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Abstract Connexin proteins are abundantly present in the

digestive system. They primarily form gap junctions,

which control the intercellular exchange of critical home-

ostasis regulators. By doing so, gap junctions drive a

plethora of gastrointestinal and hepatic functional features,

including gastric and gut motility, gastric acid secretion,

intestinal innate immune defense, xenobiotic biotransfor-

mation, glycogenolysis, bile secretion, ammonia

detoxification and plasma protein synthesis. In the last

decade, it has become clear that connexin hemichannels,

which are the structural precursors of gap junctions, also

provide a pathway for cellular communication, namely

between the cytosol and the extracellular environment.

Although merely pathological functions have been descri-

bed, some physiological roles have been attributed to

connexin hemichannels, in particular in the modulation of

colonic motility. This equally holds true for cellular

channels composed of pannexins, connexin-like proteins

recently identified in the intestine and the liver, which have

become acknowledged key players in inflammatory pro-

cesses and that have been proposed to control colonic

motility, secretion and blood flow.
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Abbreviations

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

CL Cytoplasmic loop

CT Cytoplasmic carboxy tail

Cx Connexin

EL Extracellular loop

GJIC Gap junctional intercellular communication

IP3 Inositol triphosphate

NT Cytoplasmic amino tail

Panx Pannexin

TM Transmembrane domain

Introduction

Like in all other organs, homeostasis in the digestive sys-

tem is dictated by the interplay between intracellular,

extracellular and intercellular communication networks.

Direct intercellular communication is typically governed

by gap junctions, composed of 2 hemichannels of neigh-

boring cells, which control the diffusion of small and

hydrophilic chemical substances between adjacent cells.

This flux is called gap junctional intercellular communi-

cation (GJIC) and involves several second messengers,

such as adenosine triphosphate (ATP), cyclic adenosine

monophosphate (cAMP) and inositol triphosphate (IP3) as

well as ions, including calcium and sodium [1–3]. Gap

junctions have been first described in 1967 in liver cells [4,

5]. In 1974, Goodenough isolated 2 gap junctional proteins

from mouse liver and called them connexin (Cx) proteins

[6]. The cloning of these first 2 connexins from rat liver

was performed in 1986 [7, 8], of which one was simulta-

neously detected in rat stomach [7], and was the start of
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almost 3 decades of intensive gap junction research. Over

the years, as much as 21 different connexins have been

identified in human, all which are named after their

molecular weight, namely Cx23, Cx25, Cx26, Cx30,

Cx30.2, Cx30.3, Cx31, Cx31.1, Cx31.9, Cx32, Cx36,

Cx37, Cx40, Cx40.1, Cx43, Cx45, Cx46, Cx47, Cx50,

Cx59 and Cx62 [9]. Connexins share a structure consisting

of 4 membrane-spanning domains, 2 extracellular loops, a

cytoplasmic loop, a cytoplasmic N-terminal area and a

C-terminal region [2, 3] (Fig. 1). Started in 1993 [10, 11],

several studies have documented the presence of connexins

in the intestine. In 2000, a newcomer entered the connexin

arena, namely the so-called pannexin (Panx) protein, which

has a topology that is similar to that of connexins [12].

Thus far, 3 pannexin types, namely Panx1, Panx2 and

Panx3, have been characterized and they gather in a con-

nexin hemichannel-like configuration, but not as gap

junctions, at the cell plasma membrane surface, where they

mediate the exchange of chemical messengers between the

cytosol and the extracellular environment [13] (Fig. 1).

Only in the last few years, however, pannexin expression

has been reported in the intestine [14, 15], the stomach [15,

16] and the liver [15–22]. Furthermore, the connexin

research field has witnessed the introduction of the con-

troversial concept of functional hemichannels in the last

decade. In this view, connexin hemichannels are more than

merely structural precursors of gap junctions, as they also

provide a pathway for cellular signaling, albeit between the

cytosol and the extracellular environment, similar to pan-

nexin channels [23, 24]. The messengers that permeate

connexin hemichannels and pannexin channels show great

overlap with those involved in GJIC [13, 25]. Over the

years, several studies have documented that these single

membrane channels are mainly involved in intestinal [14,

26–28] and liver pathology [29, 30]. Nevertheless, a

number of physiological roles of connexin hemichannels

and pannexin channels have been described in the digestive

system, all which will be outlined in the current paper. In

the first part, a state-of-the-art overview of connexin and

pannexin expression in the stomach, the intestine and the

liver is provided. The second part focuses on physiological

functions of connexin and pannexin signaling in these

organs.

Connexins and pannexins in the stomach,
the intestine and the liver

Gastric connexins and pannexins

Today, 3 connexin isotypes have been identified in the

stomach, namely Cx26, Cx32 and Cx43 (Table 1). In

particular, Cx26 has been detected in human [31], mouse

[32] and rat [33, 34] gastric tissue, where it is only scarcely

Fig. 1 a Architecture of

connexin and pannexin

channels. Gap junctions are

formed by the interaction

between 2 hemichannels of

adjacent cells and mediate

intercellular communication

(red arrow). Connexin

hemichannels and pannexin

channels are built up by 6

connexin proteins (green) and 6

pannexin proteins (blue),

respectively, and support

paracrine communication

(purple). b Topology of

connexin and pannexin proteins.

Connexins (green) and

pannexins (blue) all consist of 4

transmembrane domains (TM),

2 extracellular loops (EL), 1

cytoplasmic loop (CL), 1

cytoplasmic carboxy tail (CT)

and cytoplasmic amino tail

(NT). In comparison with

connexins, pannexins have

longer EL and CT areas
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Table 1 Connexin and pannexin expression in the digestive system

Species Tissue Cell type References

Cx26 Stomach (h, m, r) [31–34]

Small intestine (h) [59]

Colon (h) Epithelial cells (h) [59, 74, 78, 151]

Muscularis externa cells (h) [75, 151]

Liver (h, m, r, gp) Hepatocytes (m, r) [33, 152, 153]

Stellate cells (r) [83]

Sinusoidal endothelial cells (r) [83]

Kupffer cells (r) [83]

Cx31 Small intestine (m) [64]

Colon (m) [64]

Cx31.9 Colon (h) [78]

Cx32 Stomach (h, hs, r) Foveolar cells (h, hs) [34, 35, 37–43]

Small intestine (h, m) Epithelial cells (h, m) [59, 61, 64]

Colon (h) Epithelial cells (h) [70, 78, 151]

Liver (h, m, r, gp) Hepatocytes (h, m, r) [7, 8, 83, 92, 152–155]

Biliary endothelial cells (r) [123]

Sinusoidal endothelial cells (r) [83]

Cx36 Small intestine (m) Myenteric plexus cells (m) [60]

Colon (h, m) Myenteric plexus cells (m) [60, 78]

Cx37 Small intestine (h, m) Epithelial cells (h) [58, 68]

Liver (m, r) Hepatic artery endothelial cells (m, r) [85–87]

Portal vein endothelial cells (m, r) [85–87]

Cx40 Stomach (d) [49]

Small intestine (d) Deep muscular plexus cells (d) [49]

Myenteric plexus cells (d) [49]

Muscularis externa cells (d) [49]

Colon (d, r) Myenteric plexus cells (d) [49]

Muscularis externa cells (r) [71]

Liver (m, r) Hepatic artery endothelial cells (m, r) [85–87]

Portal vein endothelial cells (m, r) [85–87]

Cx43 Stomach (h, m, d, r, rb, gp) [32, 44–53, 156]

Small intestine (h, m, d, r, rm) Epithelial cells (h, m, rm) [59, 61, 62, 64, 69]

Deep muscular plexus cells (d, r) [49, 67]

Myenteric plexus cells (d) [49]

Muscularis externa cells (h, m, d, r) [11, 44, 49, 65]

Interstitial cells of Cajal (h) [66]

Colon (h, m, d, r, rm) Epithelial cells (h, m) [59, 64, 69, 70, 72, 73, 77–79, 151]

Muscularis mucosae cells (h) [73, 151]

Deep muscular plexus cells (m, d) [49, 76]

Myenteric plexus cells (m, d) [49, 76]

Muscularis externa cells (h, r) [71, 75, 151]

Liver (h, m, r) Biliary epithelial cells (r) [123, 124, 157–161]

Kupffer cells (r) [82, 83]

Stellate cells (r) [83, 85]

Sinusoidal endothelial cells (r) [83, 85]

Hepatic artery endothelial cells (m, r) [85–87]

Portal vein endothelial cells (m, r) [85–87]
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expressed in the epithelial cells and lamina propria of the

fundus [31]. Cx32 is produced in human [35–38], rat [7, 33,

34, 39–42] and equine stomach [43]. In the glandular

regions, Cx32 is abundantly expressed in surface and

foveolar cells and decreases towards the proliferative zone

of the glands, where immature forms of surface epithelial

cells are found [35, 40, 41, 43]. Cx43 has been observed in

gastric tissue of human [44], mouse [32, 45], rat [46–48],

dog [49], rabbit [50] and guinea pig [51–53]. Cx43 is

specifically present in circular muscle layers, but not in

longitudinal muscle cells, of the antrum and the corpus [44,

45, 49, 51]. In fact, circular muscle cells of the lesser

curvature in the corpus of canine stomach are intercon-

nected by numerous gap junctions, whereby each cell has

about 200 gap junctions [54]. In human stomach, gap

junctions are found in the antrum and in the outermost area

of the greater curvature, but are absent in the fundus and in

the innermost area of the corporal circular muscle layer

[55]. In general, gap junctions are rarely seen at the pylorus

[45, 56] and in interstitial cells of Cajal [54], yet in rat, gap

junctions are present between intramuscular vagal

mechanoreceptors and interstitial cells of Cajal in the

fundus [48, 57]. A single study showed expression of Cx40

and Cx45 in circular muscle cells of the canine gastric

antrum [49]. Panx1 mRNA expression in the rat gastric

tissue has been reported [16], while Panx2 protein

expression has been described in parietal and epithelial

cells of murine stomach [15] (Table 1).

Intestinal connexins and pannexins

At least 10 different connexin variants have been charac-

terized in the intestinal system. Thus, Cx26, Cx31, Cx32,

Cx36, Cx37, Cx40, Cx43, Cx45 and Cx57 have been

detected in the small intestine of several species [11, 44,

49, 58–69], while Cx26, Cx31, Cx31.1, Cx32, Cx36, Cx40,

Cx43 and Cx45 occur in the colon [49, 59, 60, 64, 70–79]

(Table 1). In some reports, the segments of the small

intestine in which connexins are produced have been

specified. In this regard, Cx31, Cx32 [64], Cx36 [60], Cx43

[49, 62, 64] and Cx45 [49] are present in the ileum, while

the duodenum harbors Cx32 [64], Cx37 [58] and Cx43

[64]. Several studies have focussed on the distribution of

connexins in the different layers of small intestinal and

colonic tissue, in particular the mucosa, submucosa and

muscularis externa (Table 1). Furthermore, intestinal con-

nexins, like in other organs, display cell type-specific

expression patterns. This might be of importance for

delineating physiological compartments with specific

functions. Cx32 has been observed in enterochromaffin

cells and Paneth cells of small intestinal epithelium in

mouse [61]. In rhesus monkeys, Cx43 is exclusively pre-

sent in crypt epithelial cells, with higher expression in the

jejunum and the ileum than in the colon [69]. In the enteric

nervous system of the mouse colon, Cx43 is confined to

glia [76]. Cx43 is also expressed by circular muscle cells of

the small intestine [11, 65], but Cx26, Cx32 and Cx43

immunoreactivity remain absent in the longitudinal muscle

layer of the colon [11, 74]. This is linked to the observation

that gap junctions occur at specific areas in intestinal tissue.

In the mouse intestine, there are no gap junctions between

interstitial cells of Cajal of the myenteric plexus and cir-

cular or longitudinal muscle cells. With the exception of

the latter, however, gap junctions couple these individual

cell types among each other. There is another network of

interstitial cells of Cajal in the deep muscular plexus,

which are connected to circular muscles through gap

junctions [67, 80, 81]. These gap junctions may be

Table 1 continued

Species Tissue Cell type References

Cx45 Stomach (d) [49]

Small intestine (d, r) Deep muscular plexus cells (d, r) [49, 65, 67]

Myenteric plexus cells (d) [49]

Colon (h, d) Myenteric plexus cells (d) [49, 78]

Cx57 Small intestine (m) [63]

Panx1 Colon (h) Mucosal cells (h) [14]

Muscularis mucosa cells (h) [14]

Submucosal cells (h) [14]

Muscularis externa cells (h) [14]

Liver (m, r) Hepatocytes (m, r) [16–20]

Kupffer cells (m) [22]

Panx2 Colon (m) Epithelial cells (m) [15]

Liver (m, r) Hepatocytes (m, r) [15, 21]

Cx connexin, d dog, gp guinea pig, h human, hs horse, m mouse, Panx pannexin, r rat, rb rabbit, rm rhesus monkey
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heteromeric and thus can consist of more than 1 connexin

species. Specifically, Cx43 frequently colocalizes with

Cx40 and Cx45 in interstitial cells of Cajal in the canine

intestine [49]. Besides the gap junctional connexin pool,

connexins, in casu Cx26, Cx32 and Cx43, also gather as

functional hemichannels, as occurring at the basal pole of

human intestinal epithelial cells [59]. In comparison with

connexins, much less attention has yet been paid to pan-

nexins in the intestine. One study showed Panx1 expression

in all layers of the human colon, including mucosa, mus-

cularis mucosa, submucosa and muscularis externa. Panx1

hereby is mainly found in enteric ganglia, blood vessel

endothelium, erythrocytes, epithelial cells and goblet cells

[14]. Another report described Panx2 production in

epithelial cells of the small intestine and the colon [15]

(Table 1).

Hepatic connexins and pannexins

As much as 5 connexin family members are detectable in

liver (Table 1), among which Cx32 is the predominant one

expressed by hepatocytes [34, 35, 37–43]. Cx43 is the

major connexin species produced by nonparenchymal liver

cells, including Kupffer cells, stellate cells and sinusoidal

endothelial cells [82–85]. The latter 3 as well as hepato-

cytes also stain positive for Cx26 [83], while endothelial

cells of the hepatic arteries and the portal vein express

Cx37 and Cx40 [83, 85–87]. Quantitatively, however, most

gap junctions are found between hepatocytes. They form

so-called plaques that occupy about 3 % of the hepatocyte

membrane surface [88]. Unlike Cx32, which is evenly

distributed in the liver parenchyma, gap junctions con-

sisting of Cx26 are mainly established by periportal

hepatocytes [89, 90]. Hepatocellular Cx32 has many

binding partners, including other junctional components,

such as the tight junction building stone occludin [91] and

mitochondrial proteins [92]. At the transcriptional level,

tissue-specific expression of connexins is accomplished by

differential promoter usage and tissue-enriched transcrip-

tion factors [93]. In this light, hepatocellular Cx32

production depends on the binding of hepatocyte nuclear

factor 1 alpha at its P1 gene promoter [94]. Epigenetic

actions, including DNA methylation and histone modifi-

cations, also control connexin expression in liver cells [95,

96]. In addition, Cx43 was found to be regulated by

specific microRNAs [97]. At a more downstream level, gap

junction opening is controlled by posttranslational con-

nexin changes. Connexin phosphorylation plays a critical

role in this so-called gating process. Except for Cx26, all

connexins are subject to phosphorylation, which may have

a varying outcome [98]. With respect to the liver, Cx32

phosphorylation by protein kinase A enhances GJIC [99],

while the same event mediated by protein kinase C results

in protection against proteolysis [100]. Pannexin produc-

tion in liver tissue has been poorly investigated thus far.

Only a handful of reports demonstrated Panx1 expression

in liver tissue, in particular produced by hepatocytes [16–

20] and Kupffer cells [22]. Two studies showed the pres-

ence of Panx2 in mouse liver [15] and rat hepatocytes [21].

Connexin and pannexin channels
in gastrointestinal and hepatic physiology

Physiological functions of connexin and pannexin

signaling in the stomach

Experiments with rats of different age showed that Cx32

presence and gap junction number gradually increase dur-

ing maturation of surface mucous cells in the stomach. This

suggests that GJIC between surface mucous cells is a

determinant of gastric cell differentiation and of gastric

homeostasis in general [41]. Cx43-based gap junctions are

thought to play an important role in the regulation of

gastroduodenal motility [52]. Furthermore, gap junctional

channels in gastric glands were found to support acid

secretion [34]. A recent study in guinea pig revealed that a

cAMP-dependent signal propagates intercellularly to

induce coordinated secretion in the entire gastric gland

[101]. As a matter of fact, gap junction activity in gastric

epithelial cells is increased by cAMP [102] and is modu-

lated by the beta adrenergic nervous system [103]. A

number of reports have shown a cytoprotective function for

Cx32-based gap junctions in the stomach. In this respect,

ischemia–reperfusion stress [40] or acid-induced injury

[42] combined with perfusion with octanol, a gap junction

uncoupler, reduces Cx32-positive spots in rat stomach.

This indicates that inhibition of gap junction activity

weakens the barrier function of the gastric mucosa in

combination with ischemia–reperfusion stress or acid-in-

duced injury. Therefore, facilitation of GJIC may protect

the gastric mucosal barrier function by potentiating cellular

integrity [40, 42]. Cx32 gradually reappears during healing

following ethanol-induced [104] or acetic acid-induced

[105] gastric insults in rat. Although pannexins have been

identified in gastric tissue, their potential physiological

roles in the stomach remain to be established [15, 16].

Physiological functions of connexin and pannexin

signaling in the intestine

Cx43-based gap junctions in the gut endoderm are indis-

pensable for the transfer of signals that determine the

establishment of left–right asymmetry from the node to the

lateral plate mesoderm during embryogenesis [106, 107].

In the adult intestine, Cx26-related GJIC plays a role in
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maintaining epithelial barrier function by affecting the

production of tight junction proteins [108]. Although

surrounded by some controversy [80, 109], gap junctions

are also believed to be important for intestinal nerve

transmission and pacing. This particularly holds true for

gap junctions composed of Cx43 in interstitial cells of

Cajal and smooth muscle cells, which control intestinal

motility [66, 110]. In fact, ablation of Cx43 in smooth

muscle cells of the murine intestine results in altered

visceromotor responses and muscle contractility, a

decrease in gastrointestinal transit time, increased neu-

trophil infiltration and thickening of the tunica muscularis.

This not only points to clear-cut functions for Cx43 in

intestinal physiology, but also in its morphology [111].

Recently, Cx43-based hemichannels have been found to

mediate calcium responses in enteric glia of mouse colon,

which equally is critical for modulating colonic motility

and transit [76]. In vitro experiments using cocultures of

rat colonic smooth muscle cells and lumbosacral dorsal

root ganglion neurons showed the establishment of func-

tional Cx43-based gap junctions between these 2 cell

types. Furthermore, mechanistic stimulation of the myo-

cytes increased intracellular calcium concentrations in the

neurons, a signal triggered by IP3, which moves between

neurons via gap junctions [71]. Cx36 is also involved in

intestinal nerve transmission. It is colocalized with nitric

oxide synthase in the myenteric plexus of mouse colon,

suggesting a role for gap junctions in inhibitory nitrergic

enteric neuronal activity. This is further substantiated by

the notion that Cx36 knockout mice exhibit modified

spontaneous contractility properties and altered responses

to electrical field stimulation and cholinergic agonists in

the gut [112]. Besides conveying electrical signals, Cx43

represents an important component of the protective innate

immune response of the intestinal epithelium. Activation

of Toll-like receptor 2 indeed modulates Cx43 expression

and increases GJIC in intestinal epithelial cells, thereby

controlling their barrier function and restitution during

acute and chronic inflammatory damage. This enhances

mucosal homeostasis between commensals and hosts

[113]. In addition, gap junction activity is critical for the

establishment of oral tolerance by antigen-presenting cells

in the intestine. Specifically, CX3CR1? macrophages take

up fed antigens in the duodenum, which are subsequently

transferred to CD103? dendritic cells via Cx43-based gap

junctions for further antigen presentation [64]. Connexins

also seem to stabilize intestinal vasculature, since Cx37

and Cx40 knockout mice exhibit hemorrhages in gas-

trointestinal tissue with pronounced blood vessel dilatation

and congestion [114]. Although solid scientific evidence is

currently lacking, channels composed of Panx1 have been

proposed to control colonic motility, secretion and blood

flow [14].

Physiological functions of connexin and pannexin

signaling in the liver

Hepatic connexin expression patterns drastically alter

during liver development. Early hepatic progenitor cells

express Cx43 and switch to Cx26, but especially to Cx32,

during differentiation into hepatocytes [115–117]. Both

Cx26 and Cx32 become measurable in the late stages of

gestation and culminate 1 week postpartum, with Cx26

being mainly located periportally [90]. This coincides with

the establishment of the glucagon receptor zonation pat-

tern, which is particularly present in perivenous

hepatocytes [89]. Curiously, glucagon itself is mainly

detectable in the periportal area and enhances Cx26 gene

transcription [118]. Therefore, the Cx26 zonation pattern in

the liver is thought to be controlled at the transcriptional

level by hormonal stimuli [90, 118]. With respect to liver

vasculature, Cx37 and Cx40 are expressed in early hepatic

arteries and portal veins, while Cx43 is detected in portal

veins, but not in hepatic veins, during fetal mouse liver

development [87].

Gap junctions are indispensable for maintaining the

metabolic competence of the adult liver. This has been well

exemplified for glycogenolysis. Disintegration of glycogen

to glucose is triggered by hormonal and neuronal stimuli

and is predominantly performed by periportal hepatocytes

[119, 120]. In fact, Cx32-based gap junctions between

hepatocytes underlie the propagation of the glycogenolytic

response from the periportal to the pericentral acinar pole

by controlling the intercellular exchange of IP3. The latter

activates calcium release from the endoplasmic reticulum,

subsequently causing calcium waves throughout the acinus

[119, 121]. In support of this is the finding that Cx32

knockout mice show decreased blood glucose levels upon

glycogenolytic stimulation [120, 122]. Similarly, Cx43-

containing gap junctions facilitate the spread of calcium

waves necessary for ductular secretion from biliary

endothelial cells and thus bile formation [123, 124]. Bio-

transformation capacity also depends on the establishment

of gap junctions consisting of Cx32 between hepatocytes.

Chemical induction of cytochrome P450 1A1/2 and 2B1/2

in rat parallels the downregulation of pericentral Cx32

protein levels [125–127]. This is believed to reflect a

defense mechanism to restrict the intercellular trafficking

of reactive intermediates that have been generated in bio-

transformation reactions [125]. Furthermore, hepatocellular

gap junctions govern several other vital functional pro-

cesses in the liver, such as albumin secretion and ammonia

detoxification [128].

During liver regeneration upon partial hepatectomy in

rodents, increased GJIC is observed in the G1 phase of the

cell cycle, followed by a steep decrease upon initiation of

DNA synthesis. These alterations are reflected at the level

2814 M. Maes et al.
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of Cx32 expression and to a lesser extent in Cx26 pro-

duction, while Cx43 seems unchanged [129–131].

Although gap junctions are obviously involved in liver cell

growth, their role still is a matter of debate. Indeed, inhi-

bition of the p38 mitogen-activated protein kinase pathway

prevents reduction in Cx32 expression, but does not affect

hepatocyte proliferative activity in the regenerating rat

liver [132]. This suggests that downregulation of GJIC may

occur independently of liver cell proliferation. Hepatocel-

lular proliferative activity was also found unaltered in the

regenerating liver of Cx32 knockout mice, yet the extent of

synchronous initiation and termination of DNA synthesis

became decreased [131]. Based on this observation, GJIC

seems permissive to hepatocyte cell cycling upon mito-

genic stimulation, rather than furnishing a decisive liver

cell growth signal. Thus, gap junction closure may support

the functional segregation of metabolic pools in dividing

liver cells from their quiescent neighbors to avoid home-

ostatic imbalance [129, 133]. In contrast to this is the view

that gap junctions fulfill much more determinate functions

in liver cell cycling, in particular by controlling the inter-

cellular trafficking of critical growth mediators, such as

cAMP [134, 135].

The vast majority of research efforts to elucidate the role

of connexin signaling in liver cell death thus far have been

performed in vitro. During the early stages of experimen-

tally induced apoptosis in cultured liver cells, both Cx43

expression and gap junction activity are promoted. Most

likely, transiently enhanced GJIC is necessary for the

propagation of apoptotic signals, such as calcium ions.

Upon further progression of cell death, gap junction

activity deteriorates and disappears between apoptotic

bodies. This may serve the reduction of the flux of toxic

metabolites, such as nitric oxide and superoxide ions, and

hence the protection of living cells [136]. Interestingly,

accumulating evidence shows that connexin hemichannels,

rather than gap junctions, are involved in liver cell death.

Upon induction of Fas-mediated apoptosis in cultured

primary hepatocytes, GJIC rapidly declines, which is

associated with a decay of the gap junctional Cx32 protein

pool. Simultaneously, levels of newly synthesized Cx32

protein increase and gather in a hemichannel configuration.

This becomes particularly evident towards the end stages

of the cell death process. Subsequent experiments showed

that Cx32-based hemichannels support the apoptotic-to-

necrotic transition in hepatocytes [29]. Furthermore, Cx43

signaling, also involving hemichannels, was found to

facilitate the onset of spontaneous apoptosis in primary

hepatocyte cultures [30]. Cx43 hereby interacts with

mitochondrial proteins [137], as also described for hepatic

Cx32 [92]. As a matter of fact, connexin hemichannels not

only occur at the plasma membrane surface, but also reside

at other subcellular locations, such as at mitochondria,

where their functions have been linked to cell survival [92,

138–140]. In recent years, pannexin channels have been

identified as mediators of apoptotic processes [141–143].

Panx1 is known to colocalize with the P2X7 receptor and to

form a so-called death receptor complex. Stimulation of the

P2X7 receptor, such as mediated by ATP, is believed to

trigger the opening of Panx1-based channels [144–146].

Furthermore, Panx1 is a substrate for caspase cleavage,

resulting in the formation of an open channel and the

release of ‘‘find me’’ signals, including ATP and uridine

triphosphate, at the earliest stages of cell death to recruit

phagocytes [141, 143]. Although evidence is lacking thus

far, there are indications that this also takes place in the

liver [18, 20].

Conclusions and perspectives

It has become clear that connexins and pannexins are

crucial to maintain digestive homeostasis. GJIC is indis-

pensable during digestive embryogenesis [106, 107] and

alterations in connexin expression have been described

during gastric cell and hepatocyte differentiation [41],

suggesting an important role in cell maturation. Cellular

communication through gap junctions is equally a major

driver of gastrointestinal homeostasis by controlling pro-

cesses such as gastroduodenal [52] and gut motility [66,

110], gastric acid secretion [34], gastric cytoprotection [40,

42], intestinal epithelial barrier function [108] and intesti-

nal innate immune defense [113]. Similarly, GJIC

underlies critical hepatic functions, including xenobiotic

biotransformation [125–127], glycogenolysis [119–122],

bile secretion [123, 124], ammonia detoxification and

plasma protein synthesis [128]. In contrast to gap junctions,

connexin hemichannels and pannexin channels seem to be

mainly, but not solely, involved in pathological processes

[14, 26–30]. Nonetheless, some physiological functions

have been attributed to these channels. In particular, con-

nexin hemichannels are involved in the modulation of

colon motility and transit [76], while pannexin channels

seem to participate in the control of colonic motility,

secretion and blood flow [14]. However, their functional

relevance in digestive homeostasis largely remains to be

established. A prerequisite to further clarify the role of

connexin hemichannels and pannexin channels is the

development and use of specific tools to study these par-

ticular channel types. In this context, most, if not all, of the

presently used inhibitors of connexin hemichannels and

pannexin channels also suppress gap junctions [147]. Great

expectations now lie with peptides that reproduce sequen-

ces of the primary connexin and pannexin protein structure,

as they suppress connexin hemichannel and pannexin

channel activity, respectively, without affecting the GJIC
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[148–150]. Further research using such tools will

undoubtedly shed more light on the involvement of con-

nexin and pannexin signaling in digestive homeostasis.
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