity between 

the two brain hemispheres, and more specifically in rostral as opposed to caudal regions.103 

This enhanced interhemispheric connectivity is observed only in smokers after ad lib 

smoking. Notably, when abstinent smokers and non-smokers were compared, no difference 

in rsFC was observed. Thus, the effect of recent smoking on interhemispheric rsFC is likely 

related to the enhancing effects of nicotine on cognition as opposed to a mitigation of the 

effects of withdrawal. Further, the localization of this enhanced interhemispheric coupling to 

the rostral third of the brain is broadly consistent with the foci of attentional control.104

In an examination of network topology, administration of nicotine to minimally abstinent 

smokers enhanced the efficiency of information transfer in right middle frontal gyrus. At the 

same time, clustering—that is, segregated interconnections between related nodes—was 

reduced within the left middle occipital gyrus, the right precentral sulcus, and the right 

posterior cingulate gyrus.105 Together, these effects in brain regions previously associated 

with attention and nicotinic stimulation88,106 suggest that the attention-enhancing effects of 

acute nicotine administration arise through a coordinated increase in global network 

efficiency along with a reduction in nodal clustering in specific attention-related ROIs. 

Importantly, the increases in global efficiency observed by Giessing et al.105 were correlated 

with greater behavioral benefits of nicotine, as well as increased frequency of cigarette 

smoking. For smokers, these increases in global and decreases in local connectivity 105 

appear orthogonal to the effects of chronic nicotine exposure discussed above.81

In sum, across a variety of network nodes, acute nicotine administration is seen to bolster 

network communication in both smokers and non-smokers. Together, the enhancement of 

coordinated activity between hemispheres,103 large-scale networks 82 and globally across 

the brain105 provide a mechanistic foundation for previously observed modulations of 

activation associated with nicotine administration.67,68,99

Cognitive and circuit consequences of nicotine withdrawal

In contrast to the enhanced processing effects of acute administration, withdrawal from 

chronic nicotine precipitates negative affective states as well as deficits in cognitive 

abilities.107 As craving is hypothesized to be mediated by a network of brain regions,3 rsFC 

provides an appropriate analytic tool to characterize changes in brain connectivity and their 

relationship to behavioral measures of craving severity. In the abstinent state that 

precipitates withdrawal, distinct rsFC networks are enhanced. In addition, correlations 

between withdrawal-precipitated rsFC and subjective reports of craving severity further 

elucidate the neurobiological underpinnings of withdrawal.

For nicotine-dependent smokers, increases in craving occur over brief timescales. Changes 

in resting connectivity strength that correlate with self-reports of increased craving are 

observed during abstinence periods as short as 1 hour. Janes et al.108 found increased 

coupling between a large-scale resting network centered on the medial orbital prefrontal 

cortex and a variety of brain areas including the dorsal medial PFC, striatum, and visual 
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cortex. This coupling increased as subjective reports of craving increased over the course of 

1 h of acute abstinence, suggesting that abstinence-induced craving is related to the dynamic 

modulation in functional coupling between addiction-related resting-state networks.108

It should be noted that the pattern of decreases in global efficiency and long-range network 

connections and local increases in connectivity strength are not consistently observed across 

all comparisons between smokers and non-smokers. Evaluating network topology in ~ 2-h 

abstinent smokers as compared to non-smokers, no differences in global efficiency or 

clustering in whole-brain networks were observed.109

With longer abstinence durations, functional connectivity in additional brain areas is 

enhanced. Using psychophysiological interaction (PPI) analysis,110,111 which characterizes 

increases in correlations of the time course of BOLD activation between a seed region and 

other nodes in a functional network during task-dependent activation, 2-hour abstinent 

smokers show greater functional connectivity between a right insular seed and the precuneus 

(a node of the DMN) when exposed to smoking-related cues.112 Of note, the strength of the 

insula–precuneus circuit was positively correlated with the magnitude of craving, suggesting 

a role for functional connectivity in instantiating cue-induced craving in abstinent smokers.

Similar effects were observed in a cohort of 116 smokers exposed to smoking-related 

cues.113 Here, a PPI analysis showed correlations between left insula connectivity to the 

striatum, thalamus, cuneus and ACC. The strength of coupling in these insula-seeded 

circuits was correlated with nicotine dependence, as measured by the Fagerstrom test of 

nicotine dependence (FTND). While these PPI studies characterize functional connectivity 

during the viewing of smoking-related cues as opposed to a pure rest state, the similarity of 

the findings of enhanced coupling between insula and nodes associated with the DMN are 

consistent with other findings, including previously discussed evidence of craving-mediated 

connectivity strength between the insula and the vmPFC.70

Insula connectivity is also modulated by more prolonged abstinence. In a cohort of 12-h 

abstinent smokers, global brain connectivity (GBC)—a measure of connectivity between a 

given region of interest and the rest of the brain—was enhanced in both the insula and the 

superior frontal gyrus.114 Furthermore, when these abstinent smokers were administered 

nicotine and then rescanned, GBC in the bilateral insula and nodes of the DMN was 

decreased. This suggests that the connections heightened during nicotine withdrawal are 

downregulated when nicotine cravings are sated in chronic smokers. Additional evidence to 

this effect is discussed in the next section.115–117

Across the experimental results described above, a number of consistent patterns emerge 

concerning acute nicotine administration and absence. Acute nicotine increases rsFC in the 

visual attention network105 and regional efficiency in limbic and paralimbic nodes.81 In 

smokers, the absence of nicotine leads to increases in connectivity within specific limbic 

circuits. Increases in subjective ratings of withdrawal are associated with increased rsFC 

between orbital-medial PFC and a variety of cortical and striatal regions,108 as well as 

increases in coupling between the insula and nodes of the DMN.112 Following abstinence, 
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acute nicotine administration downregulates these limbic connections while simultaneously 

upregulating connectivity in separable attention-related networks.114

Empirical evidence of a three-network model of nicotine addiction

Beyond the archipelago of individual nodal connections, large-scale network dynamics paint 

a more nuanced portrait of brain function as regulated by both chronic and acute nicotine. 

The observed individual connections modulated are in many cases components of large-

scale networks, and the dynamics of changes in rsFC among these networks have been 

posited to be directly linked to effects of satiety and abstinence in smokers.100

On the basis of an influential three-network model of psychopathology,50 Sutherland et al.
100 theorized that nicotine addiction manifests as a dysfunction in the dynamic connections 

between large-scale brain networks. The three networks implicated are the previously 

defined SN, DMN, and ECN. Based on the anticorrelations between the DMN and the 

ECN,40 a role for the SN, and specifically the insula, in adjudicating between exogenous 

(ECN) and endogenous (DMN) attentional orientation during nicotine abstinence is 

predicted.100 As such, during acute abstinence, chronic smokers are hypothesized to show 

increased coupling between the SN and the DMN and decreased coupling between the SN 

and the ECN as withdrawal leads to an endogenous focus on internal craving state.118 

Alternatively, following nicotine administration, smokers will show decreased coupling 

between the SN and the DMN and increased coupling between the SN and the ECN when 

nicotine administration facilitates exogenous attentional focus. This heuristic, network-level 

framework begins to provide a more complete characterization of the consequences of 

nicotine exposure and suggests that the dysfunctions of nicotine addiction can be classified 

as dynamic changes in the inter- and intranetwork connectivity between large-scale brain 

networks. Dynamic changes in coupling among the SN, DMN, and ECN have been 

empirically implicated in responses of the nicotine-addicted brain to abstinence (for a recent 

review, see Ref. 30).

The dynamics of the rsFC changes influenced by nicotine administration are seen in heavy 

smokers scanned following 12 h of nicotine abstinence and again following nicotine 

replenishment via smoking.117 During abstinence, functional connectivity was enhanced 

within nodes of the SN and DMN. In contrast, following nicotine replenishment, 

connectivity was enhanced in the superior frontal gyrus within the SN and the precuneus 

within the DMN. A subsequent Granger causality analysis showed that nicotine 

administration reduced causal connections from the SN to posterior nodes of the DMN, 

whereas connections from both the ECN and anterior nodes of the DMN to the SN were 

enhanced.117 While the use of Granger causality in rsFC analysis remains controversial 

owing to potential variations in regional hemodynamic response unrelated to 

connectivity,119 these results corroborate the role of the SN and its connectivity with the 

DMN and the ECN in the effects of withdrawal across large-scale brain networks. The 

dynamics of the interactions observed—specifically downregulation of SN–DMN 

connectivity following nicotine administration—are consistent with the articulated heuristic 

framework.100
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Further evidence of the sensitivity of rsFC among these three large-scale networks to the 

presence or absence of nicotine is seen in the direct effects of smoking-cessation 

pharmacotherapies.115 The administration of either varenicline—a nicotinic partial agonist/

antagonist shown to be an effective smoking cessation aid120—or a nicotine replacement 

patch to 12-h abstinent smokers showed similar effects on connectivity between two specific 

circuits. Examining both an amygdala seed connected with the insula and an insular seed 

connected with nodes of the DMN, administration of a nicotinic agonist downregulated the 

connectivity between the seed region and the rest of the circuit. The reduction in 

connectivity between the insula—a prominent node of the SN—and nodes of the DMN 

provides mechanistic evidence of the role of acute nicotine in alleviating withdrawal. 

Importantly, the effects of varenicline or nicotine on connectivity strength were seen only in 

dependent smokers, not in non-smokers. Thus, the observed coupling patterns and their 

changes appear related to nicotine addiction, and not merely the presence of an acute 

nicotinic agonist.

While Sutherland et al.115 described a decrease in SN–DMN connectivity in the presence of 

nicotinic agonists following acute withdrawal, a subsequent study characterized concomitant 

modulations of both SN–DMN and SN–ECN coupling in a new cohort of smokers, scanned 

under both sated and 24-h abstinent conditions.116 This is an important distinction, as the 

examination of rsFC changes in both the DMN and ECN simultaneously can better 

characterize the anticorrelation between these networks40 as it relates to nicotine addiction. 

Resting SN–DMN and SN–ECN connectivity was quantified by a composite measure, 

resource allocation index (RAI), formulated to integrate SN–DMN and SN–ECN 

correlations into a single number. In the RAI, the sign of SN–DMN correlation is inverted, 

and thus SN–DMN and SN–ECN correlations do not cancel out when summed. As such, the 

RAI is able to quantify both changes in concurrent dynamic coupling between the networks 

better than measures of any two networks in isolation.

As compared to baseline smoking state, following 24 h of nicotine abstinence, RAI was 

reduced in smokers. This reduction in between-network correlation was driven by a 

significant reduction in temporal anticorrelations between the SN and the DMN. That is, the 

correlation between the two networks was increased during abstinence, with a trend-level 

decrease in the positive correlation between the SN and the ECN also observed during 

abstinence. Further, the reduction in RAI across the three large-scale networks was strongly 

correlated both with increases in subjective urge to smoke and deficits in working memory

—an important construct of executive control. This suggests that the greater the dysfunction 

in dynamic network coupling between the SN and either the DMN or the ECN, the larger the 

subjective urge to smoke and the cognitive decline seen during abstinence.116

In sum, during abstinence, affective and subjective sensations orient smokers to endogenous 

craving signals, a process indexed by the coupling of the SN and the DMN. This 

endogenous orientation comes at the expense of an anticorrelated exogenous orientation, 

indexed by coupling between the SN and the ECN. In addition, the stronger coupling 

between nodes of the SN and the ECN following smoking may shed light on the 

mechanisms of cognitive enhancement seen with administration of acute nicotine in non-

smokers, as discussed above.
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Gaps in the current rsFC literature

Notably absent from the three-network model of nicotine addiction is any involvement of 

the mesocortical limbic dopamine (MCL DA) pathway. Reward dysfunction is implicated in 

addiction,3 yet the ICA methods used to identify the SN, DMN, and ECN across numerous 

cohorts of smokers and non-smokers do not consistently identify a large-scale MCL DA 

network. However, recent evidence in cocaine-dependent individuals suggests functional 

connections between striatal MCL DA seeds and the inhibitory control network121 as well as 

a variety of other cortical regions including the insula.122 In addition, enhanced rsFC in a 

cortical–striatial–amygdala circuit is observed123 (see Ref. 124 for a review). Further, in 

healthy controls, the insula exerts downstream influence on the nucleus accumbens and the 

ventral striatum.125 Thus, network connectivity among the previously discussed SN, DMN, 

and ECN, and the MCL DA pathway are implicated in addiction via novel analytical 

methods, although further empirical evidence is needed.

Other gaps in the rsFC literature include the absence of stronger links between the rsFC 

modulations described above and genetic differences between smokers and non-smokers. An 

established link exists between genetic variation and addiction,126–128 and evidence for a 

genetic basis of downregulated rsFC circuits in smokers has been observed.129 However, 

further interrogation of the influence of candidate single-nucleotide polymorphisms, 

including those within the CHRNA5 cluster and CYP2A6 gene, on rsFC in smokers is 

warranted. In addition, large-scale treatment studies should include the collection of resting-

state data in an effort to characterize not only the initial differences between smokers and 

non-smokers, but also those changes that are plastic over the course of treatment. The ease 

of data collection and task independence allow for integration of resting-state measures into 

multisite clinical trials as well as future meta-analyses. A better understanding of network 

upregulation and downregulation associated with successful smoking cessation is an 

important step to improving treatment outcomes by influencing these dynamics.

Finally, beyond characterizing differences in rsFC between smokers and non-smokers, 

future research should focus on the ability to modulate specific rsFC circuits through 

interventional methods including neurofeedback,71,130,131 and mindfulness training.132 

Recent evidence demonstrates the feasibility of these techniques, and experimental 

manipulation of rsFC circuits would provide a causal link between changes in rsFC and 

specific performance or treatment outcomes. In addition, transcranial magnetic stimulation 

(TMS) may prove useful in modulating addiction-related rsFC, as evidence to date holds 

promise for therapeutic applications.133

Value of resting-state functional connectivity in nicotine biomarker 

development

The development of quantifiable indices of nicotine addiction severity remains a major 

thrust of current neuroimaging research.59,61,134 It has been previously speculated that rsFC 

may be uniquely positioned to serve as a systems-level tool for neuropsychiatric disease 

diagnosis.50,135 Since both state and trait changes associated with nicotine exposure can be 

simultaneously characterized via functional connectivity, and since the stability of these 
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large-scale network measures is maintained across multiple scanning sessions, rsFC 

measures may have the requisite consistency and sensitivity to characterize changes over the 

course of smoking cessation treatment.

Furthermore, the consistency of disruptions in functional circuits and networks associated 

with chronic nicotine exposure and the articulated theoretical framework of internetwork 

connectivity dynamics during acute nicotine withdrawal provide a foundation on which to 

develop rsFC-centered biomarkers. Chronic nicotine exposure is correlated with 

downregulation of a dACC–ventral striatal limbic connection,69,72,83 in addition to patterns 

of rsFC dysregulation—specifically reductions in global connectivity81—within highly 

connected regions of the ECN and the DMN.80 Conversely, acute nicotine administration in 

smokers also appears to counteract the decreased global connectivity and enhanced local 

clustering observed in chronic smokers.105 Finally, the tripartite network model of rsFC 

among the SN, DMN, and ECN100 provides a hypothesis-driven framework to combine with 

data-driven methods like graph-theoretical measures in the characterization of the effects of 

nicotine withdrawal. The ability to simultaneously quantify opposing effects of chronic and 

acute nicotine on network connectivity in smokers is a unique property of resting-state data.

However, the question remains, what information would brain-based biomarkers of 

addiction severity provide that self-reports of craving severity (e.g., FTND) do not? For one, 

self-report measures provide little guidance about how treatment plans should differ among 

heterogeneous subgroups of smokers. As outlined above, recent evidence has shown that 

differences in potential treatment response can be identified and leveraged to provide 

treatment alternatives better suited to specific subgroups of smokers.1,2 In addition, specific 

changes in rsFC have been correlated with FTND,69,72,81,113 duration of chronic nicotine 

exposure,80,81,105 smoking cue reactivity,82,83,112 and subjective craving during nicotine 

withdrawal.108,116 These results suggest a link between the types of functional connectivity 

changes discussed above and clinically relevant behavioral and subjective reports. Thus, 

rsFC measures may ultimately provide additional, neurobiological mechanistic context and 

predictive validity beyond self-report measures of drug use and addiction severity.

Using smoking cessation and other variants of substance abuse as proofs of concept, a 

number of recent studies have linked differences in baseline functional connectivity with 

distal treatment outcomes. Increased relapse risk in treatment-seeking smokers was 

correlated with decreased rsFC between a bilateral, whole-insula seed and primary 

sensorimotor areas including the pre- and postcentral gyri.136 In addition, 30-day relapse 

risk and trait impulsivity were associated with reduced connectivity in a putamen–posterior 

insula–postcentral gyrus circuit in treatment-seeking cocaine users.137 Finally, decreases in 

rsFC in early alcohol abstinence were correlated with relapse, suggesting that low rsFC may 

decrease the ability to react appropriately to external cues and may precipitate relapse in 

addicted individuals.138

Specific targets for rsFC biomarker development

A growing body of evidence suggests that key hub regions exist across a range of resting 

state networks.139–141 A number of the brain regions discussed in this review have been 
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implicated in other quantifications of network topology. For example, functional hubs within 

the frontal parietal network (an analog of the ECN) play a central role in adaptive cognitive 

control, independent of psychopathology.141 These hubs and their connections may further 

articulate the mechanisms of addiction and, perhaps more importantly, provide foci on 

which to develop biomarkers for diagnostic and treatment outcome predictions.

Specifically for rsFC of nicotine addiction, a number of potential hubs can be derived from 

the results reviewed above. Reductions in connections between the dlPFC, the parietal 

nodes, and the rest of ECN, as well as the mPFC, the PCC, and the rest of the DMN, are 

seen in smokers.80 In addition, rsFC within the middle superior frontal gyrus (mSFG) has 

been implicated in the effects of chronic nicotine exposure. Decreases in the efficiency of 

the mSFG as a network hub are negatively correlated with FTND score,81 and global brain 

connectivity in SFG is enhanced during abstinence.114 Furthermore, mSFG connectivity is a 

discriminatory feature in a machine-learning classifier to distinguish smokers and non-

smokers.142 This suggests that. within the context of the larger ECN, the mSFG, dlPFC, and 

parietal nodes may be of particular importance when quantifying the effects of chronic 

nicotine exposure on rsFC.

The primacy of the insula node within the SN50 and the repeated occurrence of insular 

circuit modulations in nicotine addiction70,83,100,112–115 suggest that dynamic changes in 

connectivity between the insula and a variety of brain regions may be of special importance 

in characterizing the mechanistic dysfunctions of withdrawal. In addition, converging 

evidence from tractography and functional connectivity analysis illustrates an integrative 

hub in the rostral striatum that combines reward processing with inputs from the OFC, 

dlPFC and parietal cortex.143 These findings of a structurally instantiated network of reward 

and higher cognitive processes are in line with previous rsFC evidence144 and serve as a 

potential link in rsFC-based studies of addiction, which to date have not often included 

striatal nodes (see Ref. 124).

While the described correlations between rsFC and craving measures and treatment 

outcomes inform the neurobiological underpinnings of nicotine addiction, they are not 

sufficient to provide predictive biomarkers.145 Such correlational analyses rely on specific 

characteristics of an experimental cohort and can thus bias predictions made on future, 

independent samples.146 In order to furnish information useful in the clinic, biomarkers must 

provide data about the presence of a condition in an individual, as opposed to information 

about group differences between individuals with and without a condition.62 For a useful 

biomarker, the goal is to quantify how a test result predicts a condition. Correlational 

analyses instead quantify how a condition predicts a test result. As an alternative, machine-

learning methods145,147 allow for progression beyond correlations between neurobiological 

signals and outcome and towards development of classifiers able to predict diagnostic group 

membership based on rsFC data. Supervised machine learning allows for the application of 

predictions at the level of individuals. While this work on biomarker development is in its 

infancy, the efficacy of predictive measures for group membership or disease severity goes 

beyond a mechanistic understanding of brain dysfunction and provides actionable 

information for interventions. The results are promising in that rsFC can be used either 

Fedota and Stein Page 14

Ann N Y Acad Sci. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alone142 or in combination with other measures148 to predict—in independent cohorts of 

participants—group membership and eventually treatment outcomes.

Equipped with an organizing principle for large-scale network interaction in nicotine 

addiction, a more focused interrogation of the network interactions dependent on state and 

trait is advocated for future biomarker development. Leveraging the connectivity between 

hubs in the large-scale networks may ultimately prove to be a fruitful path in the 

development of addiction biomarkers. Indeed, a handful of recent studies142,148 provide 

proof of concept for the predictive validity of resting-state measures. Using the literature 

reviewed above to target specific nodes and edges on which to base predictions would seem 

an appropriate focus of future work.
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Figure 1. 
Examples of rsFC analysis methodologies. (A) Seed-based analysis showing decreased rsFC 

between an a priori right ventral–anterior insula seed (blue) and vmPFC associated with 

increased 20-item Toronto alexithymia scale (TAS-20) scores in smokers. Figure modified 

from Ref. 70. (B) Graph-theoretical analysis showing structural connections based on 

macaque cortex histological data. Two modules (yellow and gray nodes, respectively) show 

high clustering and limited connectivity between modules, and are linked by a hub at V4. 

Figure modified from Ref. 140. (C) Independent components analysis (ICA) showing 

distinct, correlated activation within the large-scale salience network (SN), the anterior and 

posterior default mode networks (aDMN, pDMN), and the executive control network 

(ECN). Figure modified from Ref. 117.
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Figure 2. 
Chronic nicotine effects on rsFC. Decreases in rsFC across a range of brain networks are 

associated with increased duration and severity of nicotine addiction. (A) Blue regions show 

reduced global efficiency (E global) while red regions show increased E global in heavy 

smokers (HS) as compared to non-smokers (NS). Global efficiency is negatively correlated 

with nicotine dependence (as measured by FTND) and duration of cigarette use in HS group. 

Figure modified from Ref. 81. (B) Resting-state functional connectivity between a dACC 

seed (purple) and the bilateral ventral striatum (blue in axial brain slice) is negatively 

correlated with FTND in smokers. This negative correlation is unrelated to acute nicotine 

administration and is observed following administration of either nicotine or placebo. Figure 

modified from Ref. 69. ANG, angular gyrus; CUN, cuneus; FTND, Fagerström test for 

nicotine dependence; HIP, hippocampus; IFGtraing, triangular inferior frontal gyrus; IOG, 

inferior occipital gyrus; IPL, inferior parietal but supramarginal and angular gyri; ITG, 

inferior temporal gyrus; L, left hemisphere; LING, lingual gyrus; MOG, middle occipital 

gyrus; ORBsupmed, medial orbital superior frontal gyrus; PCG, posterior cingulate gyrus; 

PCL, paracentral lobule; PCUN, precuneus; PHG, parahippocampal gyrus; R, right 

hemisphere; SFGdor, dorsolateral superior frontal gyrus; SFGmed, medial superior frontal 

gyrus; SOG, superior occipital gyrus; dACC, dorsal anterior cingulate cortex (ACC); dPCC, 

dorsal posterior cingulate cortex (PCC); FTND, Fagerström test for nicotine dependence; 

MCC, middle cingulate cortex; oACC, rostral ACC; RSC, retrosplenial cortex; sACC, 

subcallosal ACC; vPCC, ventral PCC.
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Figure 3. 
Acute nicotine effects on rsFC. In smokers, acute nicotine enhances rsFC throughout the 

brain. (A) Smokers administered nicotine gum display changes in nodal topology—

increased nodal efficiency (red) and decreased clustering (yellow). Note the contrast with 

the reductions of network efficiency with chronic nicotine exposure in Figure 2A. Figure 

modified from Ref. 105. (B) Acute nicotine increases connectivity in circuits with a variety 

of cingulate seeds. Note the contrast to the effects of chronic nicotine in Figure 2B. Figure 

modified from Ref. 69. dACC, dorsal anterior cingulate cortex (ACC); dPCC, dorsal 

posterior cingulate cortex (PCC); MCC, middle cingulate cortex; oACC, rostral ACC; RSC, 

retrosplenial cortex; sACC, subcallosal ACC; vPCC, ventral PCC.
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