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Abstract

Environmental and lifestyle factors are considered significant components of the increasing breast 

cancer risk in the last 50 years. Specifically, exposure to environmental endocrine disrupting 

compounds is correlated with cancer susceptibility in a variety of tissues. In both human and 

rodent models, the exposure to ubiquitous environmental estrogens during early life has been 

shown to disrupt normal mammary development and cause permanent adverse effects. Recent 

studies indicate that environmental estrogens not only have the ability to disrupt estrogen receptor 

(ER) signaling, but can also reprogram the epigenome by altering DNA and histone methylation 

through rapid, nongenomic ER actions. We have observed xenoestrogen-mediated activation of 

several nongenomic signaling pathways and have identified a target for epigenetic reprogramming 

in MCF-7 breast cancer cells. These observations, in addition to data from the literature, support 

the hypothesis that activation of rapid signaling by environmental estrogens can lead to epigenetic 

reprogramming and contribute to the progression of breast cancer.
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1. Introduction

1.1 Early life exposure to environmental estrogens and breast cancer risk

Breast cancer risk is now understood to have both genetic and environment/lifestyle 

components [1, 2]. Inherited defects in tumor suppressor genes are known risk factors for 

cancer, and genome-wide association studies have identified more than 20 common genetic 

susceptibility variants of genes conferring increased breast cancer risk [3]. Less than a 

quarter of all breast cancers, however, can be attributed to these known susceptibility 

variants [4]. It has been hypothesized that the increase in the incidence of breast cancer 

during the last 50 years may be due to environmental exposures, most notably to hormonally 
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active chemicals often categorized as endocrine disrupting compounds (EDCs) [5]. In fact, 

such compounds have been identified as priority chemicals, among others, for future breast 

cancer research [6].

It is well known that the exposure of tissues or organs to an adverse environment or stimulus 

during critical developmental periods can increase the susceptibility to many diseases in 

adulthood such as cardiovascular disease, obesity, and cancer [7, 8]. According to the 

developmental origins of health and disease (DOHaD) hypothesis, these adverse exposures 

reprogram normal physiologic responses, leading to lifelong changes in disease 

susceptibility [9, 10]. Gestation/neonatal life is a critical period of mammary gland 

development likely to be altered by EDC exposure [11] and evidence has emerged that early 

life EDC exposure disrupts normal mammary gland development, and modulates 

susceptibility to breast cancer [reviewed in [12]]. For example, prenatal exposure to the 

xenoestrogen bisphenol A (BPA) results in increased mammary tumor multiplicity, 

decreased tumor latency, and a shifted window of susceptibility to 7,12-

dimethylbenz(a)anthracene (DMBA)-induced mammary tumorigenesis in rats [13, 14]. 

Although a variety of compounds have been linked to breast cancer development/

progression[6], here we focus on environmental estrogens, EDCs (such as BPA) that have 

estrogenic properties, where there is a known correlation between exposure and breast 

cancer risk [15, 16].

2. Epigenetic modifications in breast development and disease

Exposure to environmental EDCs is now thought to disrupt the epigenome in the breast 

[reviewed in [17]] and understanding how “epigenetic” dysregulation by EDCs may 

contribute to breast tumorigenesis is crucial for gaining insights into the etiology of this 

disease, and will be important for addressing breast cancer prevention.

The term “epigenetics” refers to “heritable changes in gene expression that are not caused by 

alteration in the DNA sequence of the genome”. Epigenetic alterations can occur via 

changes in DNA methylation, histone modifications and non-coding RNAs. Specifically, 

histone modification involves an elegant network of epigenetic modifiers that include 

enzymes that add specific histone marks (“writers”), proteins that can recognize the 

modifications (“readers”) and enzymes that can remove the modifications (“erasers”). These 

modifiers dynamically and tightly regulate chromatin conformation and gene transcription, 

are regulated by internal and external environmental signals and can have a significant 

impact on normal mammary gland development and perhaps even mammary tumorigenesis. 

Although few studies have examined the epigenetic effects of xenoestrogens in breast 

cancer, there is evidence that BPA treatment of human mammary progenitor and epithelial 

cells in vitro promotes hypermethylation of putative tumor suppressor genes [18, 19] and 

alters microRNA expression[20]. Phytoestrogens have been reported to modify the 

methylation of breast cancer-related genes [21, 22]. Furthermore, in utero exposure to BPA 

or diethylstilbestrol (DES) increases expression of enhancer of zeste homolog 2 (EZH2), the 

histone methyltransferase for the histone 3 (H3) lysine 27 (K27) trimethyl (me3) mark 

(H3K27me3) in mammary tissues [23]. Interestingly, over-expression of EZH2 has been 
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reported in breast cancer and is a marker of aggressive breast cancer [24]. The latter study 

offers a tantalizing clue that histone modifier proteins are indeed altered by EDC exposure.

3. Rapid, nongenomic signaling through the estrogen receptor

Despite the aforementioned findings, few studies have investigated the mechanisms by 

which environmental estrogens disturb the epigenome, specifically histone modification, and 

drive breast carcinogenesis. There are a number of EDCs (or their metabolites) that can bind 

and activate estrogen receptors (ERs), including the pharmaceutical DES, organochlorine 

pesticides such as methoxychlor, industrial chemicals such as BPA, and phytoestrogens such 

as genistein [reviewed in [25]]. Activation of ER elicits biological responses in target tissues 

through both genomic (i.e. binding to DNA) and nongenomic, or more precisely, 

pregenomic (i.e. rapid signaling not requiring DNA binding) mechanisms. Genomic ER 

action involves the binding of ligand to the receptor, which induces a conformational change 

that promotes dissociation from chaperone protein complexes, and binding of receptors to 

hormone response elements on DNA. This binding is followed by dynamic and sequential 

recruitment of coregulator proteins to regulate gene transcription [reviewed in [26]].

Nongenomic ER action, usually extranuclear and membrane localized, involves rapid 

activation of kinases and resulting downstream signaling pathways that mediate biological 

responses independent of ER nuclear localization [reviewed in [26]]. Studies have shown 

that ER-mediated nongenomic activation of phosphoinositide 3-kinase/Akt (PI3K/Akt), c-

Src/mitogen-activated protein kinase (Src/MAPK), and MAPK occurs in endothelial, breast 

and pancreatic β cells, respectively [reviewed in [27]]. These effects are initiated at the 

membrane, presumably through the classical ER [either ERα or ERβ; reviewed in [27]], 

which can localize to the membrane due to a conserved palmitoylation domain [28]. 

Recently, Pedram et al. generated a knock-in mouse that expresses a mutant ER incapable of 

being palmitoylated (hence, does not localize to the membrane) and demonstrated that 

membrane ER signaling plays crucial roles in hormone-mediated gene transcription, as well 

as reproductive tract and breast development [29]. Specifically, the homozygous, but not 

heterozygous, knock-in mice exhibited diminished ductal side branching and formation of 

blunted duct termini [29], highlighting the importance of nongenomic signaling in mammary 

gland development (and possibly disease). It is important to note that although nongenomic 

signaling does not directly involve ER binding to target genes, altered gene transcription 

may still occur as the final downstream impact of this activation.

Importantly, EDCs that are not categorized as environmental estrogens may disrupt ER 

signaling indirectly through the activation of the aryl hydrocarbon receptor (AhR) or 

through modification of estrogen metabolism [reviewed in [25]]. Studies to date have 

focused on the transcriptional effect of AhR activation and subsequent disruption of ER 

activity in response to EDCs [reviewed in [25]], but AhR signaling can also occur through 

nongenomic pathways [30–35] highlighting the need to examine activation of nongenomic 

signaling pathways through receptors other than ER.
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4. Activation of nongenomic signaling and epigenetic reprogramming by 

environmental estrogens in breast cancer cells

4.1 Epigenetic modifier proteins as targets of nongenomic signaling

Studies have shown that activating nongenomic signaling pathways can regulate the function 

of epigenetic programmers in a variety of model systems [reviewed in [36] and Treviño LS 

et al. Progress in Biophysics & Molecular Biology in press]. For example, activation of 

protein kinase A (PKA) signaling results in phosphorylation and activation of the JmjC 

demethylase PHD finger protein 2 (PHF2), leading to association of PHF2 with AT-rich 

interactive domain 5B (ARID5B) [37]. This association results in the demethylation of 

methylated ARID5B and targeting of the PHF2-ARID5B complex to promoters of target 

genes where it removes the histone H3 (H3) lysine 9 dimethyl (me2) mark (H3K9me2) [37]. 

Evidence suggests a possible tumor suppressor role for PHF2 in breast cancer due to the fact 

that PHF2 alterations (deletion/methylation) were shown to be associated with poor patient 

survival [38].

Few studies have investigated if and how environmental estrogens activate these pathways 

to drive epigenetic reprogramming in breast cancer. We have previously shown that 

treatment of MCF7 cells with DES results in a global decrease in the repressive histone 

mark H3K27me3 [39]. This decrease is likely through rapid, DES-mediated activation of the 

PI3K/Akt pathway, which results in a site-specific phosphorylation on serine 21 and 

subsequent inactivation of the H3K27me3 methyltransferase EZH2 [39]. Consistent with 

loss of this repressive epigenetic mark, hormone-responsive gene expression is increased 

[39].

To date, only EZH2 has been identified as target of nongenomic signaling in breast cancer 

cells and it is clear that further study is needed to identify additional targets. Prediction 

algorithms can aid in this process. For example, the histone H3 lysine 9 (H3K9) 

demethylase lysine (K)-specific demethylase 4B (KDM4B/JMJD2B) has been shown to 

promote breast cancer proliferation and tumorigenesis by facilitating transcription of ER-

responsive genes [40, 41], but no studies have examined its regulation by site-specific 

phosphorylation in breast cancer thus far. In fact, in silico analysis of the histone H3 lysine 9 

(H3K9) demethylase lysine (K)-specific demethylase 4B (KDM4B/JMJD2B) reveals that it 

may be a putative substrate for Akt [42].

Preliminary data from our lab suggests that two additional signaling pathways, PKA and 

p44/p42 mitogen-activated protein kinase (MAPK), might be activated by DES in MCF-7 

cells as well (data not shown). Further experiments are necessary to determine whether these 

pathways are indeed activated by ER-mediated nongenomic signaling and to identify 

epigenetic targets of this signaling. Verification that DES can activate multiple cell signaling 

pathways would expand the opportunity for nongenomic signaling to engage epigenetic 

“readers, writers and erasers” in addition to EZH2, and modify their activity.

Treviño et al. Page 4

Reprod Toxicol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2 Recommendations for future in vitro experiments

The aforementioned in vitro studies suggest that xenoestrogens, such as DES, may activate 

nongenomic signaling pathways to disrupt the epigenome in breast cancer cells, however, 

more studies are required to determine the effect of this disruption on breast tumorigenesis. 

Breast cancer is a complex and heterogeneous disease with a variety of subtypes, each 

exhibiting different prognosis and treatment response. Since MCF-7 cells represent just one 

of those subtypes (luminal A)[43], studies in multiple breast cancer cell lines are warranted. 

These additional studies are especially important in light of the fact that breast cancer cell 

lines exhibit diversity in estrogen receptor expression [43], which will impact the ability of 

xenoestrogens to activate nongenomic signaling pathways in a particular cell line.

Thus far, the discussion has focused on activation of nongenomic signaling pathways by the 

pharmaceutical DES, a model test compound for ER signaling. However, present-day 

exposure to DES is limited and investigation of other EDCs is needed. DES has been shown 

to be associated with increased breast cancer risk in rodents and humans, but this association 

is still a matter of debate [16, 44–47]. Despite this debate, concerns have been raised that 

other endogenous and exogenous estrogens and estrogen mimics could contribute to breast 

cancer etiology and/or progression.

One such exogenous estrogen is the ubiquitous industrial chemical bisphenol A (BPA). CDC 

studies have shown that virtually all Americans have detectable levels of BPA in their urine 

[48] and unconjugated BPA is detectable in human cord blood[49]. A limited number of 

studies have examined the effects of BPA in mammary gland development and 

tumorigenesis. Mice exposed to BPA in utero exhibit altered fetal mammary gland 

morphogenesis, an increase in ductal extension and a delay in lumen formation at embryonic 

day 18 [50]. In utero exposure to BPA also has the ability to cause adverse effects in adult 

life. Mammary tissue of exposed mice is hypersensitive to hormones, with an increase in the 

number of terminal end buds (TEB), as well as increased TEB area and density [51–53]. In 

CD-1 female mice, intraductal hyperplasias (pre-cancerous lesions that give rise to 

mammary adenocarcinomas) were observed exclusively in BPA-exposed animals [54]. As 

mentioned previously, early-life BPA exposure alters susceptibility to DMBA-induced 

carcinogenesis in rats [13, 14]. These experimental findings point to a possible association 

between BPA exposure and breast tumorigenesis, however, the mechanisms underlying this 

association have not been elucidated. It is possible that, similar to DES, BPA (and other 

xenoestrogens) can also activate nongenomic signaling pathways leading to post-

translational modifications of epigenetic modifiers and subsequent reprogramming in breast 

cancer cells.

5. Concluding remarks

In vitro studies in breast cancer cells serve as a foundation for the hypothesis that 

xenoestrogens activate nongenomic signaling pathways, leading to post- translational 

modification of histone modifiers and subsequent epigenetic reprogramming in the 

developing mammary gland to increase susceptibility to breast cancer (see Figure 1 for 

model). Estrogen exposure has been shown to activate PI3K/Akt signaling, resulting in 

phosphorylation and inactivation of EZH2, as well as decreased H3K27me3 and increased 
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target gene expression in mouse mammary epithelial cells [29]. Interestingly, this activation 

is not seen in mammary epithelial cells from knock-in mice that express a mutant ER 

incapable of being palmitoylated (hence, does not localize to the membrane) [29]. These 

data highlight a role for membrane ER signaling in normal mammary gland development 

and possibly breast tumorigenesis since the effect PI3K/Akt activation on epigenetic 

reprogramming is conserved between normal breast and breast cancer cells. Future in vivo 

studies utilizing models that exhibit susceptibility to mammary tumors are needed.

There is evidence, however, that epigenetic reprogramming induced by environmental 

estrogens can influence tumor development in other tissues. For example, neonatal exposure 

to BPA sensitized the rat prostate gland to adult induced hormonal carcinogenesis and 

significantly increased incidence of prostatic intraepithelial neoplasia (PIN), a precursor to 

prostate cancer [55]. Furthermore, differentially methylated candidate genes were identified, 

a subset of which are members of signal transduction pathways, including MAPK/ERK, 

phosphokinase C and cAMP pathways [55]. In a separate study, Prins et al. reported that 

BPA stimulates human prostate stem cell renewal and activates PI3K/Akt and ERK in these 

cells [56]. In addition, similar to the study in rats, BPA enhances estrogen-driven 

carcinogenesis of human prostate epithelial xenografts [56].

Our group has shown that the dietary estrogen genistein activates PI3K/Akt in the uterus, 

increases phosphorylation of EZH2, and decreases H3K27me3 levels, resulting in 

hypersensitivity of target genes to estrogen [57, 58]. Additionally, neonatal exposure to 

genistein significantly increases uterine tumor incidence and multiplicity in rats [58]. 

Interestingly, BPA exposure was unable to induce nongenomic signaling in the uterus, and 

in contrast to DES, did not increase uterine tumorigenesis, indicating nongenomic signaling 

and engagement of epigenetic programmers exhibits both xenoestrogen- and tissue-specific 

effects [58].

Taken together, the in vitro studies and in vivo studies in the prostate and the uterus support 

the hypothesis that environmental estrogen exposure, in particular during early life, may 

indeed alter susceptibility to tumor formation in the adult through epigenetic programming 

of target tissues. Since the ability of EDCs to activate nongenomic signaling exhibits tissue 

specificity, it is not sufficient to merely extrapolate effects in other tissues to the mammary 

gland. As such, it is now important to move this research into the mammary gland to 

determine whether environmental estrogens activate nongenomic signaling to induce 

epigenetic reprogramming is an underlying mechanism by which these exposures increase 

breast cancer risk.
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Highlights

• Xenoestrogens modulate histone methyl mark expression in breast cancer cells

• Xenoestrogens activate multiple cell signaling pathways in breast cancer cells

• Histone “writers”, “readers” and “erasers” are targets of these signaling 

pathways

• Epigenetic reprogramming by xenoestrogens may play a role in breast 

carcinogenesis
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Figure 1. 
Model of epigenetic reprogramming by xenoestrogens and breast cancer risk. Xenoestrogens 

activate cell-signaling pathways, including the PI3K/Akt, PKA, and MAPK pathways 

(among others), leading to phosphorylation of “writer”, “reader”, and “eraser” epigenetic 

modifier proteins. These phosphorylation events can serve to activate or inactivate the 

modifier proteins resulting in alteration (either addition or loss) of specific histone 

modifications (Mod) and epigenetic reprogramming of target genes (i.e. oncogenes and 

tumor suppressors) that could ultimately contribute to breast tumorigenesis.
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