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Abstract

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic
and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and
chemokine responses can be life threatening and lead to organ damage over time. Studying such
patients has revealed genetic defects that have helped unravel key innate immune pathways,
including excessive IL-1 signaling, constitutive NF-xB activation, and, more recently, chronic
type | IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory
cytokines have inspired the use of anticytokine-directed treatment approaches that have been life
changing for many patients and have led to the approval of IL-1-blocking agents for a number of
autoinflammatory conditions. In this review, we describe the genetically characterized
autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive
clinical phenotypes and that continue to inspire the search for novel treatment targets, and we
provide a conceptual framework for classification.
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1. INTRODUCTION

Autoinflammatory diseases are immune dysregulatory conditions that typically present in
early childhood with fever and disease-specific patterns of organ inflammation. In 1999,
Daniel Kastner proposed the term and concept of “autoinflammatory diseases,” indicating
that innate immune dysregulation may drive the clinical phenotype of two conditions caused
by mutations in MEFV/pyrin and the TNFRSF1A/TNF receptor type 1 (TNFR1): familial
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Mediterranean fever (FMF) and TNF receptor—associated periodic syndrome (TRAPS) (1).
This concept has facilitated the understanding of a growing number of diseases for which
genetic causes have since been identified and validated the role of innate immune
dysregulation in causing autoinflammatory diseases. Over the last 15 years, disease-based
gene discovery and basic research have gone hand in hand in deciphering the molecular
mechanisms that lead to excessive innate immune responses and cause autoinflammatory
phenotypes, and they have provided us with novel therapeutic targets that allow us to
effectively treat some of these conditions. In this review, we provide an overview of the
currently known genetically defined autoinflammatory syndromes, provide insights into
their pathogenesis, and propose an extended pathogenesis-based classification system.

2. DISCOVERY OF AUTOINFLAMMATORY DISEASES CONTRIBUTES TO
THE DISCOVERY OF INNATE IMMUNE PATHWAYS

The discovery of extracellular (mostly membrane-bound) and intracellular specialized
pattern-recognition receptors (PRRs) that activate innate immune responses, validated the
conceptual framework that was postulated by Charles Janeway (2) over 20 years ago and
uncovered pathways that constitute innate immunity. These receptors are core components
of danger sensing of conserved microbial pathogen-associated molecular patterns (PAMPS)
and largely nonmicrobial danger signals referred to as damage-associated molecular patterns
(DAMPs) (3). The extracellular receptors/sensors are mostly located on the cell surface and
include most Toll-like receptors (TLRS) and the C-type lectin receptors (CLRs). The
intracellular sensors are mainly located in the cytoplasm and subcellular organelles and
vacuoles and include NOD-leucine-rich repeat proteins (NLRs); the AIM2-like receptors
(ALRs); the RIG-I-like receptors/helicases (RLRs/RLHSs); and human TLR3, 7, 8, and 9.
These intracellular receptors form the cell-intrinsic surveillance system (reviewed in 4-6).
Collectively, the extracellular and intracellular receptors coordinate cell and tissue responses
to eradicate the inciting danger and restore tissue integrity and homeostasis (reviewed in 6).

Discovery of Cytoplasmic Pattern-Recognition Receptors (NLRs and RLRS) in
Autoinflammatory Diseases

The early history of gene discovery in autoinflammatory diseases is marked by the
identification of genetic causes in three such intracellular sensors/PRRs. In 1997, the same
year the first mammalian TLR, TLR4, was discovered (7), two consortia identified
mutations in the MEFV gene, which encodes the intracellular sensor pyrin/marenostrin, as
the cause for FMF (8, 9). 2001 marked the discovery of mutations in the first two NLRs
(10): Hal Hoffman (11) published his finding that gain-of-function mutations in NLRP3
cause two conditions, familial cold autoinflammatory syndrome (FCAS) and Muckle-Wells
syndrome (MWS), and sporadic de novo mutations in the same gene cause neonatal-onset
multisystem inflammatory disease (NOMID)/chronic infantile neurologic cutaneous and
articular (CINCA) syndrome (12, 13); and gain-of-function mutations in NOD2/CARD15
were shown to cause another autoinflammatory disease, Blau syndrome (14).

In 2002, John Bertin’s group (15) found that an adaptor protein, ASC (apoptosis-associated
speck-like protein containing a CARD), linked NLRP3 to procaspase-1 via homotypic
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interactions and that this complex was important for lipopolysaccharide (LPS)-induced
caspase-1 activation and IL-1p cleavage. Jurg Tschopp (16) initially and fully characterized
the components forming this complex using the NLRP3 homolog, NLRP1, and named the
complex the inflammasome.

The discovery of the molecular link between NLRP3 and IL-1 led to the development of
clinical studies using IL-1-blocking agents, starting in 2002. NLRP3, NLRP1, NLRC4,
AIM2, and MEFV are the five currently known IL-1-activating inflammasomes. Mutations
in three of the genes encoding for the inflammasome components, NLRP3, NLRC4, and
MEFV, are the causes of monogenic autoinflammatory diseases that are ameliorated with
IL-1-blocking treatments.

Activation of the inflammasomes occurs after stimulation through (mostly bacterial) PAMPs
or a number of intracellular triggers/stressors, which results in caspase-1 and IL-1f3 and
IL-18 activation. Similarly, antiviral immunity is mediated by intracellular sensors that
recognize RNA and DNA nucleotides. 2004 marked the discovery of the first two
cytoplasmic RNA sensors, the homologous helicases RIG-1 and MDAS (melanoma
differentiation—associated gene 5). This novel PRR group was termed RIG-I-like receptors
(RLRs) (5, 17, 18). Most recently, the discovery that the enzyme cGAS [cyclic guanosine
monophosphate (GMP)-adenosine monophosphate (AMP) synthase] is activated by
immunostimulatory DNA, catalyzes the formation of the second messenger cGAMP (cyclic
GMP-AMP), and activates the adaptor molecule STING (stimulator of interferon genes)
established the molecular mechanism that links DNA sensing to the production of IFN-
(19). Studies published in 2014 found that gain-of-function mutations in IFIH1 (encoding
MDAJ5) (20) and the adaptor molecule TMEM173/STING (21) lead to constitutive
production of type I IFNs, expanding the array of cytokines associated with
autoinflammatory diseases.

The discovery of a growing number of intracellular sensors and their molecular triggers may
ultimately explain the still mysterious nature of the disease flares that in a disease-specific
fashion can be triggered by infections, cold exposure, immunizations, psychological stress,
or mechanical injury.

A growing number of genetic mutations affect enzymes or molecular pathways that result in
the accumulation of molecular products that disturb cell homeostasis and thus generate cell
stress. The exploration of pathways that couple intracellular stress and activate inflammatory
mediators is a challenging area of ongoing investigation.

Disease-Causing Mutations Affect Innate Immune Components

One way of organizing the genetic defects that cause autoinflammatory diseases is by the
component of the innate immune response they affect (22). Either they (a) affect
intracellular sensor function, (b) lead to the accumulation of intracellular triggers that cause
cell stress and activate intracellular sensors, (C) cause loss of a negative regulator of
inflammation, or (d) affect signaling molecules that upregulate innate immune cell function
(Figure 1, Table 1).
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Increased intracellular sensor/pattern-recognition receptor function—A number
of disease-causing mutations lead to intrinsic hyperactivity of a PRR. Although no single
mutation in a cell-surface PRR has been found to cause an autoinflammatory phenotype so
far, a number of gain-of-function mutations in cytoplasmic sensors or their adaptor
molecules have been identified (Table 1). These include proteins that form IL-1-activating
inflammasomes (MEFV and the NLRs NLRP3 and NLRC4) and an NLR that does not form
an inflammasome (NOD?2). Recently gain-of-function mutations in an IFN-pathway-
activating RLR, MDAD5, and the adaptor molecule STING, as well as an adaptor associated
with NF-xB activation (CARD14) were found to be disease causing.

Accumulation of intracellular stressors that trigger pattern-recognition
receptor activation—A growing number of mostly autosomal recessive loss-of-function
mutations or mutations that cause haploinsufficiency cause autoinflammation via inducing
cell stress or death. These mutations result in (a) defective enzymes that cause accumulation
of unprocessed substrates, (b) accumulation of misfolded proteins, (c) cytoskeletal migration
defects (possibly; 23), (d) generation of oxidative damage, or (€) accumulation of
endogenous nucleotides; all of these can trigger an intracellular stress response. The
resulting inflammatory responses may involve a number of proinflammatory cytokines or
predominantly a single inflammatory mediator. The inflammatory pathways resulting from
these conditions are still poorly characterized. The various defects that lead to
autoinflammatory phenotypes are listed in Table 1. The best-studied triggers of cell stress
are coupled to activation of IL-1 inflammasomes (24), but an increasing number of cell
stressors that activate type | IFN pathways are being described (discussed in detail in
Section 4).

Loss of a negative regulator resulting in inability to attenuate proinflammatory
cytokine responses—The inability to attenuate and/or shut down an inflammatory
cytokine response and restore homeostasis can cause autoinflammation. Mutations resulting
in loss of the IL-1 receptor antagonist (IL-1Ra) or the IL-36 receptor antagonist (IL-36Ra)
illustrate this mechanism. If untreated, patients with deficiency of the IL-1Ra (DIRA) can
develop a potentially fatal systemic inflammatory response syndrome (SIRS). Replacement
with recombinant IL-1Ra restores inflammatory remission (25, 26). Another example is the
inability of the anti-inflammatory cytokine, IL-10, to signal through its receptor leading to
systemic inflammation and severe early-onset inflammatory bowel disease (IBD) (27).
These conditions have provided unequivocal evidence of the impact of single-cytokine
dysregulation as the cause of autoinflammatory disease phenotypes. Lastly, mutations
altering the ability of cytotoxic cells to induce cell death result in failure to terminate
macrophage and dendritic cell activation and cause macrophage activation syndrome
(MAS).

Increased signaling through receptors controlling innate immune cell function
—Activating or loss-of-function mutations in signaling molecules that regulate innate
immune cell receptor and cell function [e.g., phospholipase Cy2 (PLCv2), lyn kinase] cause
another group of disorders with a broader spectrum of clinical disease manifestations.
Mutations often affect immune receptor signaling of both, innate and adaptive immune cells,
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and patients may present with overlapping clinical features of autoinflammation, mild
immunodeficiencies, and/or autoimmunity.

Classification of Autoinflammatory Diseases

Grouping and classifying autoinflammatory diseases is a work in process that will need to be
refined as more information on the pathogenesis of these diseases becomes available.
However, critical insights into the role of a key inflammatory cytokine pathway have come
from clinical studies using anticytokine therapies (Table 2) that allow for classification of
the autoinflammatory diseases on the basis of the predominant proinflammatory cytokine or
inflammatory pathway responsible for the disease (Figure 1a). First, the immediate, and in
many patients complete, responses to IL-1-blocking therapies have clinically validated the
concept that IL-1 is a major driver of some autoinflammatory diseases. Second, although
data on cytokine dysregulation in non-IL-1-mediated diseases are less complete, an
emerging role for IFN dysregulation combined with clinical similarities between these
conditions and preliminary treatment data provides sufficient evidence for an IFN-mediated
group of autoinflammatory diseases. A third group of heterogeneous conditions have genetic
defects that lead to increased activation of NF-xB. A fourth group of disorders is organized
around the shared finding of uncontrolled macrophage activation. Finally, a number of
diseases cannot be classified on the basis of a pivotal inflammatory mediator because of
insufficient data or because the genetic defect may affect multiple cytokines and/or
inflammatory mediator pathways.

3. IL-1-MEDIATED AUTOINFLAMMATORY DISEASES (GROUP 1)

The conditions listed below have demonstrated significant clinical responses to IL-1-
inhibiting therapies (24) that were pioneered in patients with the cryopyrin-associated
periodic syndromes (CAPS) spectrum, including FCAS, MWS, and NOMID. Complete
clinical responses to IL-1-blocking agents are also seen in the monogenic autoinflammatory
bone diseases DIRA and Majeed syndrome. The classic autoinflammatory syndromes [FMF,
TRAPS, hyper-IgD syndrome (HIDS)] have a more variable response to IL-1 inhibition.
Figure 2 shows the component of the immune response that is affected by each mutation in
this group of diseases.

Pathway Overview

IL-1p is the most powerful endogenous pyrogen and a potent recruiter and activator of
neutrophils and macrophages. Its potential to cause systemic and organ-specific
immunopathology in infections (29) and in IL-1-mediated autoinflammatory diseases has
been reported (30). In contrast to its biologic homolog IL-1a, IL-1f requires proteolytic
cleavage by an IL-1 inflammasome to become activated. This process is tightly regulated at
multiple levels. The actions of both IL-1a and IL-1p are further regulated at the receptor
level, where IL-1Ra (encoded by IL1RN) competes for binding (29) and downregulates
IL-1a and IL-1f signaling. Patients with loss of function of IL-1Ra can develop life-
threatening systemic inflammatory response syndrome (SIRS), thus demonstrating the
important role of IL-1Ra in the negative regulation of 1L-1 (25).
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IL-1p release requires two danger signals. Signal one leads to transcription of pro-IL-1f and
varies between cells and triggers. IL-1 activation is best studied in macrophages where
signal 1 is delivered through exogenous triggers, including whole pathogens (such as
Saphylococcus aureus, Listeria monocytogenes, and Candida albicans), PAMPs (such as
LPS, nucleic acids, and muramyl dipeptide), bacterial toxins, and phagocytic events. Signal
2 results in the assembly the NLRP3 inflammasome. Inflammasome formation begins with
the activation of an intracellular sensor. Several NLRs as well as the DNA sensor AIM2 can
induce inflammasome assembly. The NLRP3 inflammasome is by far the best studied, and
its stimuli include a variety of danger signals, including K* efflux, mitochondrial stress/
reactive oxygen species production, and uric acid crystals, among many others (31, 32).
Upon stimulation, NLRP3 overcomes autoinhibition and oligomerizes. The pyrin domains
(PYDs) of the NLRP3 oligomer interact with the PYYDs of the adaptor protein ASC. This
process triggers a prion-like cascade of ASC polymerization that assembles ASC into large
fibers. Through CARD-CARD interactions, ASC polymers recruit multiple caspase-1
molecules and drive autocatalytic activation of caspase-1 in large numbers and with great
speed. This allows for cleavage of inactive pro-IL-1f (and pro-IL-18 at variable levels,
highest in NLRC4 inflammasome activation) into its active form (16, 31). Caspase-1
activation in response to bacterial infections also induces rapid proinflammatory cell death,
termed pyroptosis (33), to kill infected cells. These and observations of the recruitment of
multiple NLR molecules into one inflammasome complex suggest plasticity in
inflammasome formation (23, 34).

The major canonical sources of IL-1f are blood monocytes, tissue macrophages, and
dendritic cells (29), but leukocytes producing IL-1p are found in immunologically privileged
organs, such as the kidney, the heart, skeletal muscle, and the brain, and epithelial cells,
which all have IL-1B-activating inflammasomes (35, 36). IL-1a is expressed at high levels in
lung and intestinal epithelia as well as in spleen and liver. It can be released in response to
cell damage but is also subject to noncanonical regulation through the proteolytic function of
the inflammasome (37). Release of IL-1a may aid in priming by driving transcription of
pro-1L-1p (29).

The effects of IL-1 signaling vary considerably based on cell type, but they include
induction of TNF-a, inducible nitric oxide synthase, COX-2, prostaglandin E2, nitric oxide,
type 2 phospholipase A, and pro-1L-1f, which can then perpetuate an autocrine
amplification circuit. Understanding the cell- and organ-specific sources and effects of IL-1,
particularly in human cells, will be critical to understanding the organ-specific disease
manifestations in patients with autoinflammatory syndromes. The following sections group
IL-1-mediated diseases based on the component of the immune response affected by the
mutation: increased intracellular innate immune sensor function, generation of intracellular
cell stress, or absence of a negative regulator.

Increased Intracellular Sensor/PRR Function

Cryopyrin-associated periodic syndromes (CAPS)—The three historically
distinctly reported conditions—FCAS, MWS, and NOMID/CINCA—that constitute the
disease spectrum of CAPS are all caused by gain-of-function mutations in NLRP3/CIASL.
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These conditions are rare, with an estimated prevalence of 1-2 per 1 million. Both germline
and somatic mutations can cause all forms of CAPS. FCAS and MWS mutations are
frequently autosomal dominant (39), and the most severe phenotype, NOMID/CINCA, is
usually caused by sporadic mutations (Table 1) (12, 13). Of the more than 130 disease-
causing mutations identified in NLRP3/CIASL, 90% are located in the regulatory NACHT
domain (38, 39). Of the patients without germline mutations, about 70% have somatic
NLRP3 mosaicism (40).

In general, all patients with CAPS present with episodes of fever, neutrophilic urticaria,
conjunctivitis, arthralgia, and elevated acute-phase reactants (41) (Table 3). Whereas FCAS
symptoms are limited to the mentioned disease manifestations, MWS and NOMID patients
can develop permanent hearing loss, and NOMID patients also develop joint and central
nervous system damage early in life (30). Chronic cochlear inflammation induces atrophy of
Corti cells, resulting in permanent hearing loss. Chronic aseptic meningitis can cause
increased intracranial pressure, hydrocephalus, and papilledema, leading to brain atrophy,
cognitive impairment, optic nerve atrophy, and vision loss (30). One half of NOMID
patients develop a deforming arthropathy that results in abnormal epiphyseal calcification,
cartilage overgrowth, and joint deformities. Premature patellar ossification and patellar
overgrowth are typical findings in NOMID (42).

Despite clinical heterogeneity, all patients with FCAS, MWS, or NOMID respond
dramatically and invariably to IL-1 blockade, although higher dosages are needed to treat
patients with NOMID compared to those with FCAS (24).

Peripheral-blood-derived monocytes from patients with CAPS spontaneously secreted active
IL-1B, whereas those from controls did not (43). Cyclic AMP (cAMP) can bind directly to
the NLRP3 NACHT domain, maintaining the autoinhibited state (44). Disease-causing
NLRP3 mutations cause reduced binding of cAMP and can thereby enable spontaneous
oligomerization and NLRP3 inflammasome activation (45). Consistent with this molecular
mechanism, patients with CAPS do not require signal 2, and inflammasome activation with
LPS alone results in rapid maximal release of 1L-1f (46). Released IL-13 may result in an
autocrine self-amplification loop by continuing to prime its own transcription (29).

A recent discovery may shed light on the enigma that low-grade somatic mosaicism, with as
few as 5% of hematopoietic cells carrying the NLRP3 mutation, results in a severe NOMID
phenotype (40). In stimulated macrophages or in macrophages carrying a NOMID-
associated NLRP3 mutation, inflammasome particles can be released into the serum, retain
enzymatic activity in the extracellular environment, and, upon being phagocytosed by
neighboring macrophages, transfer inflammasome activity to unstimulated/wild-type cells
(47). Oligomeric ASC particles, possibly inflammasomes, were in fact found in sera of
patients with active CAPS but not patients with other inherited autoinflammatory diseases,
thus providing a potential disease-amplifying mechanism that could explain the severe
clinical disease manifestations caused by low-level somatic mosaicism.

Familial Mediterranean fever (FMF)—FMF is the most prevalent monogenic
autoinflammatory disease, affecting more than 100,000 individuals worldwide (48). FMF
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primarily affects eastern Mediterranean populations, including Sephardic Jews, Armenians,
and Arabs of Turkish descent.

FMF is caused by autosomal recessive mutations in the MEFV gene (7, 8), although an
autosomal dominant form has been postulated (49). More than 80 distinct missense
mutations have been identified, the majority in exon 10, which encodes the B30.2 domain of
the molecule. The most common and severe mutations are M680I, M694V, M694l, and
V726A (8, 39). Most patients have their first attack in childhood, with flares typically lasting
one to three days and recurring variably (from weekly to once every few years), and with
symptom-free intervals between flares (50, 51). Flares include fever, generalized peritonitis,
and, less frequently, nonerosive oligoarthritis. Pleuritis, pericarditis, scrotal pain, and, rarely,
aseptic meningitis can occur (52). Skin rashes including erysipelas-like erythema are rare
(50, 51). With ongoing chronic inflammation, FMF patients often develop systemic
amyloidosis that can lead to renal failure.

Colchicine has been used since the 1970s to treat and prevent flares and to prevent the
development of amyloidosis, although its precise mechanism of efficacy remains unknown
(53). IL-1 blockade is efficacious for FMF but is reserved for colchicine-refractory patients
(54).

Despite the early-recognized association between FMF and autoinflammatory disease, the
mechanisms linking pyrin mutations to FMF remain largely unknown. MEFV encodes pyrin
(also called TRIM 20), part of a 41-member subgroup of the tripartite motif (TRIM)
superfamily that contains a TRIM (RING domain, B-box zinc fingers, and a coiled-coil
domain) and a B30.2/SPRY domain. Pyrin is the only family member with an N-terminal
PYD instead of a RING domain. Most of the FMF-causing mutations affect surface amino
acids on protein-interacting modules of the B.20.2/SPRY domain (55). The functions of
wild-type and mutated pyrin may vary between different cells. TRIM members might play a
key role in restricting retroviral progression, and also in regulating PRR-mediated innate
immune responses (56, 57).

Pyrin is the only group member that can bind to ASC (58). In macrophages, wild-type pyrin-
ASC conjugates may act as a negative regulator on NLRP3 inflammasome assembly (58).
Disease-associated mutations are thought to produce less effective negative regulators,
leading to a net increase in NLRP3 inflammasome activity (59). Consistent with this
hypothesis, pyrin-deficient mice have increased caspase-1 activation, increased I1L-1§
maturation, and defective macrophage apoptosis (60).

New data on the role of pyrin suggest that it can sense dynamic signals, such as membrane
disruptions leading to inflammasome activation. In a search for the physiologic trigger for
the pyrin/ASC inflammasome, it was found that pyrin can be activated through sensing the
glucosylating effects of Clostridium difficile exotoxins A and B on small GTPases of the
Rho family. Rho GTPases are a group of proteins that modulate and regulate the timing of
cell division and the formation of lamellipodia and filopodia in migrating cells, like
neutrophils and macrophages. Posttranslational glycosylation, as induced by C. difficile
toxin and other mechanisms, leads to GTPase inactivation and the inability to initiate actin
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cytoskeleton polymerization (61). These data suggest that pyrin may be a specific immune
sensor for bacterial modifications of Rho GTPases by glucosylation, adenylylation, ADP-
ribosylation, and deamidation that alter their ability to initiate cytoskeletal rearrangements
(62). Interestingly, recombinant pyrin binds microtubules in vitro and colocalizes with actin
filaments, suggesting the hypothesis that pyrin regulates inflammation by sensing
cytoskeletal changes in granulocytes and monocytes (63, 64). These studies may ultimately
shed light on the surprising efficacy of colchicine in FMF, which interferes with leukocyte
migration and leukocyte adhesion by altering the number and distribution of selectins on
endothelial cells and neutrophils (65, 66).

NLRC4-related macrophage-activation syndrome (NLRC4-MAS)—Activating
heterozygous mutations in the inflammasome component NLRC4 were recently reported to
cause recurrent fevers and severe systemic inflammation reminiscent of MAS (67, 68). The
MAS phenotype includes hepatitis, splenomegaly, cytopenias, and coagulopathy and is
discussed in detail in Section 6. Two mutations in four patients have thus far been identified,
with both mutations arising de novo in the NLRC4 NACHT domain. Three of these patients
presented with enterocolitis, and recurrent MAS flares developed in two patients soon after
infancy and in one patient later in life (67, 68). Disease manifestations were conserved
between patients, but there was significant variability in disease severity, which ranged from
intermittent, mild flares to mortality in early infancy. Although these patients were
somewhat responsive to corticosteroid immunosuppression, IL-1 inhibition may provide
substantial benefit (67).

Like NLRP3 (the gene mutated in CAPS), NLRC4 encodes an intracellular innate immune
sensor that, upon activation, oligomerizes and nucleates a caspase-1 inflammasome,
resulting in maturation of IL-1f and IL-18; release of DAMPs, such as IL-1a and HMGB1,;
and initiation of pyroptosis (4). Like CAPS mutations, the mutations resulting in NLRC4-
MAS occur in the NACHT domain and result in spontaneous inflammasome formation,
possibly by impairing ADP-binding and thus destabilizing the autoinhibited state (67, 68). A
number of factors, however, may explain differences in the clinical phenotype between
NLRC4-MAS and CAPS. First, NLRC4 utilizes an adaptor molecule, NAIP, to recognize
intracellular flagellin and components of bacterial secretion systems, whereas the various
activators of NLRP3 are activated by cellular damage or stress in the absence of an adaptor
molecule (69). Second, there are important differences in the cellular expression of NLRC4
versus NLRP3. NLRP3 is highly expressed in conventional dendritic cells, monocytes, and,
to a lesser extent, macrophages and neutrophils, and NLRC4 is expressed in monocytes and
macrophages and also in intestinal epithelia. Third, whereas hyperactivity of either NLRP3
or NLRC4 results in excessive IL-1f secretion and pyroptosis, only NLRC4 mutations cause
constitutive I1L-18 hypersecretion (67, 68). Accordingly, NLRC4-MAS patients do not
develop the neutrophilic urticaria seen in CAPS, but they can develop enterocolitis and
MAS, and they have extremely high circulating levels of 1L-18 that persist even during
clinical quiescence. A recent report described a family with a mild FCAS-like phenotype
associated with a dominant NLRC4 NACHT domain mutation, suggesting overlap between
NLRP3- and NLRC4-mediated phenotypes in certain genetic or environmental backgrounds
(70). NLRC4-MAS appears to respond to IL-1 inhibition, similar to the many other IL-1-
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mediated autoinflammatory conditions. The interplay role of chronic I1L-18 exposure, IL-1,
and MAS is discussed in more detail in Section 6.

Generation of Intracellular Stress

Hyper-lgD syndrome (HIDS)/mevalonate kinase deficiency (MKD)—HIDS is
caused by autosomal recessive mutations in the MVK gene (mevalonate kinase) (71, 72).
About 30 disease-causing variants have been identified, but most patients with HIDS carry
at least one allele with the V3771 (73) or 1268T substitution (73). Most patients experience
their first HIDS attack before one year of age. Episodes last three to seven days and occur
every four to six weeks. Other symptoms include polyarthralgia or nonerosive arthritis of
large joints; cervical lymphadenopathy; abdominal pain; vomiting; diarrhea; and variable
skin lesions, including maculopapular, urticarial, nodular, and purpuric rashes. Childhood
vaccinations can precipitate attacks. Treatment includes NSAIDs and chronic or intermittent
use of IL-1-blocking agents, including anakinra (74, 75) and canakinumab (75). TNF
inhibition with etanercept (76) may also ameliorate the disease in some patients.

The HIDS-causing mutations impair the enzymatic activity of mevalonate kinase (71, 72,
77), a key enzyme in the cholesterol synthesis pathway. Mutations in MVK cause depletion
and shortage of farnesyl pyrophosphate and geranylgeranyl pyrophosphate: intermediates for
isoprenoid synthesis and substrates used for protein prenylation (78). Flares are thought to
be caused by uncontrolled release of IL-1f as a consequence of insufficient geranylgeranyl
pyrophosphate generation (79). Exogenous addition of geranylgeranyl pyrophosphate to
patient cells or cell cultures restores the normal regulation of IL-1f secretion. In a surprising
link with the recent pyrin biology, reduced prenylation due to isoprenoid shortage leads to a
decrease in Rho GTPase activity and a RhoA-dependent increase in small Racl GTPase
activity and IL-1p hypersecretion. Inhibition of Racl in THP-1 monocyte cultures prevented
IL-1p overproduction driven by impaired cholesterol biosynthesis (80). In the HIDS models,
RhoA inactivity increased IL-1f gene transcription (signal 1) and thus provided a
mechanism for NLRP3 or other inflammasome activation that is triggered by inactivity of
Rho GTPases (81).

TNF receptor—associated periodic syndrome (TRAPS)—TRAPS is caused by
autosomal dominant mutations in the TNFRSF1A gene, which encodes TNFR1. More than
100 mutations have been found to cause TRAPS, nearly all in the extracellular domain of
the TNF receptor (39). Clinical manifestations usually present in childhood and adolescence
but present in adulthood in about 20% of patients. Flares are prolonged, with a mean length
of 14 days but sometimes lasting up to 4 weeks.

Presenting features include recurrent fever, abdominal pain, pleuritis, myalgias, arthralgias,
periorbital edema, and conjunctivitis. Myalgias caused by a monocytic fasciitis can also be
present (82). Neurological manifestations include headaches and, rarely, aseptic meningitis,
optic neuritis, and behavioral alterations. In some centers IL-1 blockade has become the
treatment of choice (83, 84), but TNF inhibition is effective in some cases (85), suggesting
that more than one cytokine/inflammatory mediator may be involved in causing the disease.
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TNFR1 is ubiquitously expressed on most cell types and has a cytoplasmic death domain
that signals through two pathways, one leading to NF-kB activation and inflammation (86),
and the other leading to caspase activation and apoptosis. Mutations in cysteines contained
in the first two cysteine-rich extracellular domains result in the most severe phenotypes and
affect protein structure and folding (87). Mutated TNFR1 molecules fail to bind to TNF and
are not cleaved into a soluble form that can sequester free TNF-a; instead, they accumulate
in the endoplasmic reticulum (ER). Meanwhile, cell surface TNFR1 levels of both wild-type
and mutant protein are greatly reduced (88, 89). TRAPS patient cells are
hyperinflammatory, as they spontaneously activate JNK and p38 MAP kinases (MAPKS)
(89) and show exaggerated, TNF-independent mitochondrial reactive oxygen species
production that may activate the IL-1 pathway (90, 91). This proinflammatory state may be
further potentiated by autocrine TNF signaling through the remaining wild-type TNF
receptor that is expressed on the cell surface (Figure 1). Interestingly, although the mutant
TNFR1 in TRAPS induces inflammatory responses within the cell, it requires cooperation
with the wild-type receptor to produce the clinical manifestations of TRAPS (89). These
results may explain the partial efficacy of TNF blockade in this syndrome, which would
only affect signaling through intact TNFR1s. Accordingly, a unique TRAPS mutation near
the metalloproteinase cleavage site, p.\V173D, results in an atypical form of disease that is
strikingly responsive to TNF blockade. This mutation results in reduced shedding of the
receptor and may contribute to prolonged TNF signaling (92).

Majeed syndrome—Majeed syndrome is an exceedingly rare autosomal recessive
disorder caused by mutations in LPIN2 (93). Majeed syndrome is characterized by early-
onset recurrent noninfectious osteomyelitis, congenital dyserythropoietic anemia, and
neutrophilic dermatosis. Sterile osteomyelitis develops in the first two years of life; it can
present unifocally but becomes multifocal over time (94). Periodic fevers coincide with bone
flares. Somewhat unexpectedly, IL-1-blocking therapy resulted in complete response in two
patients (95).

The protein lipin-2 associates with the nuclear/ER membrane and has phosphatidate
phosphatase (PAP) enzyme activity. Lipin-2 catalyzes the conversion of phosphatidate to
diacylglycerol, a precursor to the phospholipids found in cell membranes that are essential
for the absorption, transport, and storage of lipids and serve as a reservoir for signaling
molecules. One Majeed mutation, p.S734L, alters a highly conserved serine residue in the C-
LIP domain and leads to loss of lipin-2 PAP activity (96, 97). Cells lacking PAP have
inflammatory responses to exogenous fatty acids, including palmitoleic acid > oleic acid >
palmitic acid (97). This was confirmed in human and murine monocytic cells, where
downregulation of lipin-2 in cells led to JNK-1/c-Jun-mediated hyperproduction of
proinflammatory mediators (TNF-a, IL-6, and CCL-2), when the cells were exposed to
excessive quantities of the saturated fatty acid palmitic acid. Overexpression of lipin-2
blunted this inflammatory response (98). Lipin-1 and -3 are highly expressed in liver and fat,
whereas lipin-2 is the predominant and nonredundant PAP in monocytes. Thus, it is
intriguing to speculate that lipin-2-deficient monocytes might drive the inflammatory
response in Majeed syndrome whereas the redundant PAP function in other cells
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compensates for the reduced or absent lipin-2 function. It is unknown how this mechanism
might lead to inflammasome activation.

Loss of a Negative Regulator

Deficiency of IL-1 receptor antagonist (DIRA)—DIRA is very rare autosomal
recessive disease that exists in communities with founder mutations in ILIRN (99). These
mutations result in loss of function of IL-1 receptor antagonist. DIRA presents in the first
weeks of life with systemic inflammation, pustular skin rashes, and a pathognomonic pattern
of osteomyelitis involving long bones, ribs, clavicles, vertebral bodies, and hips. If
untreated, a third of patients will succumb to the effects of uncontrolled IL-1 signaling.
However, prompt treatment with the recombinant IL-1 receptor antagonist (anakinra) results
in excellent long-term outcomes.

DIRA results from mutations causing absent or inactive IL-1Ra. In the absence of IL-1Ra,
unopposed signaling through IL-1R leads to hyperresponsiveness of cells to IL-1a and
IL-1B, with overproduction of a host of proinflammatory cytokines, chemokines, and other
mediators (25, 26, 99).

4. IFN-MEDIATED AUTOINFLAMMATORY DISEASES (GROUP 2)

Pathway Overview

Besides their antivirus and antitumor effects, INFs have broad immune-modulating
functions, including enhancing the antigen-presentation function of dendritic cells,
promoting T lymphocyte response and B lymphocyte antibody production, and restraining
proinflammatory cytokine production. The critical roles of type I INFs in the pathogenesis
of inflammatory diseases have been increasingly recognized in recent years (100-102). Type
I IFNs signal by binding with type | IFN receptors, which are ubiquitously expressed. The
binding triggers activation of the kinases JAK1 and TYK2, which phosphorylate the
receptors and then in turn recruit and phosphorylate STAT1 and STAT2. The
phosphorylated STAT1 and STAT2, together with IRF9, form the ISGF3 transcriptional
complex, which enters the nucleus and promotes expression of IFN response genes. A
prominent feature of IFN responses is their feed-forward amplification. Many signaling
molecules and transcription factors involved in IFN responses are products of IFN response
genes themselves. Thus, blocking IFN signaling could be an effective treatment strategy for
patients with upregulated IFN signaling (103).

Viral immunity evolved around sensing the presence of DNA or RNA nucleotides, which is
achieved by TLR3, 7, 8, and 9 in the endosomal department and by cytosolic DNA and
RNA sensors. The detection of DNA or RNA by cytosolic sensors results in activation of a
common pathway and recruitment and activation of TBK1, leading to phosphorylation/
activation of IRF3 and transcription of IFN-B. Two known RNA sensors, MDA5 and RIG-I,
both members of the RLR family, signal through the adaptor protein MAVS (mitochondrial
antiviral-signaling protein) (104), a transmembrane protein localized in mitochondria.
MDAD5, RIG-1, and MAVS all have a CARD that allows for homotypic protein-protein
interactions. An increasing number of recognized DNA sensors, including the enzyme
cGAS, signal through the ER-residing protein STING, a critical adaptor molecule that
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activates a shared end pathway to INF signaling. Figure 3 shows the IFN-signaling pathway
with the position of the mutated genes that affect the sensor function or result in the
generation of cell stress that activates the IFN response pathways.

Similar to the regulation of the proinflammatory cytokine IL-1, the production and signaling
of IFNs are tightly regulated (105). Dysregulation of either IFN signaling or its production
has been linked to inflammatory diseases, including Aicardi-Goutiéres syndrome (AGS),
autoimmune diseases such as systemic lupus erythematosus, and a growing number of
conditions that clinically present as autoinflammatory diseases. Below, the proposed IFN-
mediated diseases are grouped based on the component of the immune response that is
affected by the mutation: increased intracellular innate immune sensor function or
generation of intracellular cell stress.

Increased Intracellular Sensor/Adaptor Function

STING-associated vasculopathy with onset in infancy (SAVI)—SAVI is an
extremely rare autoinflammatory disease caused by de novo gain-of-function mutations in
TMEM173, which encodes STING (21), an adaptor protein in the cytosolic DNA-sensing
pathway. Three different missense mutations in eight patients have been detected. Patients
present with severe vasculitis/vasculopathy since birth that affects small dermal vessels,
most severely in distal extremities, leading to vasoocclusion and gangrene and often
requiring amputation. Some of the patients also develop progressive interstitial lung disease,
which can be lethal.

The recent identification of the function of the enzyme cGAS as a DNA sensor and its
enzymatic product cGAMP as a STING ligand greatly advanced our understanding of a
cytosolic DNA-sensing pathway (106, 107). Upon binding of dsSDNA, cGAS is activated
and cGAMP is generated and then binds and activates STING. STING is an ER
transmembrane protein that exists as a dimer independent of ligand; the binding pocket for
CGAMP is located in a cleft between the two monomers (108, 109). The binding of cGAMP
to STING leads to recruitment and activation of TBK1 and subsequently phosphorylation/
activation of IRF3, which promotes IFN-B transcription.

The STING mutations identified in SAVI patients are closely clustered at or near an area
critical for STING dimerization. Six of the eight SAVI cases we have analyzed to date have
the same N154S mutation, and the other two have either a V155M or a V147L mutation.
The mutant proteins form stable dimers. In mutant-STING-transfected HEK293T cells or in
patients’ peripheral blood mononuclear cells (PBMCs), the mutant proteins cause
constitutive IFN-p transcription. As a consequence of the constitutive and/or enhanced IFN-
{3 transcription, a strong IFN response gene signature is detected in the whole-blood RNA of
all SAVI patients. Serum levels of a downstream mediator of IFN, CXCL10, were highly
elevated and STAT1 protein was maximally phosphorylated in SAVI patients. Patient cells
treated in vitro with JAK inhibitor showed suppression of STAT1 phosphorylation.

A unique feature of SAVI is pronounced vasculitis/vasculopathy, which is most prominent
in the distal extremities. The localized severe endothelial inflammation suggests a direct
effect of mutant STING in dermal vasculature. Consistent with that, we found that STING
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was expressed at higher levels in dermal vascular endothelial cells than in umbilical vein
endothelial cells or coronary artery endothelial cells. Furthermore, STING stimulation by
cGAMP activated vascular endothelial cells and caused cell death. STING coordinates
signals from multiple upstream DNA sensors and may be a target for therapeutic
interventions not only for SAVI, but also for a wider variety of IFN-mediated diseases.

Aicardi-Goutiéres syndrome 7 (AGS7)—Gain-of-function mutations in IFIH1
encoding MDAD5, a sensor molecule in the RNA-sensing pathway, lead to both spontaneous
and enhanced ligand-induced IFN- transcription (20). As the clinical presentation is similar
to the other forms of AGS, the disease is further described at the end of the following
section.

Generation of Intracellular Stress

Aicardi-Goutiéres syndrome 1-6 (AGS1-6)—AGS is a rare disease caused by
autosomal recessive mutations in the exonuclease TREX1 (three prime repair exonuclease
1); the ribonucleases RNASEH2A, RNASEH2B, and RNASEH2C; an enzyme with
phosphohydrolase and nuclease activity, SAMHD1; and the dsSRNA-specific adenosine
deaminase ADARL. More recently, autosomal dominant mutations in IFIH1, encoding
MDAJ5, have been observed to cause an AGS-like syndrome (110). Patients with AGS
present with subacute encephalomyelitis mimicking a viral infection in very early infancy
that causes demyelination and neurological decline during a mostly monophasic disease
flare. High levels of IFN-a in the cerebrospinal fluid at the time of flares have been used as
a marker to diagnose these diseases. After the acute phase, most patients follow a
nonprogressive, chronic course, without further neurological decompensation. Patients have
basal ganglion calcifications and severe white matter disease on MRI, and up to 40%
continue to have mostly mild rashes, often including chilblain lesions on hands and feet.
Many patients have low-titer autoantibodies (111), but the contribution of the autoantibodies
to the human disease remains uncertain. The disease may present a true overlap with clinical
features of autoimmunity and autoinflammation (112, 113). There is currently no effective
treatment (Table 1).

The pathogenesis of AGS has recently been extensively reviewed (112, 113). In brief, the
pathogenesis of AGS is best studied for mutations in TREX1. TREX1 is a 3’—5" DNA
exonuclease, and loss-of-function mutations result in accumulation of sSSDNA derived from
endogenous retroelements that are proposed to activate intracellular nucleic acid sensors and
lead to type | IFN production (114). Among trex1 knockout mice, which develop
myocarditis but not the central nervous system manifestations seen in patients with AGS, the
disease can be abrogated in IFN type I receptor knockout animals, thus confirming a critical
role of type | IFN. Loss of STING or cGAS expression also rescued the disease phenotype
in the trex1 knockout mice or abrogated the upregulated expression of IFN response genes
in trex1-deficient murine cells, suggesting a critical role of cGAS/STING in the signaling
pathway (115, 116).

The mechanism by which the other genetic mutations cause AGS is not entirely clear.
RNASEH2B, RNASEH2C, and RNASEH2A are three subunits of the ribonuclease RNASEH2
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complex, which might remove ribonucleotides from RNA/DNA hybrid molecules during the
reverse transcription process of retroelements. SAMHD1 is a dNTP triphosphohydrolase
that might regulate reverse transcription of retroelements by controlling the pool of ANTP.
ADARL1 is an RNA-editing enzyme that catalyzes the hydrolytic deamination of adenosine
to inosine in dsRNA, which is thought to prevent accumulation of RNA and triggering of the
RNA sensors (117). The accumulating endogenous nucleic acids are hypothesized to trigger
nucleotide sensors and type | IFN production. Transcription of retroelements is hypothesized
to be a major source of the nucleic acids (118); activating nucleotides also accumulate in the
process of defective DNA repair and replication (119, 120).

IFIH1 mutations encoding MDADS result in enhanced dsRNA binding and constitutive
activation of the RNA-sensing pathway with increased baseline or ligand-induced IFN
signaling (20); similarly, gain-of-function mutations in STING activate the DNA-sensing
pathway.

PRAAS/CANDLE syndrome—PRAAS/CANDLE (proteasome-associated
autoinflammatory syndromes/chronic atypical neutrophilic dermatosis with lipodystrophy
and elevated temperature) is a rare disease caused by an autosomal recessive mutation in
PSVIB8 and mutations in additional proteasome components. Increased prevalence of
PRAAS/CANDLE in several populations is due to founder mutations: G201V (disease
referred to as Nakajo-Nishimura syndrome) in the Japanese population (121, 122); T75M in
the Spanish, Portuguese, and Latin American populations; and A92T in the Mexican
population. Patients present with systemic inflammation, atypical neutrophilic dermatosis
and lipodystrophy, joint contractures, muscle atrophy, and microcytic anemia (123, 124).
Mortality is high in untreated patients. Because this syndrome is associated with strong
expression of IFN-regulated genes and few treatment alternatives exist, the inhibition of IFN
signaling is investigated as a treatment strategy.

The ubiquitin-proteasome system is the major pathway of protein degradation outside of
lysosomes in cells. Proteasomes are cylindrical structures that consist of four ring-like
protein complexes, each ring containing seven different a-subunits or seven different -
subunits. Three of the f-subunits, 1, p2, and (35, are catalytically active and differ in
substrate specificity. The p5-subunit has chymotrypsin-like activity, the f2-subunit trypsin-
like activity, and the B1-subunit caspase-like activity (125). In hematopoietic cells, the three
catalytically active -subunits are replaced with f1i (PSMB9), f2i (PSMB10), and 5i
(PSMB8) to form immunoproteasomes with increased proteolytic capacities. Although
PSMBS8 expression is constitutive in hematopoietic cells, it can be readily induced in
nonhematopoietic cells by IFN; therefore, the effect of the mutation is not necessarily
limited to hematopoietic cells. The finding that mutations in PSMB8 lead to a severe
inflammatory phenotype in humans was unexpected given that psmb8/Imp7 knockout mice
lack spontaneous development of systemic or muscle inflammation or lipodystrophy (126).

Proteasomes maintain proteostasis as they recognize and dispose of ubiquitinated proteins,
which are often damaged and destined for degradation. All mutations found in patients with
CANDLE reduce proteasome function; in some cases ubiquitinated proteins aggregate in
cells, indicating an imbalance of the proteostasis process in the cells. Impaired proteostasis
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and the resulting stress can lead to cytotoxicity but could also trigger an inflammatory
response. In fact, ATF3 is a transcription factor induced by a variety of stress signals (127).
The unfolded protein response (UPR) is a mechanism that cells employ to cope with ER
stress, and recent evidence shows that it promotes production of proinflammatory cytokines,
including type | IFN. Whether induction of the UPR plays a role in CANDLE and drives
IFN production remains to be investigated (128). Patients with CANDLE present with high
elevation of CXCL10, an IFN-inducible chemokine. STAT1 hyperphosphorylation in
response to IFN stimulation and transcription profiling indicates increased expression of
many IFN-regulated genes in blood from CANDLE patients. Blood and tissue from
CANDLE patients had higher levels of IL-6 than those from healthy controls, and this was
attributed to hyperphosphorylation of p38 (122). However, anti-IL-6 blockade is only
partially effective in CANDLE patients and the IFN signature persists during the treatment,
suggesting that IL-6 is not the primary cause of the disease.

Whereas healthy control cells stimulated with IFN would increase proteasome activity,
CANDLE patients with the genetic defect cannot sufficiently upregulate immunoproteasome
activity, resulting in cell stress that leads to IFN production and amplification of a vicious
cycle of IFN stimulation.

Spondyloenchondrodysplasia with immune dysregulation (SPENCDI)—A
syndrome of bone dysplasia; central nervous system involvement, including cerebral
calcifications; and immune dysregulation was recently associated with loss-of-function
mutations in tartrate-resistant phosphatase (TRAP; encoded by ACP5) (129, 130). These
patients may develop early-onset fevers and a variety of autoimmune features, and the
disease has been associated with a peripheral type | IFN signature (130). The in vitro
abnormalities associated with TRAP implicate innate immune activation, further
highlighting the intersections between autoinflammation and autoimmunity in IFN-mediated
diseases.

5. AUTOINFLAMMATORY DISEASES CAUSED BY INCREASED NF-xB
SIGNALING (GROUP 3)

Pathway Overview

The NF-xB pathway integrates a variety of inflammatory, metabolic, proliferative, and
developmental signals into gene transcription, with effects on cytokine production, cellular
differentiation, metabolism, and various forms of cell death (131). It is involved in cellular
responses to stimuli such as stress, cytokines, free radicals, UV irradiation, oxidized low-
density lipoproteins, and bacterial and viral antigens. NF-xB is found in almost all animal
cell types, and the outcomes of NF-kB activation vary by cell type and the type and strength
of stimulus. In certain contexts, NF-xB can promote inflammation not only by inducing
inflammatory cytokine production, but also by promoting inflammatory cell death
(necroptosis). Although NF-«xB activation occurs in many autoinflammatory diseases, the
conditions included in this section result from mutations that directly activate the NF-xB
pathway and do not appear to converge on a single inflammatory cytokine or soluble
mediator.

Annu Rev Immunol. Author manuscript; available in PMC 2015 September 09.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

de Jesus et al.

Page 17

NF-xB-Mediated Diseases Caused by Increased Intracellular Sensor/Adaptor Function

Blau syndrome/early-onset sarcoidosis (pediatric granulomatous arthritis)—
Autosomal dominant gain-of-function mutations in the NACHT domain of NOD2/CARD15
cause pediatric granulomatous arthritis (PGA) (14, 132) Familial cases are traditionally
called Blau syndrome, whereas sporadic cases are often referred to as early-onset sarcoidosis
(133). PGA symptoms typically occur before the age of four years and present with the
classic triad of granulomatous uveitis, large-joint polyarthritis, and dermatitis (134). The
uveitis is usually bilateral and affects the anterior and posterior uveal compartments (134,
135); if left untreated, it leads to irreversible blindness in up to 40% of patients (135).
Optimal therapy for PGA has not been established. NSAIDs can be used for mild disease,
whereas severe symptoms are treated with systemic corticosteroids (136) and biologics
targeting TNF and 1L-1-blocking agents (135, 137). A definitive diagnosis requires genetic
evidence of NOD2 mutations (135).

Like NLRP3 and NLRC4, NOD2 is a member of the NLR family and plays an important role
in innate immune defenses through detection and clearance of intracellular PAMPs (137).
The NOD?2 protein has the typical NLR three-domain structure, with two CARDs, a
NACHT domain, and a C-terminal LRR domain (138). It is canonically activated by a
component of bacterial cell walls called muramyl dipeptide, which leads to NACHT-
dependent oligomerization and exposure of the CARD (139). The exposed CARD forms
homotypic interactions with the serine-threonine kinase RIPK2, enabling ubiquitylation of
RIPK2 by CIAP or X-linked inhibitor of apoptosis (XIAP) proteins. RIPK2 is activated to
catalyze the canonical NF-xB and, to a lesser extent, AP-1 pathways, resulting in
inflammatory gene transcription. Oligomerized NOD2 may also signal through MAVS to
activate IRF3 (Figure 4) (140, 141). Mutations in the NACHT domain may decrease the
threshold for spontaneous oligomerization, leading to constitutive activation of NF-xB and
the inflammatory manifestations observed in PGA (142).

Evaluation of the role of constitutive NOD2 activity in organs affected in PGA—the eyes,
synovium, and skin—may shed light on the predilection for these organs in Blau syndrome
and identify new targets for therapy. Relatedly, loss-of-function NOD2 mutations are
strongly associated with Crohn disease, suggesting an important role for NOD2 in
maintaining an effective gut barrier or in recruiting anti-inflammatory mediators.

CARD14-mediated psoriasis (CAMPS)—Autosomal dominant or sporadic gain-of-
function mutations in the CARD14 gene cause plaque psoriasis (143), familial pityriasis
rubra pilaris (PRP), and even pustular psoriasis, suggesting a disease severity spectrum
(144). These disease-causing mutations were NF-xB activating (143, 145). The skin disease
in patients with CARD14 mutations can be limited or generalized. Fever and other systemic
manifestations are generally not present but can occur with superinfections of the skin (143,
145). Familial PRP is usually refractory to standard therapies (144, 146). The similarities in
gene expression studies between CAMPS and nonallelic psoriasis suggest that newer drugs
with efficacy in psoriasis, like those targeting 1L-12/23 or IL-17 (Table 2), may be of
benefit.
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The expression of CARD14/CARMAZ is restricted to keratinocytes, endothelial cells, and
the placenta. It is not expressed in hematopoietic cells. CARD14 is phosphorylated by
protein kinase C (PKCp or PKC®O), allowing MALT1/BCL10 to bind and form an NF-«xB-
activating complex (Figure 4). Transfection of mutant CARD14 into a keratinocyte cell line
leads to increased NF-kB activation and a gene expression profile showing induction of
chemokines similar to those found in psoriasis biopsies. Overall, these conditions suggest
that keratinocyte dysregulation may drive the recruitment of hematopoietic cells into the
skin and a pustular/psoriasis-like phenotype (143, 144).

6. AUTOINFLAMMATORY DISEASES CAUSED BY PERSISTENT
MACROPHAGE ACTIVATION (GROUP 4)

Pathway Overview

Systemic macrophage activation is characterized by the accumulation of activated
macrophages (also known as histiocytes) that secrete large quantities of inflammatory
mediators, including cytokines, chemokines, DAMPs, lipids, etc. (147, 148). They can
become hemophagocytes and engulf other hematopoietic cells. Once considered the
diagnostic hallmark of MAS and hemophagocytic lymphohistiocytosis (HLH), they can be
abundant in organs of the reticuloendothelial system during systemic inflammation (149).
The inflammatory macrophages fail to be cleared, and the inflammatory mediators released
cause fever, cytopenias, coagulopathy, hepatitis, splenomegaly, and central nervous system
inflammation that can progress to sepsis-like pathophysiology, with shock and death. The
progression of macrophage activation in the context of rheumatic diseases is historically
called MAS, and in the context of the familial monogenic defects resulting in impaired NK
or CD8™ T cell cytotoxicity, it is called HLH.

Biomarkers of persistent macrophage activation in either MAS or HLH include high levels
of ferritin, neopterin, soluble CD163 (150, 151), and soluble 1L-2 receptor (150, 152), and
serum ferritin levels in MAS and HLH predict disease severity and correlate with treatment
responses (153). The excess serum ferritin is not glycosylated, suggesting abnormal
secretion or release during cell death (154). Disease-based genetic discovery in patients with
systemic macrophage activation has led to the emergence of two mechanistic paradigms.
One involves cytotoxic lymphocyte dysfunction with exuberant lymphocyte activation and
secondary macrophage activation, and a more recent paradigm of primary macrophage
activation was inspired by the discovery of NLRC4-MAS (67, 68). Systemic macrophage
activation, as in NLRC4-MAS, is associated with chronic overproduction of IL-18, which
may also impair cytotoxicity. Thus, impaired killing of activated macrophages may be a
common factor driving macrophage activation in both paradigms. The serum levels of IL-18
associated with XIAP deficiency and NLRC4-MAS are usually in the nanogram-per-
milliliter range (the normal range is generally less than 200 pg/mL) and rise during flares
(67, 155). Extraordinarily high IL-18 elevation is also seen in some patients with systemic
juvenile idiopathic arthritis (sJIA) (156) and Still disease (157) who have had MAS.
Although the importance of NK cell function in MAS remains uncertain, it is often reduced
during disease flares but can normalize in between (158).
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Although IL-18 is not thought to act directly on myeloid cells, it potentiates lymphocyte
activation, enhances cytotoxicity, and promotes activation-induced cell death in combination
with other cytokines, such as IL-2, IL-12p70, and IL-15. Chronic IL-18 exposure may cause
impairments in cytotoxicity (159) or NK cell death (160) and thus might promote
macrophage activation by priming lymphocyte inflammatory responses or by disabling/
depleting NK cells. IL-18-induced NK cell dysfunction resulting in impaired killing of
inflammatory macrophages may represent a defect shared between MAS and cytotoxicity-
related HLH (Figure 5) (161). NLRC4-MAS, sJIA, and Still disease have demonstrated a
response to IL-1 inhibition (157, 162, 163), underscoring the importance of IL-1 for
inflammatory macrophage effector function.

Macrophage Activation Due to Increased Intracellular Sensor Function

NLRC4-MAS—NLRC4-MAS is the most compelling example of a mutation causing
primary macrophage dysfunction and MAS. Because NLRC4-MAS is also an IL-1-
responsive inflammasomopathy, it is discussed in more detail in Section 3. These patients’
constitutive NLRC4 inflammasome activation provides the first direct link to the
extraordinary levels of IL-18 seen in NLRC4-MAS and a number of similar monogenic and
complex autoinflammatory disorders.

Deficiency of X-linked inhibitor of apoptosis (XIAP)—It is unclear what components
of the immune response result in macrophage activation in XIAP deficiency. XIAP
deficiency was first described in 2006 as an X-linked lymphoproliferative disorder of
Epstein-Barr virus (EBV)-associated HLH in affected males (164). In patients with XIAP
deficiency, HLH remains the most common disease presentation (165), but the spectrum of
phenotypes associated with XIAP defects includes innate immune dysregulation such as
IBD, uveitis, and recurrent fevers (166, 167). No correlation between genotype, residual
XIAP function, and phenotype has been observed, highlighting the importance of genetic
and environmental background to XIAP-related disease presentations (167).

XIAP canonically functions to limit apoptotic caspase activity. Although a variety of stimuli
provoke higher rates of apoptosis in cells from patients with XIAP deficiency in vitro, the in
vivo consequences of this are unknown (164, 167). However, XIAP deficiency also impairs
NOD?2 signaling, owing to XIAP’s function in recruiting ubiquitin ligases to the complex
(166; Figure 4). Some cases of IBD in XIAP deficiency may share a common pathway with
cases of Crohn disease in patients carrying NOD2 mutations, as XIAP deficiency has been
identified in patients of both sexes with Crohn disease (166). Similarly to patients with
NLRC4-MAS and those with other MAS-prone disorders, patients with XIAP deficiency
who have had MAS have extraordinarily high serum IL-18 levels (155). However, the
molecular mechanisms linking XIAP deficiency to IL-18 overproduction and MAS remain
unknown.

Macrophage Activation Due to Loss of the Negative Regulatory Effects of Cytotoxic Killing

Primary defects in cytotoxicity—Lymphocyte cytotoxicity requires the transport of
specialized perforin/granzyme-containing granules to the lytic synapse, where they are
released and their contents induce target cell apoptosis. Familial HLH (FHL) is a group of
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monogenic diseases caused by recessive mutations that impair cytotoxic function. Systemic
macrophage activation in FHL is triggered by infections (usually viral) and rapidly
progresses to fulminant disease. Mutations in FHL directly affect cytotoxic granule content
(perforin itself; 168) or the number of proteins important for granule formation (LYST,
AP3B1), tethering (RAB27A), docking/priming (UNC13D), and membrane fusion (STX11,
STXBP2) (169, 170). In Chediak-Higashi (LYST ), Griscelli (RAB27A), and Hermansky-
Pudlak Il (AP3B1) syndromes, genetic defects also impair melanin and neutrophil granule
formation, leading to albinism and neutropenia. The frequency and severity of HLH
correlate with the degree of cytotoxic impairment (169, 170). Potent immunosuppression is
used to treat FHL, often as a bridge to allogenic bone marrow transplant, and mortality
related to disease or immunosuppression remains high (171). Infections, most notably EBV
(172), and hematologic malignancies (173) can trigger HLH in patients with normal
cytotoxicity.

The mutations causing FHL illustrate the importance of NK cells as negative regulators of
inflammation, namely in eliminating activated macrophages and infected dendritic cells.
When infected, antigen-presenting cells stimulate cytotoxic cells to terminate the immune
response by killing the infected antigen-presenting cells. Work in murine models of perforin
deficiency implicated the persistence of dendritic cells in disease pathogenesis (174, 175)
and highlighted perforin from NK cells as a critical regulator of macrophage and CD8
activation (176). FHL lymphocytes expand and produce mostly IFN-vy, which drives
systemic macrophage activation and the HLH phenotype (177, 178), a process perpetuated
by the persistence of activated macrophages (Figure 5) (161). Interestingly, higher
frequencies of variations in PRF1 and UNC13D have been noted in sJIA patients with a
higher risk for MAS, linking FHL with MAS in sJIA (179, 180).

In most murine models of FHL and MAS, IFN-vy blockade completely abrogated the disease
(181-183). Clinical trials with an IFN-y-neutralizing antibody are underway, although
evidence for IFN-y driving human FHL and MAS is less strong (184, 185) and additional
cytokines (particularly 1L-18 but also IL-1a, IL-1f, and IL-6) and TLRs, as well as impaired
IL-10 responses (183, 186, 187), have been implicated in human disease.

7. AUTOINFLAMMATORY DISEASES WITH YET UNCHARACTERIZED
PIVOTAL PROINFLAMMATORY MEDIATORS (GROUP 5)

Syndromes Caused by Accumulation of Metabolites/Triggers That Cause Intracellular
Stress or Cell Death

Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA)—PAPA is a rare
disorder caused by dominant mutations in PSTPIP1, the gene encoding CD2-binding protein
1 (CD2BP1). It presents with early-onset episodes of painful sterile and deforming arthritis,
cutaneous ulcers (pyoderma gangrenosum), and pathergy: cystic lesions or skin abscesses at
needle injection sites (188). Severe cystic acnhe and hidradenitis suppurativa of the axillae
and groin develop around puberty. Fever is rarely observed. Symptoms usually persist into
adulthood with significant joint destruction and impaired quality of life related to pain and
physical disability (189).

Annu Rev Immunol. Author manuscript; available in PMC 2015 September 09.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

de Jesus et al.

Page 21

IL-1 inhibition is effective for joint disease (189), but acne and pyoderma lesions persist
despite immunosuppression and fastidious wound care. High-dose corticosteroids,
thalidomide, cyclosporine, dapsone, tacrolimus, and 1\VVIG have been used, with variable
responses (189); anti-TNF therapy (infliximab and adalimumab) combined with I1L-1-
blocking agents is used in severe disease.

The pathogenesis of PAPA is still elusive. CD2BP1 is a cytoskeletal adaptor with an F-BAR
domain: a highly conserved dimerization domain present in proteins involved in membrane
binding/dynamics. PSTPIP1 interacts with PEST-type protein tyrosine phosphatases (PEST-
PTPs) or PTPN12, Wiskott-Aldrich syndrome protein (WASP), and the pyrin
inflammasome (190, 191). Disease-causing PSTPIP1 mutations are thought to diminish the
interactions with PEST-type proteins or WASP and increase interaction with pyrin (191,
192). Mouse studies suggest that PSTPIP1 mutants may increase pyrin-associated IL-13
activation (193), but not IL-1p production from the NLRP3, AIM2, or NLRC4
inflammasomes (194). Additional studies are clearly needed, as IL-1-inhibiting approaches
are only partially effective.

Recent data demonstrate that a novel PSTPIP1 mutation (p.R405C) in the SRC homology 3
(SH3) domain leads to impaired WASP binding and abnormal macrophage podosome
formation (192). During the inflammatory phase of wound healing, macrophages must
navigate the granulation tissue to clear apoptotic neutrophils. PSTPIP1 defects, by impairing
WASP-mediated macrophage migration, may impede wound healing and result in the
exuberant granulation seen in pyoderma gangrenosum and cystic acne. Furthermore, PAPA
mutations may also impair keratinocyte podosome formation, which is necessary for
covering wounds of the skin but not mucosa.

Deficiency of adenosine deaminase 2 (DADA2)—Recently, autosomal recessive
mutations in CECRL, the gene encoding the enzyme adenosine deaminase 2 (ADA2), were
reported as the cause of an early-onset vasculopathy resembling polyarteritis nodosa. The
patients described so far have presented with early-onset stroke, livedo reticularis, recurrent
fever, hepatosplenomegaly, arterial hypertension, ophthalmologic manifestations, and
myalgia. Other cutaneous manifestations have included leg ulcers, Raynaud phenomenon,
subcutaneous nodules, purpura, and digital necrosis. Fourteen pathogenic mutations have
been described, and suggested therapeutic interventions are anti-TNF agents, fresh-frozen
plasma, recombinant ADA2, and hematopoietic stem cell transplantation (HSCT) (195,
196).

ADAZ2 converts adenosine to inosine and 2’-deoxyadenosine to 2’-deoxyinosine, but the
affinity of ADA2 for adenosine is lower than that of ADAL by a factor of approximately
100. Whereas ADAL is monomeric and largely intracellular, ADA2 is dimeric and secreted.

Sideroblastic anemia, immunodeficiency, fevers, and developmental delay
(SIFD)—The recently described syndrome of congenital sideroblastic anemia, B cell
immunodeficiency, periodic fevers, and developmental delay is caused by autosomal
recessive mutations in TRNT1 (197). Most patients presented in infancy with transfusion-
dependent anemia characterized by erythroid precursors containing perinuclear
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mitochondrial iron deposits (sideroblasts). Most patients also developed recurrent
noninfectious fever episodes and B lymphopenia with variable immunodeficiency and
showed developmental delay including occult multiorgan failure and/or cardiomyopathy.
Early allogenic bone marrow transplant was curative in one patient. Loss-of-function
mutations in TRNTZ1, which encodes an enzyme critical for transfer RNA maturation, were
recently associated with SIFD (198). Although impairment in transfer RNA synthesis leads
to cellular stress and proposed activation of inflammatory mediators, how this stress causes
the described clinical phenotype remains to be resolved.

Syndromes Caused by Loss of Negative Regulation

Deficiency of IL-36 receptor antagonist (DITRA)—Homozygous loss-of-function
mutations in the IL36RN gene, L27P, cause pustular psoriasis and systemic inflammation.
The mutations leading to this disease are largely founder mutations in Tunisians (199), but
sporadic disease has been seen in unrelated English patients (200). Patients usually present
with generalized pustular psoriasis and fever flares during childhood (7 days to 11 years of
age) (199). Skin flares are characterized by generalized erythematous and pustular skin
rashes, associated with high fevers, asthenia, increased C-reactive protein, and leukocytosis
(199, 200). Secondary skin infections and sepsis may also occur (199). Disease flares may
be triggered by viral or bacterial infections, withdrawal of retinoid therapy, menstruation,
and pregnancy (199, 200).

IL36RN encodes IL-36Ra, which binds to the IL-36 receptor, completely blocks binding by
IL-36a, -B, and -v, and prevents NF-xB activation further downstream in response to TLR
agonist stimulation (199, 200). The mutated protein is highly expressed in keratinocytes.
The absence of IL-36Ra in DITRA patients leads to constitutively enhanced IL-36 receptor
signaling in keratinocytes and hematopoietic cells. Similar to CAMPS, primary
dysregulation of keratinocyte activation in DITRA can initiate the recruitment of
hematopoietic cells into the tissue and initiate inflammatory amplification loops that lead to
pustular dermatoses, in this case with systemic inflammation as well.

Definitive treatment has not been established, but acitretin has been used with variable
success (199, 200). Other therapeutic regimens have included oral steroids, methotrexate,
cyclosporine, and adalimumab in two patients. IL-1-blocking therapy has been reported in
one patient, with only transient improvement (l. Kone-Paut, R. Goldbach-Mansky, personal
communication). These data are consistent with the mouse model, which suggested that
IL-36 mediates keratinocyte activation but does not induce IL-1 signaling (201).

Early-onset inflammatory bowel disease (IBD)—Autosomal recessive loss-of-
function mutations resulting in defects in 1L-10 (IL10) or either subunit of the IL-10 receptor
(IL1ORA or IL10RB) cause severe IBD with onset in the first year of life (30). IL-10-related
mutations account for up to 25% of early-onset IBD cases (202, 203). Similarly, 1L10
promoter polymorphisms have been repeatedly associated with general IBD risk (204).

Early-onset IBD patients present with severe debilitating enterocolitis characterized by
hematochezia, colonic abscesses, perianal fistulas, oral ulcers, and failure to thrive that is
refractory to aggressive immunosuppression (203, 205). Nongastrointestinal involvement
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includes recurrent folliculitis and, rarely, recurrent fever and chronic large-joint arthritis
(203). Patients with IL-10-related early-onset IBD who underwent allogenic HSCT
benefitted substantially, most achieving clinical remission (202, 203).

IL-10, an anti-inflammatory cytokine, is produced by and has effects on nearly every
immune cell type and many nonimmune cells. IL-10R1 is unique to IL-10 signaling, and
IL-10R2 is shared by IL-22, IL-26, and A-IFNs IL-28A/B and 1L-29 (27). IL-10 stimulation
induces Jak1/Tyk2 phosphorylation, STAT3 activation, and transcriptional changes with
anti-inflammatory effects (204). The severe enterocolitis observed in IL-10-deficient mice
requires commensal bacteria (206) but not adaptive immune cells.

Stimulation through mutant IL-10 receptors led to impaired STAT3 phosphorylation in
PBMCs (205). I1L-22 signaling was normal in patients with IL10R1 mutations but impaired
in patients with mutations in IL10R2 (207). The clinical phenotype, including folliculitis, is
conserved across all three genetic defects (202, 203, 208), suggesting that loss of 1L-22,
IL-26, and A-IFN signaling contributes little to pathogenesis.

The exact mechanisms leading to early-onset IBD are not well understood. FoxP3*
regulatory T cells are a major source of IL-10 in the gut (209); patients with IPEX
(immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome lack FoxP3.
IL-10 must act on gut macrophages, to prevent colitis (210). The severe and organ-specific
phenotype attributable to IL-10 defects demonstrates the primacy of this cytokine in
regulating immune responses to gut bacteria. The efficacy of HSCT demonstrates that the
important sources of IL-10 are hematopoietic (203) and that the main nonredundant role of
IL-10 is to limit the immunostimulatory effects of bacterial colonization on innate immune
cells.

Syndromes Caused by Increased Immune Cell Receptor Signaling

PLAID and APLAID—Autosomal dominant mutations in PLCy2 cause two related
syndromes: PLCy2-associated antibody deficiency and immune dysregulation (PLAID) and
autoinflammation and PLAID (APLAID). Whereas PLAID leads to cold-induced urticaria,
autoimmune manifestations, and susceptibility to infections, APLAID leads to early-onset
recurrent erythematous plaques and vesicopustular skin lesions associated with arthralgia,
corneal erosions, and interstitial pneumonia (211). The two patients with APLAID identified
thus far developed recurrent sinopulmonary infections, presumed to be due to a lack of
class-switched memory B cells (211). Both patients were partially responsive to anakinra
and high-dose corticosteroids (211).

LYN-associated autoinflammatory disease (LAID)—We recently identified a
nonsense de novo mutation in LYN, encoding Lyn kinase, in a patient presenting with
autoinflammatory disease, including fevers and neutrophilic vasculitis, and with significant
B cell dysregulation. Lyn is a widely expressed Src-family tyrosine kinase with both
activating and inhibiting effects on signaling pathways. LynUP'UP mice have a gain-of-
function mutation generated at the tyrosine position 508 (Y508F) and have severe anemia,
autoimmune glomerulonephritis, and elevated ANA antibodies (212).
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Cherubism—Cherubism is an autosomal dominant syndrome of childhood-onset facial
swelling caused by heterozygous SH3BP2 mutations (213). Patients develop symmetrical
cysts in their maxillae and mandibles filled by expansive osteoclast-laden tissue. This tissue
applies pressure on the bony cortex, with characteristic swelling (for which the disease is
named) that spontaneously regresses with puberty.

SH3BP2 is a ubiquitously expressed scaffold protein that can interact with membrane lipids
and a number of signaling molecules, including Syk and PLCy1. Excessive SH3BP2 activity
may exaggerate NFATcL signals and drive osteoclast differentiation (214). SH3BP2
mutations in mice cause TNF-a-dependent diffuse cherubism-like lesions. Macrophages and
osteoclasts from these mice show enhanced Erk and Syk activation and are
hyperinflammatory (215). These data, and the fact that SH3BP2 haploinsufficiency does not
cause bone lesions, support a gain-of-function mechanism.

Why jawbones are the sole sites of inflammation in cherubism remains elusive, but this may
relate to specific signals derived from tooth development and/or oral flora. TNF-a inhibition
does not appear to be effective in treating human cherubism (216), but inhibitors of NFAT
activation, such as tacrolimus, may be beneficial (217).

8. UNCLASSIFIABLE DISEASES

Recently, heterozygous mutations in the AP1S3 gene, which encodes a subunit of the
cytosolic transport complex AP1, were described in 15 unrelated patients with pustular
psoriasis. The patients presented with either generalized pustular psoriasis or palmar plantar
pustulosis and tested negative for mutations in IL36RN and CARD14 (218). These mutations
await functional characterization.

Another autoinflammatory syndrome is caused by autosomal recessive loss-of-function
mutations in the ADAM17 gene, encoding the TNF-a converting enzyme TACE, which is
necessary for the cleavage and secretion of TNF-a, epidermal growth factor, TGF-a, and
some desmogleins. Two consanguineous siblings with substantial deletions in this gene and
no functional protein (219) had neonatal-onset of pustular psoriasis, hair abnormalities, and
diarrhea and cardiomyopathy. Although it is unclear which manifestations are related to
autoinflammation versus defects in barrier surfaces, patient PBMCs oversecreted I1L-1f and
IL-6 in response to stimulation.

Monoallelic mutations in NLRP12 have been associated with an autosomal dominant
periodic fever syndrome known as NLRP12AD (220). The disease-causing mutations found
in NLRP12 have been associated either with a loss of the inhibitory function of NLRP12 on
NF-xB signaling or with increased caspase-1 activation, but the disease-associated pathways
remain unclear (221, 222).

Recurrent and long attacks of fever and abdominal pain have been described in three
patients with heterozygous mutations in TNFRSF11A, the gene encoding RANK (receptor
activator of NF-xB). Owing to the clinical similarities with the classical periodic fever
syndrome TRAPS, this autoinflammatory disease has been designated TRAPS11 (223).
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Autosomal recessive mutations in SLC29A3 have been associated with H-syndrome
(hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart abnormalities, and
hypogonadism). More recently, it was reported that 5% of a cohort of 79 patients with H-
syndrome presented with recurrent fever (224). An association between a homozygous

S C29A3 mutation and autoinflammatory manifestations has also been reported (225).

9. AUTOINFLAMMATION, AUTOIMMUNITY, IMMUNODEFICIENCY,
LYMPHOPROLIFERATION, AND ANIMAL MODELS

Defining the Boundaries of Autoinflammatory Diseases

In many conditions the boundaries between autoinflammation (increased innate immunity),
autoimmunity (increased adaptive immunity), and immunodeficiency (decreased innate or
adaptive immunity) are fluid, and many of the diseases discussed in this review present with
clinical features that cross these boundaries. The clinical phenotypes are driven by the cell
type most affected by a particular mutation: Excessive activation of neutrophils, monocytes/
macrophages, and dendritic cells leads to autoinflammatory symptoms; T cell and B cell
dysfunction leads to autoimmunity. Failure of innate and/or adaptive immune cells to
appropriately activate and recognize and clear infectious agents causes immunodeficiency
and vulnerability to infections.

Clinical overlap of autoinflammation and immunodeficiency—Depending on the
nature of the defect, dysregulation of the very same innate immune pathway can present
with autoinflammatory phenotypes or cause immunodeficiencies. Whereas genetic defects in
innate immune pathways that mediate pathogen recognition and affect the ability to
eliminate infected cells lead to infections, increased or constitutive activation of innate
immune pathways by infectious or noninfectious triggers leads to autoinflammation.

A number of the disorders discussed in this review have features of immunodeficiency and
autoinflammation. We discussed in detail those disorders where autoinflammation is
predominant and patients require immunomodulation or immunosuppression. Another group
of disorders, including HOIL-1 deficiency, NF-«xB essential modulator (NEMO/IKKY)
deficiency, and dominant negative mutations in IkBa, have immunodeficiency dominating
over autoinflammatory features and are beyond the scope of this review. These three
examples demonstrate the complexity of the NF-xB signaling pathway in immune responses
(226, 227). Study of the differential action of specific immune defects in innate and adaptive
immune cells may provide an understanding of the clinical features associated with
autoinflammation and immunodeficiency in the same patient.

Clinical overlap of autoinflammation and autoimmunity—The innate leukocytes
include NK cells; mast cells; eosinophils; basophils; and phagocytic cells, including
macrophages, neutrophils, and dendritic cells. Adaptive immune cells (T and B cells)
acquire or refine their receptors with antigen contact. Whereas in IL-1-mediated diseases
immune activation primarily affects innate immune cells, activation of IFN in known IFN-
mediated diseases leads to activation and dysregulation of T and B cells. Antinuclear
antibodies, evidence of B cell activation, and other signs of adaptive cell stimulation are
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often seen in the latter diseases, but the disease manifestations often occur in patients
whether autoantibodies are present or not. In other instances, such as the manifestations in
AGS, some pathology may be caused by specific autoantibodies.

Clinical overlap of autoinflammation and lymphoproliferation—
Autoinflammatory phenotypes frequently occur in patients with excessive proliferation of
immune cells. Massive expansion of immune cells in the lymph nodes, spleen, liver, or bone
marrow is described as lymphoproliferation and is not malignant. These disorders are
diagnosed histologically, but the genetic causes of lymphoproliferation include defects in
Fas-mediated killing (FAS, FASL), defects in induction of apoptosis (CASP8, CASP10), and
excessive proliferation (somatic NRAS KRAS). EBV triggers lymphoproliferation in patients
harboring mutations that affect T cell activation (SH2D1A/SAP, ITK, CD27). Overall, the
mutations associated with lymphoproliferation largely affect adaptive immune cells and
increase risk of autoimmunity and malignancy (110).

Divergence of Inflammatory Phenotypes in Animal Models of Human Disease

Mechanistic insights from immunologic studies in mice have largely framed our
understanding of immune responses. However, caution is needed when extrapolating from
pathomechanistic studies in murine disease models. Differences between mouse models of
autoinflammatory diseases and human phenotypes are summarized in Table 4 and may be a
reflection of differences found in innate immune components between mice and humans.
Whereas humans have 10 TLRs and 22 NLRs, mice have 12 TLRs and 34 NLRs (228).
Furthermore, immune responses to trauma, burns, and endotoxemia are very similar in
humans, but these responses were not reproduced in different mouse models used in a
recently reported study (229), pointing to the fact that human and mouse PRRs/effector
pathways are different. We also have major gaps in our understanding of the remarkable
organ specificity of autoinflammatory disease in humans (Table 3). Clinicians and
researchers should be wary of extrapolation from experiments in murine models that do not
capture the organ specificity seen in humans. Table 4 summarizes murine models of
autoinflammatory diseases and compares phenotypes to the human disease manifestations.

10. SYNOPSIS

The disease-based discovery of the molecular mechanisms that cause autoinflammatory
phenotypes (summarized in Table 3 and Figure 6) and basic research discoveries accelerated
our understanding of innate immune pathways and their dysregulation over the last 15 years.
These mostly monogenic defects that cause autoinflammatory disease phenotypes allow us
to get glimpses into the impact of innate immune dysregulation on human disease
manifestations. The insights gained from comparative research in children with various
autoinflammatory disorders allowed us to build on the discovery of the IL-1-activating
inflammasomes and the development of I1L-1-blocking agents that have since been approved
by the US Food and Drug Administration and to identify dysregulation of other key
proinflammatory pathways. Examples include the exploration of pathways that link
intracellular stress with IFN production and other inflammatory mediators and the study of
clinical phenotypes that are caused by dysregulation in other proinflammatory pathways that
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continue to point us toward novel targets for better therapeutic interventions. The organ-
specific manifestations of autoinflammatory diseases signal the importance of studying
innate immune regulation and dysregulation at the level of organ-specific tissues and cells.
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Figure 1.
Principles of immune dysregulation in autoinflammatory diseases. (a) Each genetically

defined autoinflammatory disease ( yellow) can be classified based on the predominant
proinflammatory mediator that is upregulated, where known, (red ) and the component of
the innate immune response that is affected by the disease-causing mutations ( green). (b)
Dysregulation in four components of the immune response are found to cause
autoinflammatory diseases. (Table 1 presents a complete list of genes that are mutated in
autoinflammatory diseases and the corresponding components of the innate immune
response that are affected.) @ Gain-of-function mutations (autosomal dominant, often
sporadic/de novo) in genes encoding intracellular PRRs or their adaptor molecules result in
constitutively increased innate immune sensor function and increased or continued
production of proinflammatory mediators. @ Loss-of-function mutations or
haploinsufficiency of molecules/enzymes critical for maintaining cell homeostasis can result
in accumulation of intracellular stressors that stimulate intracellular sensor/PRR activation
and the production of proinflammatory mediators. € Loss-of-function mutations in genes
encoding negative regulators that downregulate proinflammatory responses also lead to
autoinflammatory diseases. The mutations observed so far lead to loss of function of a
cytokine receptor antagonist, or an antiinflammatory cytokine, or failure to terminate the
release of inflammatory mediators by inflammatory cells (e.g, cytotoxic dysfunction causing
persistent macrophage activation). @ Mutations that alter immune receptor signaling cause
a group of diseases presenting with often more complex clinical phenotypes that can include
autoinflammatory, immunodeficient, and autoimmune features depending on their effect on
innate or adaptive immune cells. (Abbreviations: PRR, pattern-recognition receptor; TLR,
Toll-like receptor.)
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Figure2.

Proposed mechanisms of activation of IL-1-signaling pathways in autoinflammatory
diseases. (a) Cryopyrinopathies (CAPS). Unlike wild-type NLRP3, mutated NLRP3 (which
causes CAPS) is constitutively activated and thought to oligomerize and bind to the adapter
molecule ASC (apoptosis-associated speck-like protein containing a CARD) to form an
active catalytic complex with two pro-caspase-1 molecules. Via autocatalysis, this complex
generates active caspase-1, which cleaves inactive pro-1L-1f into its active form, IL-1p. (b)
Familial Mediterranean fever (FMF). Wild-type pyrin can interact directly with ASC,
forming the pyrin inflammasome, which is activated in the presence of FMF-causing
mutations. (c) NLRC4-MAS. Mutations in the NACHT domain of NLRC4 cause
autoinflammatory diseases that predispose to the development of macrophage-activating
syndrome (MAS). The asterisk (") indicates that caspase-1 activation also leads to IL-18
activation that is highest in NLRC4 inflammasome activation. (d ) Hyper-IgD syndrome
(HIDS). Mevalonate kinase (MVK), a critical enzyme in the biosynthesis of sterol and
nonsterol isoprenoids, catalyzes the conversion of mevalonate to mevalonate phosphate. In
HIDS, activity of this enzyme is reduced, resulting in decreased concentrations of
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mevalonate phosphate, geranylgeranyl pyrophosphate, and farnesyl pyrophosphate, and
impaired geranylgeranylation of a number of proteins. Through an unknown mechanism, the
reduced geranylgeranylation would lead to an increased procaspase-1 activation and
consequent caspase-1 activation, with resulting overproduction of IL-1p. (€) Majeed
syndrome. Lipin-2 catalyzes the conversion of phosphatidate to diacylglycerol, a precursor
for the production of phospholipids. Mutations in LPIN2 are thought to lead to an
accumulation of fatty acids and intracellular stress that induces inflammasome activation. (f)
TNF receptor—associated periodic syndrome (TRAPS). TNFR1 molecules are transported
from the endoplasmic reticulum (ER) to the Golgi apparatus and then to the cell surface.
Mutated TNFR1 (which causes TRAPS) is misfolded and cannot be transported to the cell
surface. Misfolded TNFRL1 is sequestered in the ER, where it causes intracellular stress
through increased mitochondrial reactive oxygen species (ROS) production that leads to
inflammasome activation and increased signaling, including NF-«xB activation. ( g)
Deficiency of IL-1Ra (DIRA). Deficiency of IL-1Ra leads to unopposed IL-1a and IL-13
signaling. The structure of the inflammasomes was adapted from Reference 28. Numbers in
black circles indicate disease caused by @ increased sensor function, @ generation of cell
stress, or @ loss of negative regulator. (Other abbreviations: IL-1Ra, IL-1 receptor
antagonist; PYD, pyrin domain.)
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Figure 3.
Proposed mechanisms of activation of proinflammatory signaling pathways in IFN-mediated

autoinflammatory diseases. Pathways of innate immune sensing of cytosolic nucleotide and
stress lead to type | IFN production and a feed-forward loop of IFN signaling. The enzyme
CcGAS is a cytosolic sensor of dsDNA that, upon activation, generates a small-molecule
second messenger, CGAMP, which binds and signals through the adaptor protein STING.
Similarly, the RIG-I-like receptor sensors RIG-1 and MDAJS are triggered by binding to
dsRNA and signal through the adaptor protein MAVS. The common pathway downstream
of STING and MAVS includes TBK1 and IRF3 phosphorylation/activation and IFN-f3
transcription. The disease-causing mutations cause a gain of function of an intracellular
sensor (red) or a loss of function of a protein (blue), leading to generation of intracellular
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stress. (a) Aicardi-Goutiéres syndrome 7 (AGS7). MDAS5, encoded by IFIH1, is one of the
dsRNA sensors. Gain-of-function mutation in MDADS causes constitutive or enhanced IFN-f§
transcription, resulting in a clinical syndrome similar to that caused by TREX1 mutation. (b)
STING-associated vasculopathy with onset in infancy (SAVI). Gain-of-function mutations
in STING cause spontaneous or enhanced transcription of IFN-B, leading to the clinical
syndrome SAVI. (c) PRAAS/CANDLE. Genetic mutations in proteasome subunits cause
loss of function and cellular stress. Through a still unclear process, reduced proteasome
function leads to type I IFN production and the inflammatory disease phenotype of
CANDLE. Whether the stress response due to defective proteasome function that is
triggered through the cytosolic nucleotide—sensing pathway or other sensors that are coupled
to type | IFN production remains unknown. The transcription and secretion of type | IFN
results in a cytokine amplification loop in the same cells or other bystander cells. IRF7 is
one of the IFN response genes, which further promote type | IFN transcription and
amplification of the process. (d ) Aicardi-Goutiéres syndrome 1-6 (AGS1-6). TREX1 loss-
of-function mutations cause accumulation of ssDNA derived from an endogenous
retroelement, resulting in STING-dependent type I IFN transcription (AGS1). Similarly,
loss-of-function mutations in RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, and
ADARL1 result in type I IFN transcription through still unknown signaling processes
(AGS2-6). Numbers in black circles indicate disease caused by @ increased sensor/adaptor
function or @ generation of cell stress. (Other abbreviations: AMP, adenosine
monophosphate; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature; cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase;
GMP, guanosine monophosphate; MAVS, mitochondrial antiviral-signaling protein;
PRAAS, proteasome-associated autoinflammatory syndromes; TREX1, three prime repair
exonuclease 1.)
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Figure4.
Potential mechanisms of NF-xB-mediated diseases. (a) Pediatric granulomatous arthritis/

Blau syndrome. Upon activation or when mutated, NOD2 oligomerizes and recruits the
kinase RIPK2. IAP proteins then mediate the ubiquitylation of RIPK2, enabling it to initiate
a signal pathway that results in transcriptional activation, most notably through the canonical
NF-kB pathway. Oligomerized NOD2 can also associate with the mitochondrial adaptor
protein MAVS to activate IFN production. (b) CARD14-mediated psoriasis (CAMPS).
Expression of adaptor protein CARD14 is largely restricted to keratinocytes. Although it is
unclear what signals drive CARD14 activation, activation of PKC results in CARD14
phosphorylation and activation. Upon activation or when mutated, as in patients with
CAMPS, it associates with the BCL10/MALT1 complex, resulting in excessive NF-xB
activation. NF-kB-associated gene transcription then drives neutrophil and lymphocyte
chemotaxis and psoriasis-like skin inflammation. In general, the inflammatory mediators
induced by excessive NF-kB activation vary by disease and cell type. Number in black
circled indicates @ disease caused by increased sensor/adaptor function. (Other
abbreviations: 1AP, inhibitor of apoptosis; MAVS, mitochondrial antiviral-signaling protein;
PKC, protein kinase C; XIAP, X-linked I1AP.)
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Figure5.
Schematic of the mechanisms resulting in systemic macrophage activation. (a) In familial

HLH, cytotoxic lymphocytes lack the ability to kill infected antigen-presenting cells. @
This results in failure to clear the infection and failure to terminate their own stimulation.
With unrestrained stimulation, these lymphocytes produce extraordinary amounts of
macrophage-stimulating cytokines, such as IFN-y. They also lack the ability to kill activated
macrophages. @ In MAS, intrinsic defects such as hyperactivity of the NLRC4
inflammasome could prime for macrophage activation directly, 3) but they could also cause
constitutive I1L-18 production that is enhanced upon macrophage activation. Upon infection
or stress, lymphocytes (e.g., NK cells) chronically exposed to IL-18 could @) prime for
cytokine overproduction, () impair cytotoxicity, or & promote NK cell death. Systemic
macrophage activation results in the release of a variety of potent inflammatory mediators
(IL-1B, IL-6, TNF-q, IL-33, IL-1a, HMGBL1, S100 proteins, etc.) that cause the shock-like
symptoms associated with MAS and HLH. (Abbreviations: HLH, hemophagocytic
lymphohistiocytosis; MAS, macrophage activation syndrome; XIAP, X-linked inhibitor of
apoptosis.)
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Figure®6.
Clinical manifestations of IL-1-mediated and IFN-mediated diseases. (a) Urticarial rash in

NOMID. (b,c) Pustular rash in DIRA. (d) Erysipelas-like erythema in FMF. (€)
Erythematous dermal macules (migratory during a disease flare) in a patient with TRAPS.
(f) Purpuric rash in a patient with HIDS. ( g) Leptomeningeal enhancement in NOMID. (h)
Inflammation-induced chronic papilledema in NOMID. (i ) Hydrocephalus and cerebral
atrophy in NOMID. (j ) Patella enlargement in NOMID. (k) Widening of multiple ribs
(asterisks) and clavicles (arrows) in DIRA osteomyelitis. (I ) Spine MRI showing
destruction of vertebral bodies and severe kyphosis due to osteomyelitis in a patient with
DIRA (red arrow indicates collapsed vertebra). (m) Metaphyseal bone overgrowth in
NOMID. (n) Cochlear enhancement in NOMID. (0) Conjunctival erythema in a patient with
TRAPS. ( p) Pleural effusion in a patient with FMF. (q) Finger and hand swelling in
CANDLE syndrome. (r) Erythematous-macular rash in AGS. (s) Characteristic
lipodystrophy in a patient with CANDLE syndrome. (t) Erythematous-nodular rash in a
patient with CANDLE. (u) Intense plantar erythema/vasculitis in a patient with SAVI. (v)
Purpuric and papular rash in a patient with SAVI. (w) Basal ganglia calcifications in
CANDLE syndrome. (x) Severe hydrocephalus and cerebral atrophy in AGS. (y) Patchy
myositis in CANDLE syndrome. (2) Evidence of myositis and panniculitis in a bilateral
thigh MRI of a CANDLE patient. (aa) Bone resorption in a patient with SAVI. (ab)
Interstitial lung disease in a patient with SAVI. (ac) Intra-abdominal fat deposition in a
patient with CANDLE syndrome. (ad ) Telangiectasia, atrophy, and scarring of the skin with
loss of deep tissue of the nose in a patient with SAVI. (Abbreviations: AGS, Aicardi-
Goutiéres syndrome; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy
and elevated temperature; DIRA, deficiency of the IL-1 receptor antagonist; FMF, familial
Mediterranean fever; HIDS, hyper-1gD syndrome; IFN, interferon; NOMID, neonatal-onset
multisystem inflammatory disease; SAVI, STING-associated vasculopathy with onset in
infancy; TRAPS, TNF receptor—associated periodic syndrome.)
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Currently approved anticytokine drugs

Target Generic Tradename

IL-1 Anakinra Kineret
Rilonacept Avrcalyst
Canakinumab | llaris

TNF Etanercept Enbrel
Infliximab Remicade
Adalimumab Humira
Golimumab Simponi
Certolizumab | Cimzia

IL-6 Tocilizumab Actemra
Tofacitinib Xelians

IFN Tofacitinib Xelians
Ruxolitinib Jakafi
Baricitinib In clinical trials®

IL-17/1L-23 | Ustekinumab | Stellara

1Not yet approved by the US Food and Drug Administration.
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