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Abstract

In pharmaceutical research, making multiple statistical inferences is standard practice. Unless 

adjustments are made for multiple testing, the probability of making erroneous determinations of 

significance increases with the number of inferences. Closed testing is a flexible and easily 

explained approach to controlling the overall error rate that has seen wide use in pharmaceutical 

research, particularly in clinical trials settings. In this article, we first give a general review of the 

uses of multiple testing in pharmaceutical research, with particular emphasis on the benefits and 

pitfalls of closed testing procedures. We then provide a more technical examination of a class of 

closed tests that use additive-combination-based and minimum-based p-value statistics, both of 

which are commonly used in pharmaceutical research. We show that, while the additive 

combination tests are generally far superior to minimum p-value tests for composite hypotheses, 

the reverse is true for multiple comparisons using closure-based testing. The loss of power of 

additive combination tests is explained in terms worst-case "hurdles" that must be cleared before 

significance can be determined via closed testing. We prove mathematically that this problem can 

result in the power of a closure-based minimum p-value test approaching 1, while the power of an 

closure-based additive combination test approaches 0. Finally, implications of these results to 

pharmaceutical researchers are given.
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1 Introduction

Interesting questions in clinical trials often involve a collection, or family, of inferences, 

wherein the goal is to make conclusions that are defensible over the entire set. Such 

inferences may involve comparing several treatment or dose groups, multiple endpoints 

and/or time points, interim analysis, multiple tests of the same hypothesis, variable and 
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model selection, and subgroup analyses (e.g. Dmitrienko and Offen, 2005). The issue of 

whether, when, and how to adjust the conclusions of the study to account for multiple 

simultaneous inferences is referred to herein concisely as the multiplicity issue.

The multiplicity issue arises when pragmatism, technology, and elementary probability 

theory intersect. The relatively inexpensive ability to obtain additional measurements on an 

experimental unit (as opposed to obtaining additional experimental units) and the ease by 

which analyses on these measurements may be conducted in software leads to the 

inescapable fact that multiple statistical tests, each of which has a nonzero probability of 

rejecting a null hypothesis, will have a higher "overall error rate" than when any one test is 

considered individually unless the researcher adapts the usual testing procedure to 

acknowledge the other tests in the family.

The phrase "overall error rate" is, of course, imprecise. Many approaches to quantifying the 

notion of overall error have been devised (see Hochberg and Tamhane, 1987; Westfall and 

Young, 1993; Shaffer, 1995; Hsu, 1996; Westfall et al., 2011; Bretz et al., 2010, for 

overviews). A common approach is to control the "familywise error rate" (FWER). To 

define FWER, let V denote the (random) number out of m > 1 hypotheses H1, …, Hm that 

are falsely rejected (i.e., the number of Type I errors). Then a multiple comparison 

procedure that controls the FWER at α (in the "strong sense," which is usually what is 

desired) is one for which . That is, a 

multiple testing method controls the FWER in the strong sense if the probability of any false 

rejection is bounded by a regardless of which subset of nulls happens to be true. In the 

simple case of three hypotheses Hl, H2, and H3, there are eight of states of nature that are 

possible. All three hypotheses could be true, any of the three pairs could be true, any of the 

three individual hypotheses may be true, or none could be true. When discussing the FWER 

of a particular procedure, one is implicitly referring to the maximal FWER among all 

possible configurations of true and false null hypotheses (Westfall et al., 2011). Because of 

this, many researchers regard the Bonferroni method (wherein Hi is rejected when pi < α/m) 

as suboptimal for a large number of hypothesis tests unless one assumes that there are really 

few real effects (i.e., few false null hypotheses) among the many tests (O’Brien, 1984; 

Pocock et al., 1987).

Instead of the simple Bonferroni method, pharmaceutical researchers often prefer the 

versatile and powerful methods of FWER control known based on the closure principle 

(Marcus et al., 1976). Closure-based testing begins by forming the set of all intersections 

null hypotheses of the individual (or elementary) hypotheses Hi. Rejection of an elementary 

hypothesis requires rejection of all intersection hypotheses HI that "include" Hi in the 

intersection. Any α-level test may be used to test the intersections HI.

In the pharmaceutical industry, methods based on closure are popular because of their 

incredible flexibility and generality. Under the banner of "closed testing" lie O’Brien-type 

tests (Lehmacher et al., 1991), fixed-sequence methods (e.g. Wiens, 2003; Huque and Alosh, 

2008), gatekeeping methods (e.g. Westfall and Krishen, 2001; Dmitrienko et al., 2007), 

weighted methods, dose-response methods, and methods that consider multiple endpoints 
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and multiple doses simultaneously (Westfall and Bretz, 2010). The recently popular 

graphical methods of Brannath and Bretz (2010) are also derived from the closure principle.

We structure the remainder of this article as follows. Section 2 motivates closed testing by 

reviewing some issues related to multiplicity in clinical trials, aimed at a general audience. 

Sections 3 through 7 are aimed at more technical audience. In Section 3 we discuss the 

closure method in more detail. Section 4 presents some recent results on preserving the 

directional, or Type III, error rate in closed testing. In Sections 6 - 7 we provide some 

optimality results for p-value combination tests (PVCTs) that may be used to test the subset 

intersection null hypotheses. We show, using analytic proof and simulation, that the 

optimality of an intersection test is not inherited when the test is used in the closure setting. 

Finally in Section 8 we provide general recommendations for the use of these tests in 

biopharmaceutical research, based on the results in previous sections.

2 Multiplicity in Clinical Trials

Multiplicity is an effect, as real as the effects of covariates and confounding variables, non-

response, missing data, and measurement errors that researchers regularly discuss without 

much controversy. Yet among many practicing scientists, the attitude toward multiplicity 

adjustments seems to range from "inconsequential nuisance" to "necessary evil." The extra 

burden of proof on researchers that multiplicity adjustments require remains the primary 

objection to their use within the larger scientific community. A multiplicity adjustment 

represents a tempering of the natural desire of researchers to herald any nominally 

significant result as evidence that supports whatever claim they are trying to make. The 

"publish or perish" imperative in universities and medical research centers, and the profit 

motive of pharmaceutical companies and other private enterprises, can force researchers into 

an ethical bind in some cases, such as with post-marketing investigations for alternative 

outcome measures or for additional subgroups to support labeling extensions. These 

additional analyses might be performed as a single trial for efficiency and ethical reasons, 

and the question of whether to adjust for multiplicity comes down to a choice between the 

scientific mandate of skepticism and capitulating to the pressure to publish significant 

results (Bretz et al., 2009).

However, in the pharmaceutical arena, the multiplicity issue is generally better understood if 

not thoroughly enjoyed. For example, (Scott et al., 2008) state

…we believe the most likely explanation for the lack of riluzole efficacy in our 

report is that the effect published in the original riluzole studies must be attributed 

to type I error…Riluzole is an example of how bias toward type I error is 

propagated when negative results are not routinely reported in the literature (p.12).

Concerns over the efficacy of drugs, especially psychiatric medication, fuel costly lawsuits 

and public concern over the nature of the clinical trials process (Graham, 2006; 

Mallinckrodt, 2006; Dyer, 2007; Wisniewski et al., 2009; Wilson, 2010). Although estimates 

vary by firm and drug class, costs to bring a new drug to market beginning with Phase I 

trials can range from $868 million to $2 billion (Adams and Brantner, 2006). The 

consequences of pursuing every apparent significance would logically result in a kind of 
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inverse of Rosenthal’s (1979) "file drawer problem;" rather than potentially informative but 

non-statistically significant results never being published, spurious relationships would the 

enter the literature and ineffective therapies would become part of treatment protocols.

Confirmatory Phase III clinical trials represent a critical period for pharmaceutical 

companies. As the final phase before a drug receives regulatory approval, Phase III trials 

must provide compelling evidence of efficacy and safety (Westfall and Bretz, 2010). Failing 

to account for multiplicity can lead to approval of a drug over existing drugs as an 

improvement, when there is in fact no beneficial effect. Conversely, a drug may appear 

worse for some side effect when it is indeed not worse at all, preventing the release of a 

potentially useful drug. Thus, the multiplicity issue has received a good deal of attention 

from regulatory agencies, who are aware that profit motives can hinder scientific objectivity. 

The U. S. Food and Drug Administration (FDA) has adopted the efficacy guidelines 

proposed by the International Conference on Harmonisation (1998, ICH[) which state, in 

part,

When multiplicity is present, the usual frequentist approach to the analysis of 

clinical trial data may necessitate an adjustment to the Type I error. Multiplicity 

may arise, for example, from multiple primary variables…multiple comparisons of 

treatments, repeated evaluation over time, and/or interim analyses…[A]djustment 

should always be considered and the details of any adjustment procedure or an 

explanation of why adjustment is not thought to be necessary should be set out in 

the analysis plan. (p. 26)

The European Union’s analog of the FDA, the European Medicines Agency, has also 

released guidelines on the appropriate application of multiplicity in clinical trials (see 

Committee for Proprietary Medicinal Products, 2002).

Of special concern in pharmaceutical research is the failure of a significant result to replicate 

in subsequent trials. The concept of replication comprises two types, which Lindsay and 

Ehrenberg (1993) call "close" and "differentiated." Close replication attempts to reproduce 

the original conditions in the study as much as possible, using the same techniques, methods 

of analysis, background conditions, and patient populations populations. Differentiated 

replication establishes the generalizability of findings and assesses the robustness of the 

findings obtained in close replications. Differentiated replication in a pharmaceutical 

context, for example, might suggest additional indications for a drug or additional patient 

groups. Keeping the concept of replication firmly in mind makes the need for multiplicity 

adjustment clear. The level of significance invoked in any hypothesis test conducted from a 

frequentist perspective is an implicit reference to repeated applications of the test on 

different random samples from the same process wherein the null hypothesis is true. The 

familywise error rate, in turn, expands the scope of error protection to multiple tests. 

Inasmuch as replication is central to pharmaceutical science, so should be multiplicity be a 

central concern.

Several examples of replication failure exist. Fleming (1992) reports that a conclusion of an 

effect of preoperative radiation therapy on survivability of colon cancer was actually based 

on a subgroup analysis and did not replicate. King (1995) highlights an example of the 
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financial consequences–a 68% drop in shareholder value–of seemingly promising results 

from Phase II clinical studies failing to replicate in a Phase III trial. More recently, the issue 

of replication in genetic association studies has been addressed, with an increasing focus on 

the issue of chance results (Colhoun et al., 2003). In genetic studies, the multiplicity 

problem is rampant (Efron, 2004), with myriad genes to be tested, and even multiple tests 

within genes, e.g., for dominant, recessive, and additive allelic effects (see Westfall et al., 

2002).

A main criticism of multiplicity adjustment centers on how the family of hypotheses ought 

to be formed (O’Neill and Wetherill, 1971; Cook and Farewell, 1996; O’Keefe, 2003). 

Natural questions arise regarding the spatial and temporal boundaries that govern family 

creation, and how increasing researchers’ burden of proof affects the progress of scientific 

inquiry. Indeed, constructing a family of hypotheses is a highly discipline-dependent and 

ultimately subjective endeavor (Hochberg and Tamhane, 1987; Westfall and Young, 1993; 

Westfall et al., 2011).Fortunately, guidelines exist for pharmaceutical research: Westfall and 

Bretz (2010) provide some useful guidelines for selecting families involving primary, 

secondary, safety and exploratory endpoints in clinical trials.

Related to the issue of determination of family size is the determination of the appropriate 

error rate to control. Westfall and Bretz (2010) suggest that FWER control, e.g., by closed 

testing, is essential for multiple endpoints and doses in confirmatory Phase III clinical trials, 

but that less stringent type I error rate control may be appropriate for pre-clinical, safety, and 

exploratory research. For example, in high-throughput and genomics research there are 

typically thousands of hypotheses to be tested, and strict FWER control over the entire 

family is often considered too conservative. Instead, methods to control the false discovery 

rate (Benjamini and Hochberg, 1995) or generalized familywise error rate (Korn et al., 

2004) are often recommended in these cases. However, our focus is on standard closed 

testing procedures, and we do not consider these methods in this paper.

Another complicating issue regarding multiplicity adjustment is the Bayesian/frequentist 

paradigm split. The skepticism inherent in multiple comparisons procedures falls naturally 

within the Bayesian realm in the form of prior selection. For instance, the statement that 

motivates the multiplicity argument–"What if all (or many) null hypotheses are true?"–is 

actually a statement about prior plausibility of the collection of null hypotheses. Bayesians 

have long held that the appropriate response to the multiplicity problem lies in proper 

specification of a prior distribution that effectively "shrinks" the most extreme observed 

effects toward the mean,thereby making them, in a sense, "less significant"(Lindley, 1990). 

While frequentist methods are similar in the sense that the significances of the most extreme 

effects also are downplayed, or "shrunk," the degree of shrinkage for the frequentist methods 

is orders of magnitude more extreme than that of the Bayesian methods using the "usual" 

priors. But for experiments where multiplicity adjustments are considered appropriate, the 

"usual" Bayesian priors are inappropriate. Instead, researchers should employ "skeptical" 

mixture priors that incorporate point probability near zero (Berger and Sellke, 1987; Gonen 

et al., 2003; Westfall and Bretz, 2010).
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The focus of this article is frequentist, not Bayesian. In the next sections, we discuss the 

theory of the closure method in much more detail and then provide some recent results that 

we hope will guide its use in clinical trials applications and spur new theoretical 

developments. Some of the material in the next few sections is more theoretical, but a 

generally accessible practical summary and conclusions are given in Section 8.

We give particular emphasis to two types of base tests that are prevalent in clinical trials: 

additive combination (AC) and minimum p-value based (MINP) tests. One example of the 

former is the O’Brien test (O’Brien, 1984), which has been proposed for analyzing multiple 

endpoints within a closure setting (Lehmacher et al., 1991). Other examples of the former 

include the inverse normal sum test and the Fisher combination test, which are popular for 

the analysis of group sequential trials (Brannath et al., 2002). Closed testing using MINP 

based methods and their variants is also very popular, particularly for use with graphical-

based protocols for testing endpoints and doses sequentially (Brannath and Bretz, 2010). We 

compare the AC and MINP classes of closed tests in Sections 6 - 7, and make 

recommendations concerning their use in clinical trials in Section 8.

3 Overview of Closed Testing

To employ closed testing, one first identifies the family of tests (e.g., the set of dose/

endpoints or subgroup tests of interest) and then constructs all subset intersection hypotheses 

HI, I ⊆ M = {1, 2, …, m} involving these tests. The closure family is then , 

and one rejects Hi at level α if and only if all hypotheses  with i ∈ I, are rejected at 

level α. In multiple testing, an adjusted p-value is the smallest level of significance at which 

an elementary null hypothesis can be rejected while accounting for multiplicity (Wright, 

1992; Westfall and Young, 1993). The closure adjusted p-value for an individual hypothesis 

Hi is simply . Proof that the closure method controls the FWER in the 

strong sense is simple and elegant (p. 137 Hsu, 1996).

Closed testing requires in general  test evaluations, since there are 2m − 1 subset 

intersection hypotheses. In many cases, however, shortcuts exist for certain classes of tests 

(one of which, p-value combination tests, we discuss in this article) that allow either 

 evaluations (Hochberg and Tamhane, 1987; Grechanovsky and 

Hochberg, 1999; Romano and Wolf, 2005). The two most important conditions are that the 

test statistic behaves monotonically in the data, and that the critical region is determined by 

subset size.

The monotonicity requirement allows one to select particular subsets for each cardinality |I| 

or "level" within the closure tree; the idea in that one need test all of the intersection 

hypotheses if some intersections will always produce a value of the test statistic that is more 

extreme than the others of the same cardinality |I|. The additive combination (AC) p-value 

combination tests we consider later in this article have the property. That is, for an additive 

combination test statistic CAC (·), CAC (p1, …, pj , …, pm) < CAC (p1, …, pj′, …, pm) 

whenever pj > pj′. A combination test of the minimum-p (MINP) class rejects for small 

values of the test statistic CMINP (·), so the monotonicity requirement is instead CMINP (p1, 
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…, pj , …, pm) ≥ CMINP (p1, …, pj′, …, pm) whenever pj > pj′. The equality is required 

because, by construction, MINPs do not use the magnitude of all the p-values directly but 

only their relative ordering. For example, using the Bonferroni global test, we reject if mp(1) 

≤ α, with p(1) the minimum of the set of p-values p1, …, pm, does not change if p(2), …, p(m) 

change in magnitude.

The second condition for the closure shortcut is that the critical value depends on subset size 

|I| alone; this is the "cardinality" condition. This condition, along with monotonicity, prunes 

the closure tree by requiring a test of only one of the subsets for a given cardinality |I|. If the 

critical value of a combination test for cardinality |I| is constant for fixed |I|, and the 

combining functions are monotonic in the pi, then for each level in the tree, only the subset 

that produces the smallest (for ACs) or largest (for MINPs) test statistic must be examined 

for each subset of size k = 1, 2, …, m. Such subsets are "hurdles" in the sense that a test of 

these subsets must be significant if an elementary hypothesis is to be rejected.

Operationally, the shortcut proceeds as follows. Without loss of generality, relabel the 

individual hypotheses and p-values according to the order of the p-values, so that H1 has p-

value p1 ≡ p(1), H2 has p-value p2 ≡ p(2), etc. Now consider testing an individual Hi, with p-

value pi, using closure and a PVCT as the test of the intersection hypotheses. The closure 

shortcut requires that we identify the "hurdle" subset for each cardinality k = 1, 2, …, m. 

This subset produces the largest combined p-value and is the "hurdle" that must be rejected 

if Hi is to be rejected. To describe the closure shortcut in its full generality requires that we 

consider two cases for each k : the case where pi is among the k largest p-values ("Case 1") 

and the case where pi is not among the k largest p-values ("Case 2").

An example of the shortcut is shown in Figure 1 for testing H2. We assume again for ease of 

exposition that the hypotheses are labeled according to the order of their p-values. To reject 

H2, all intersection hypotheses that involve H2 must be rejected. At each cardinality level in 

the tree, however, only the intersection hypothesis that will produce the largest combined p-

value needs to be tested; if that intersection hypothesis is rejected, all other intersections at 

that level can automatically be rejected because each one has the same critical value. Thus 

the test of H2 can be performed in four steps, signified by the ovals, rather than eight. 

Shortcut procedures are discussed further in Brannath and Bretz (2010).

4 Closed Testing and the Directional Errors Problem

That closed testing methods control the FWER is simple to prove. Less well known is 

whether such methods control directional errors. Such an error occurs when a hypothesis is 

correctly rejected, but one misclassifies the sign of the effect. Controlling the directional 

error rate is a natural concern in pharmaceutical research, where one wants to know if a drug 

makes you better and/or has side effects.

To formally define the problem in a general setting, let Hi : θi = 0 be point null hypotheses 

tested against  (or the one-sided alternative ), i = 1, 2, …, m. Given an 

estimate  and a rejection of the null hypothesis, the researcher would like to conclude the 

sign of θi using the sign of . A directional error occurs when Hi is rejected but when the 
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researcher concludes  when in reality . Letting V1 

be the (random) number of true null hypotheses rejected and V2 be the (random) number of 

sign errors, an error rate of interest to researchers is the combined error rate CER = Pr(V1 > 

0 ∪ V2 > 0), the probability of making at least one Type I error or making at least one Type 

III error.

Control of the CER by controlling the FWER is not automatic. Shaffer (1980) investigates 

Holm’s (1979a) stepdown procedure, a particular implementation of closed testing, showing 

that under the assumption of independent test statistics from a wide variety of distributional 

families, CER is indeed controlled. She illustrates the failure of Holm’s method to control 

the CER in the case of a shifted Cauchy distribution, which is not typically seen in 

applications. Holm (1979b; 1981) demonstrates that the stepdown approach controls the 

CER in a certain normal error regression setting with unknown variance. Finner (1999) 

examines the issue further and derives some results for step-up tests, closed F tests, and the 

modified Scheffé S method. He further notes that directional error control for stepwise 

procedures for the many-to-one and all-pairwise comparison situations remains to be solved. 

More recently, in a specific clinical trials setting, Goeman et al. (2010) have tackled the 

directional issue by using the partitioning principle (e.g. Bretz et al., 2010) to test for 

inferiority, non-superiority, and equivalence simultaneously.

Westfall et al. (2013) systematically examine the CER of closed testing procedures using a 

combination of analytical, numerical, and simulation techniques. For a class of tests 

involving multivariate noncentral T distributions, they demonstrate using a highly efficient 

Monte Carlo technique that no excess directional errors occur with closed testing. Their 

simulation study uses a one-way ANOVA model with up to 13 groups of varying sizes and 

several types of comparisons (all pairwise, many-to-one, sequential, and individual means 

with the average of other means). They demonstrate that an exception to CER control using 

Bonferroni tests (both one- and two-sided) in closure can occur for nearly collinear 

combinations of regression parameters in the simple linear model. However, they note that 

this situation would arise rarely if at all in pharmaceutical practice.

5 Closed Testing Using P-Value Combination Tests

In this section we investigate the power of a specific type of intersection test known as a p-

value combination test (PVCT) or "p pooler" (e.g. Darlington, 1996; Darlington and Hayes, 

2000) . As the name suggests, tests of this type combine the p-values obtained from tests of 

several individual hypotheses to test the intersection of those hypotheses. The original 

motivation for tests that only require p-values arose from meta-analysis, in which several 

tests (usually assumed to be independent) are combined (Hedges and Olkin, 1985; Hedges, 

1992; Hedges et al., 1992; Becker, 1994; Rhodes et al., 2002). Independence is a valid 

assumption for AC tests done on separate patient pools, for example, in group-sequential 

clinical trials and in the analysis of disjoint patient subgroups. Therefore, the results of these 

next sections apply directly to those cases. For correlated multiple endpoints and/or multiple 

dose contrasts, our results do not apply directly, but we expect that some aspects of our 

general conclusions will remain intact.
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The well-known Holm (1979a) and Hommel (1988) methods use the Bonferroni and Simes 

global tests, respectively, within the closure framework (Dmitrienko and Offen, 2005; 

Hommel et al., 2011; Westfall et al., 2011). PVCTs have also been used frequently in 

adaptive clinical trials (Bauer and Kieser, 1999; Kieser et al., 1999; Lehmacher and 

Wassmer, 1999; Hommel, 2001; Bretz et al., 2006).

Three basic classes of PVCTs exist. Additive combination (AC) methods first transform 

each p-value by qi = hi(pi), where the hi(·) may be different for each i, if, for example, 

weights λi are applied to each pi (Mosteller and Bush, 1954; Good, 1955; Benjamini and 

Hochberg, 1997; Westfall and Krishen, 2001; Zaykin et al., 2002; Westfall et al., 2004; 

Whitlock, 2005; Chen, 2011). In the present paper, we assume λi ≡ 1, which allows us to 

use the closure shortcut described in the previous section. After transforming each p-value, 

one then compares the test statistic  to the appropriate quantile of the distribution 

of , where Qi = hi(Pi) and Pi is a random p-value. The function hi(·) is usually 

chosen such that Qi with distribution dQi is in a class F of probability distributions that is 

closed under addition; that is, . The normal and gamma distribution 

families are examples.

Minimum–p (MINP) methods use only the smallest p-value of all of the hypotheses in the 

intersection. MINP methods are functions of the ordered p-values p(1), …, p(m). The simplest 

example is the global version of the Bonferroni test, which takes the form C(p(1), …, p(m)) = 

mp(1). In general, MINP tests use the rank-order information about the p-values, while AC 

methods incorporate the actual magnitudes of the p-values. As it turns out, the inherent 

differences in the way each type of test uses the information contained in p-values 

drastically affect their behavior in closed testing.

Hybrid PVCTs such as the truncated product method (TPM) proposed by Zaykin et al. 

(2002) also exist; their power properties are intermediate to AC and MINP methods. We 

include a plot of the performance of the TPM to give an idea of its performance relative to 

the pure AC and MINP methods. Details of the TPM are provided in Henning (2011).

Optimality properties of PVCTs have been studied extensively (e.g. Birnbaum, 1954; 

Bhattacharya, 1961; Berk and Cohen, 1979; Marden, 1982, 1985; Westberg, 1985; Loughin, 

2004), but optimality results for these tests when employed in closed testing are less well 

known (Romano et al., 2011). We fill this gap by evaluating the power of several PVCTs in 

the closure setting and comparing the results to the power of the tests when they are used to 

test "global" (intersection) null hypotheses, which has been their traditional application. As 

documented in the literature, tests in the AC class generally perform well as global tests 

(Loughin, 2004). We show that they perform terribly in closed testing unless the proportion 

of alternative hypotheses among the original set of m > 1 hypotheses is extremely high. 

Conversely, tests in the MINP class make for lackluster global tests, as expected (Westberg, 

1985; Zaykin et al., 2002; Loughin, 2004), unless the proportion of alternatives among the 

original set of m hypotheses is small. However, these tests are far superior to AC tests, and 

approach optimal, under closure.
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Figure 2 illustrates the main point. Panel (a) shows how the power of the Bonferroni test (a 

MINP test) for an intersection hypothesis compares to the power of the Fisher combination 

test (an AC test) as the number m of hypotheses increases under a common sampling frame 

described in Section 6. The Bonferroni method fares poorly compared to the Fisher 

combination test as m increases. But in panel (b), the average power of the Bonferroni test 

under closure (which is equivalent to the Holm test) is seen to be much higher than the 

power of the Fisher combination test under closure, under the same sampling scheme.

5.1 Some Additive Combination Methods

The basis of many AC tests is the fact that under common assumptions, when a null 

hypothesis Hi is true, the (random) p-value Pi has the U(0, 1) distribution. The well-known 

Fisher combination test uses the fact that, for a set of independent p-values {P1, P2, …, Pm} 

arising from hypotheses {H1, H2, …, Hm}, the statistic  is distributed as 

 under ∩Hi, where Qi = −2ln(Pi). The combined p-value for the Fisher test is then

(1)

Optimality properties of the test have been examined extensively in the literature (Birnbaum, 

1954; Littell and Folks, 1971; Koziol and Perlman, 1978; Marden, 1982; Koziol and 

Tuckwell, 1999) and it is quite popular in the biological sciences (Peng et al., 2009; Kechris 

et al., 2010; Ouellette et al., 2011)

A similar test is the chi-square method suggested by Yates (1955) and Lancaster (1961), and 

studied by Loughin (2004). Specifically, let

(2)

with Ψv (·) the cumulative distribution function of a central chi-squared random variable 

with v degrees of freedom. By a standard result, . The combined p-value is 

then

(3)

Another test that has seen wide application in a number of diverse fields (e.g. Kechris et al., 

2010; Ryan et al., 2010; Lange, 2011) is known variously as the inverse normal method 

(Hedges, 1992; Becker, 1994; Piegorsch and Bailer, 2009), Stouffer’s method (Stouffer et 

al., 1949; Darlington and Hayes, 2000), or the Liptak method, after (Liptak, 1958). The 

combined test statistic is

(4)
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where Φ(·) is the standard normal cumulative distribution function. The test is attractive 

because the linearity property of the normal distribution implies that  under 

∩Hi, and the combined p-value can be readily calculated as

(5)

with Z ~ N(0, 1). The flexibility of the normal distribution makes the Liptak test especially 

attractive. For example, while determining the null distribution of a weighted Fisher-type 

statistic is cumbersome (Good, 1955), a weighted Lipták test is relatively simple (e.g. Koziol 

and Tuckwell, 1994; Whitlock, 2005).

5.2 Some Minimum-P Methods

The simplest MINP method is based on the Bonferroni test, which rejects ∩Hi if

(6)

with combined p-value

(7)

Unlike typical AC tests, the Bonferroni test requires no assumption about the dependence 

relationships among the tests. As discussed in Section 3, Holm’s (1979a) method is obtained 

by applying the simple Bonferroni global test the intersection hypotheses in the closure 

method.

Under independence, a test proposed by Tippett (1931) and S̆idák (1967) is more powerful. 

The global null hypothesis is rejected if

(8)

For Tippett’s test the combined p-value is

(9)

One may use other order statistics as well. However, these tests tend to perform poorly 

(Birnbaum, 1954; Loughin, 2004), so we do not consider them here.

A more useful method is one proposed by Simes (1986), wherein ∩Hi is rejected when p(i) ≤ 

iα/m for at least one i, or equivalently when

(10)
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The Simes test is uniformly more powerful than the Bonferroni test, at the expense of 

dependence assumptions: Under certain types of positive dependence, Simes is well known 

to be conservative (Samuel-Cahn, 1996; Sarkar and Chang, 1997), and the situations in 

which it is highly liberal (the Type I error rate exceeding α) are unusual, occurring in special 

cases of pathological dependence structure (Rødland, 2006). The Simes test is also popular 

because its critical values, iα/m, are those used in Benjamini and Hochberg’s classical false 

discovery rate controlling method (Benjamini and Hochberg, 1995).

As originally derived, Simes’ test is only valid for an intersection null hypothesis, not as a 

method for evaluating individual hypotheses. Hochberg (1988) and Hommel (1988) derive 

closure-based methods using Simes’ test to control the FWER; this method is popularly 

known as the "Hommel method," and is the one we employ in this paper. Like the AC 

methods, the Hommel method has a shortcut of O(m2), requiring only the evaluation of the 

same "worst-case scenarios" described in Section 3.

Table 1 summarizes the various p-value based global tests. In the next section, we discuss 

the methodology for evaluating these tests in the closure setting.

6 Comparing the Methods

We now compare the power properties of PVCTs when they are used in their traditional 

setting as intersection tests for the composite hypotheses. The results in this section and in 

the subsequent section allow the number of tests, m, to grow large, and the tests are assumed 

independent. One application of such a case in pharmaceutical research is in the analysis of 

a large collection of non-overlapping patient subgroups. Other cases where m may be large 

include preclinical research where large numbers of hypotheses (e.g., genomic) are tested, 

the analysis of safety data in Phase III clinical trials, and the analysis of a large collection of 

secondary endpoints in Phase III clinical trials. While the results of this section do not apply 

directly to those cases because they all involve dependent tests, we expect that similar 

results can be shown with dependent test statistics due to diminishing tail dependence with 

smaller a thresholds (Clarke and Hall, 2009).

To generate the p-values, we use the two-level hierarchical model

(11)

(12)

where

is a two-point mass function for the alternative mean µ. The parameter 7r allows us to 

control the proportion of alternative hypotheses in a long-run average sense. For one 

particular simulation, the proportion of false null hypotheses may differ from π, but the 
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average proportion of alternatives over all simulations will be very close to π, by the Law of 

Large Numbers. This approach to generating null and alternative hypotheses has been 

employed by, e.g., Davidov (2011) and Newton et al. (2007), and is briefly discussed in 

Taylor and Tibshirani (2006). An advantage of the hierarchical model over a fixed 

alternatives model is that the proportion 7r can be set to anything, whereas in the fixed 

alternative model π can only take values k/m for k = 0, 1, …, m.

Specifying a δ ≠ 0 for each of the tests lets us control the "strength of evidence", a term used 

by Loughin (2004), against a particular null hypothesis, with larger δ representing larger 

evidence. We set δ such that a particular test (a "power anchor") has a fixed power of 

approximately β. For both the global and closure simulation studies, we use the Bonferroni 

test for the anchor because it is simple, widely known, analytically tractable, and is 

intuitively appealing as a benchmark against which to compare supposedly more 

sophisticated procedures. However, because what constitutes the alternative of interest is 

substantively different between global tests and individual tests, we need two separate power 

criteria, one for the global case and another for the closure case.

6.1 The Global Case

Consider the global null hypothesis , with alternative . The power of 

the global test is . There are 2m − 1 possible configurations that result 

in a false HM, so we must specify what points in  are of interest. We choose the 

alternative means δ in the hierarchical model by anchoring the Bonferroni global test to have 

power βBon when k = m × π hypotheses are false. This power setting will be approximate 

because we assume k is an integer in the calculations. All tests will be assumed two-sided; 

similar results are obtained for one-sided tests as shown in Henning (2011).

We now demonstrate the calculation of δ > 0. We desire that

Substituting in the Bonferroni procedure and the form of , we have

where Pi is again a (random) p-value. Now, we can solve (13) for δ as follows:
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(14)

where B = (1 − (βBon)/(1 − α/m)m−k and Φ(·) is the standard normal cumulative distribution 

function.

Power is estimated in the global case as the ratio of the number of rejections of the global 

null hypothesis to the total number of simulations. For a combination test Cj = C(Pj), Pj a 

vector of p-values, and number of simulations N,

(15)

with estimated standard error

(16)

For all of our simulations of global power, we use N = 50, 000, which is more than adequate 

(Zaykin et al., 2002; Whitlock, 2005; Loughin, 2004).

6.2 The Closure Case

The closure method admits inferences about the individual null hypotheses, and thus we 

need another power criterion. We use proportional (or average) power, defined as the 

expected value of the ratio of correctly rejected null hypotheses to all false null hypotheses 

(Westfall et al., 2011, chap. 18 and Bretz et al., 2010, chap. 2).

Let M1 = |I1|, where I1 ⊆ {1, 2, …, m} denotes the index set of the alternative hypotheses; 

M1 is the number of alternative hypotheses among the m hypotheses. Note that, according to 

our two-level model discussed at the beginning of this section, I1 is a random set and M1 ~ 

binomial(m, π). The average power βavg is related to the individual power of a test βi as 

follows:

(17)
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As in the global case discussed above in Section 6.1, we choose the Bonferroni test as our 

anchoring procedure. Letting z1-α/2m denote the critical value for a two-sided α-level test of 

H0 : µ = 0 using the Bonferroni procedure, we can specify δ > 0 as

(18)

because Pr (Z ≤ −z1−α/2m − δ) ≈ 0 for even moderate m, so we set δ = z1−α/2m − Φ−1 (1 − 

βBon).

We also specify a variety of values m. Because even the shortcut to the closure procedure 

involves certain "hurdles" as discussed in Section 3, the maximum number of tests we 

consider should be large enough to bring the effects of closure into sharp relief, but not so 

large as to be computationally infeasible. The shortcut requires in general O(m2) steps. 

When multiplied by a number of simulations N, the total number of evaluations can quickly 

become quite large. To account for this in a systematic way, we set N = 90, 000/m which 

keeps the "effective sample size" constant at 90, 000 as m grows.

Next we consider how to choose the patterns of evidence. Each pattern consists of a choice 

of anchoring power βBon and proportion of alternatives π. We consider three levels of 

anchoring power, assigning the following descriptive names: βBon = 0.50 : "Moderate"; βBon 

= 0.75 : "Strong"; and βBon = 0.90 :"Very Strong." We consider three levels of π, namely, π 

= 0.10 : "Sparse"; π = 0.50 : "Even"; and π = 0.90 : "Concentrated". Table 2 summarizes 

these patterns. In the global case, for example, the configuration βBon = 0.50 and π = 0.10 

("Moderate & Sparse") refers to the situation in which there is moderate power against the 

global null hypothesis, but this evidence is thinly apportioned among the m tests. Conversely 

the pattern of βBon = 0.90 and π = 0.90 implies an abundance of very strong evidence against 

the global null. In the closure case, the "Moderate & Sparse" case indicates that there are 

relatively few hypotheses among the m that are true alternatives, but that the individual 

power for the tests associated with the true alternatives is moderately high.

To estimate the proportional power given in equation 17, we define

(19)

(20)

to be the observed proportion of false null hypotheses rejected among the m1j false null 

hypotheses in the original set of mj hypotheses for a particular simulation j. When there are 

no false null hypotheses, we define Aj to be 0. We then estimate the average power as
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(21)

That is, we take the average of the Aj over all simulations with at least one alternative 

hypothesis in the set of m hypotheses. We estimate the standard error as

(22)

7 P-Value Combination Tests: Global Vs. Closure

We present the results of each row of Table 2 separately. For purposes of clarity, we do not 

depict the power curves for the Tippett or Bonferroni (Holm) tests, as these tests are 

consistently outperformed by the Simes (Hommel) test; further, we found that the chi-square 

test performs similarly to the Fisher test, so it is also not depicted. Results using all tests are 

shown in Henning (2011).

First, we consider the performance of PVCTs when there is moderate power sparsely 

distributed among the tests. We see in Figure 3a that, as global tests, MINP methods 

outperform all of the AC tests except the Liptak if the number of tests is fairly small. The 

Liptak test is the clear laggard, only showing signs of outperforming the MINP methods if 

the number of tests is large. This result is not unexpected (see O’Brien, 1984; Pocock et al., 

1987; Sankoh et al., 1997; Aickin, 1999; Bender and Lange, 1999; Bittman et al., 2009), and 

our simulation results are consistent with those presented in Westberg (1985) and Loughin 

(2004). MINP tests make good use of sparse information because one only has to have the 

smallest p-value be "small enough." Conversely, the AC methods use the magnitude of 

every p-value, and large p-values shrink the test statistic, leading to fewer rejections.

The story is radically different when considering the closure case, however, which is shown 

in Figure 3b. Here we see that MINP methods consistently outperform the AC tests, with the 

power of the AC tests dropping to essentially 0 as the number of tests increases. This 

illustrates our main point: using a powerful global test in the closure setting can lead to 

dramatic power losses.

When considering the "Moderate and Even" configuration, as shown in Figure 4, the results 

are even more striking. Here, the global power of the AC methods increases in m, eventually 

far outpacing that of the MINP tests. In the closure setting, however, the AC tests again 

falter. Only when the proportion of alternatives is quite high (π = 0.90) do AC tests begin to 

perform well in closure, as shown in Figure 5. However, even in this configuration, the 

power of these methods drops as m increases.

Similar results are obtained for other patterns in Table 2, as shown in Henning (2011). The 

generally poor performance of AC tests persists when the proportion of alternatives is 

increased to 50%. Only when the proportion of alternatives is at least 90% do AC tests begin 
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to gain power relative to the MINPs (figures not shown but available from authors). 

However,this power advantage is slight.

A natural question is whether any configuration allows AC methods to outperform MINP 

methods. Figure 6, which depicts the closure power of PVCTs in the case of moderate (50%) 

power and 100% alternatives, provides an answer; the performance of the methods for 

higher powers is similar. Here we see the first real reversal of the pattern: AC tests 

(including Liptak) now outperform the MINP methods.

Tables 3 and 4 below summarize the results. When the proportion of alternatives is small, 

MINP methods perform better as global tests than their AC counterparts. This is so because 

MINP methods succeed or fail on the strength of the "signal" contained in the smallest p-

values, while the AC methods incorporate the specific magnitudes of all p-values, mixing 

signal with "noise." The upshot of combining the actual magnitudes of the p-values is that 

when signal strength increases (in the form of a greater proportion of alternative 

hypotheses), the associated small p-values can compound to give a powerful global test. 

MINP tests disregard the additional evidence against the global null contained in other small 

p-values in favor of examining just the smallest.

7.1 Related Research

In the context of testing multiple related clinical endpoints for common effect direction, and 

assuming multivariate normal test statistics with a unit-variance compound symmetric 

covariance matrix, Bittman et al. (2009) demonstrate that a maximin test for the intersection 

null HI : θi = 0 ∀i ∈ I = {1, 2, … m} can be uniformly improved upon if one is interested in 

making inferences on the individual Hi using closure. A global test is maximin according to 

Bittman et al. (2009) if it maximizes

where . They propose a procedure for closure that is both 

consonant (i.e., rejection of an intersection implies rejection of at least one of the 

intersection components) and that maximizes the probability of at least one rejection. They 

discuss their consonant test for the special case of testing two two-sided normal means. 

Their global test statistic has rejection region

(23)

where c(1-α) is a constant such that the test has level α under (θ1, θ2)′ = 02×1. A notable 

feature of the region in (23) is that it combines features of both AC and MINP methods. We 

see that . They investigate the 

power of their test with a simulation study, and find that this test outperforms the Holm 

method and a test based on just the sum (equivalent to the Liptak test in their setup) when 

both hypotheses are false. When only one hypothesis is false, Bittman et al. (2009) note that 
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the a test based on max(|X1| , |X2|) (which is equivalent to a MINP test) performs better. 

Their simulation results, therefore, agree with ours.

Romano et al. (2011) show that power inheritance is possible but not automatic. More 

precisely, if an optimal global test of an intersection hypothesis H1 exists and results in a 

consonant multiple testing procedure, then that multiple testing procedure will have 

maximum power to reject at least one false null hypothesis among all procedures controlling 

the FWER at α. Thus, when working with consonant tests, the authors prove that an 

"inheritance property" exists for closed testing, as long as one begins with an optimal 

consonant global procedure. Finding such an optimal global test is generally a nontrivial 

task when working with PVCTs (Birnbaum, 1954).

Romano et al. (2011) go on to define a test that has this desirable power inheritance property 

for the problem of testing several normal means, that is,

They examine the power properties of their test for points of the form {(θ1, …, θm) : |θi| ≥ ε 

for at least one i}, with ε > 0. Their global maximin consonant test is , 

where cosh(·) is the hyperbolic cosine function. Interestingly, Romano et al. (2011) note that 

for large ε, their test nearly reduces to the ordinary Bonferroni global test, which supports 

our general conclusion that MINP tests are far better suited to closure than AC methods.

In our simulation study, the MINP tests we consider are consonant (this is proven rigorously 

by Sonnemann, 2008). To see this, consider the test of H12, where we have the observed p-

values p1 = 0.023 and p2 = 0.06, with α = 0.05. The closed testing procedure using 

Bonferroni global tests rejects H12 with a combined p-value  = 2(0.023) = 0.046. This 

implies that H1 can automatically be rejected, since  = 0.023. Hence, consonance is 

satisfied. The other MINP tests are consonant for similar reasons. To see why AC tests are 

not consonant in general, consider Fisher’s test with p1 = 0.06 and p2 = 0.07. The test 

statistic for H12 is then c = −2 ln(0.06) − 2 ln(0.07) = 10.95, giving a combined p-value of 

0.027. However, none of the component hypotheses can be rejected because both have p-

values larger than 0.05.

Our simulation study enhances the theory in Romano et al. (2011) by showing empirically 

how dramatic and pervasive the loss of power can be when using dissonant (i.e., non-

consonant) tests in the closure framework. The only situation that allows the dissonant AC 

tests to perform reasonably well is the 100% alternative case, which is quite restrictive. 

Although dissonant procedures are not optimal for rejecting individual null hypotheses, 

recent work by Goeman and Solari (2011) demonstrates that such procedures can be highly 

useful in an exploratory context. They show how to construct such confidence sets using the 

closure method (and, in one example, Fisher’s test), noting that dissonant procedures result 

in smaller (i.e., more precise) confidence sets than consonant procedures.
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7.2 The Problem of Hurdles

7.2.1 Conceptual Issues—As discussed in detail in Section 3, to test Hi using the closure 

shortcut with PVCTs, we need only explicitly test those intersection hypotheses associated 

with the largest p-values and pi. If these "worst-case" (or "highest hurdle") intersection 

hypotheses, one for each level in the closure hierarchy, can be rejected, all of the other 

intersection hypotheses involving Hi can also be rejected. Some of the points we will 

mention here have been discussed before (e.g. Goutis et al., 1996), but not in the closure 

context, which adds an additional layer of complexity.

Let us consider how AC and MINP combination methods work. To ease notation, we will 

assume again that the hypotheses have been relabeled according to the order of their 

associated p-values, so that H1 has p-value p1 ≡ p(1), etc. Let us begin with the Bonferroni 

procedure applied to each intersection test, i.e., Holm’s procedure. This procedure compares 

the smallest p-value in each intersection hypothesis H1 with α/K, where K = |I|, I ⊆ {1, 2, 

…, m}, is the number of p-values in the intersection test. If m = 10, K = 5, α = 0.05, and we 

are interested in testing H1, then we only need p1 to be smaller than 0.05/5 = 0.01. The null-

hypothesis p-values in this intersection, p7, p8, p9, and p10, can each be as large as 1 and the 

intersection test will still reject.

Conversely, the magnitude of the p-values strongly influences the AC methods. Consider 

first the Fisher method for this same situation, where K = 5 and α = 0.05. Assume that p1 = 

0.009 and p7 = p8 = p9 = p10 = 1. Then the Fisher test statistic is cFisher = −2 ln(0.009) + 0 + 

0 + 0 + 0 = 9.42, resulting in a combined p-value of 0.493. Thus, by closure, we can already 

conclude that H1 cannot be rejected at FWER = 0.05. In fact, in this extreme case, we must 

have  to achieve significance for the intersection test. The 

Lipták test performs even worse in this example, because limpi → 1 Φ−1(1 − pi) = −∞, which 

implies that if the other p-values in the intersection are sufficiently large, no amount of 

evidence contrary to the intersection null will ever lead to rejection.

Even when the proportion of alternatives is high, the hurdles problem remains. Suppose we 

have a collection of 100 elementary hypotheses H1, H2, …, H100, and again these 

hypotheses have been labeled as usual according to the order of their p-values. Further 

suppose that in this particular collection, 90% of the hypotheses are alternative (false nulls), 

and that the collection of alternative hypotheses is {H1, H2 …, H10}. This latter assumption 

eases the exposition and is not unreasonable, as p-values tend to be small under the 

alternative hypothesis.

Figure 7 depicts the testing pattern for H1. Each of these hypotheses must be rejected if H1 is 

to be rejected. As we move through the closure tree, eventually H1 with p-value p1 is tested 

in an intersection in which all of the hypotheses except H1 are true nulls, and will thus tend 

to have large p-values. If a PVCT incorporates the actual magnitude of every p-value, as 

does an AC test, whatever "signal" is found in the small p-value for H1 will be drowned out 

in the "noise" of the large p-values. However, if we are using an MINP method, the 

magnitude of the large p-values matters little as long as p1 is "small enough."

Henning and Westfall Page 19

Stat Biopharm Res. Author manuscript; available in PMC 2016 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To highlight just how much of an effect the hurdles problem has on AC tests, we will 

examine the algorithm for the case depicted in Figure 7, but at the other extreme: the case in 

which there is exactly one alternative among the m = 100 tests (that is, 1% alternatives). We 

will assume, as before, that H1 is the hypothesis we wish to reject. The intersection 

hypotheses, one for each cardinality K, will then involve p1 and the (K − 1) largest p-values. 

The set of hypotheses that must be explicitly tested in order to reject H1 is {H1, H1,100, 

H1,99, …, H1,2,…,100}.

To provide a clear picture of how differently the MINP methods perform compared to the 

AC tests, we wish to set the anchor of the Bonferroni global test to βBon = 0.90 for every 

intersection. To make the narrative a bit cleaner, we make the mild assumption that p1, the 

p-value for H1, will always be the p-value used for the Bonferroni global test, the other p-

values being greater than α/K with probability 1. This reduces the problem to finding an 

alternative mean δK such that Pr(P1 ≤ α/K) = βBon. Making this assumption, and using 

notation from Section 6, we have

(24)

Solving (24) for δK gives δK = Φ−1(1 − α/2K) − Φ−1(1 − βBon).

Figure 8 depicts the estimated power curves for the MINP and AC methods when taking 

subsets of size K = 1, 2, …, 50 out of a total of m = 100 hypotheses. This models the 

situation in which there is very strong evidence against the intersection null, but this 

evidence is extremely sparse (present in exactly one test). Because we assume H1, with p-

value p1, is the elementary hypothesis of interest, each intersection hypotheses involves p1 

and the (K − 1) largest p-values. Each intersection hypothesis is a hurdle that must be 

cleared if H1 can be rejected using closure.

The results shown in Figure 8 suggest that, in the extreme case of exactly one alternative, 

the AC methods will perform poorly in a closure setting because these tests will quickly lose 

the power to reject the intersection hypotheses involving the elementary hypothesis of 

interest, and thus, lose power to reject the elementary hypothesis. We now show that this is 

indeed the case. The power curves in Figure 9 depict the power of the closure method to 

reject H1 when H1 is the only alternative among the collection of m hypotheses. Even when 

given "a fighting chance" to perform by setting the power to 0.90, the AC methods drop 

precipitously.

7.3 Proof of the Hurdles Problem

In this section, we give a formal argument to supplement the intuitive one presented in the 

previous section. Specifically, we give conditions under which the power of MINP tests 

approaches 1, while the power of the Fisher combination AC test approaches 0.
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Assume there are M tests, with M tending to infinity. Null hypotheses are denoted 

, with M0 = [(1 − π)M], for some fixed proportion π ∈ (0, 1) of alternative 

hypotheses. Alternative hypotheses are denoted , with M1 = M − M0. Assume 

independent p-values  U (0, 1), i = 1, …, M0, for testing each of the MO hypotheses 

. Also assume p-values, , for testing each of the M1 hypotheses , 

where  for U ~ U(0,1), for some fixed d ∈ (0, 0.5). The  can be arbitrarily 

dependent on each other and on the . Under these conditions, we have the following 

results.

Theorem 1 The power of the Bonferroni-Holm (B-H) test of  converges to 1.0 for any 

nominal FWER α ∈ (0, 1).

Proof. Since the Bonferroni-Holm procedure is at least as great as the power of the ordinary 

Bonferroni (BON) procedure,

Pr(Reject  using B-H) ≥ Pr(Reject  using BON) = Pr(  ≥ α/M ) = Pr(UMd
 < α/M) 

= Pr{Mdln(U) ≤ ln(α) − ln(M)} = Pr{−ln(U) ≥ − ln(α)/Md + ln(M)/Md} → 1.0, since −ln(U) 

≈ Exp(1) and − ln(α)/Md + ln(M)/Md → 0 for all α ∈ (0, 1) and d ∈ (0, 0.5).

Corollary 2 The average power of the Bonferroni-Holm (B-H) test of  converges to 1.0 

for any nominal FWER α ∈ (0, 1).

Proof. The argument of Theorem 1 holds by simple substitution for all , i = 1, …, M1. 

Since the average power of B-H is  using B-H), and since each 

summand converges to 1.0, the average also converges to 1.0.

Theorem 3 The power of the closed Fisher combination (CFC) test of  converges to 0 

for any nominal FWER α ∈ (0, 1).

Proof. First, since closure requires all intersection tests to be significant, the power of CFC 

for  is no more than the power of any intersection test that includes . It is sufficient 

to consider a aworst-case scenario" described in the previous subsection, where the one 

alternative p-value is combined with the largest null p-values. Let m = [(M0)1/2] and 

consider the ordered null p-values . Then

by Markov’s Inequality.
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Now, for all α (0, 1), 

. Noting 

that − ln(x) ≤ x−1 − 1 for all x ∈ (0, 1), we have , when X is a 

random variable between 0 and 1. By properties of uniform order statistics, 

, implying 

. Hence, using the 

Markov bound, Pr(Reject  using CFC) ≤ {2Md + 2m2/(M0 − m)}/2m(1 + o(1)) → 0 for d 

∈ (0, 0.5).

Corollary 4 The average power of the CFC test of  converges to 0 for any nominal 

FWER α ∈ (0, 1).

Proof. The proof is by symmetry of arguments as shown in the proof of Corollary 1.

8 Conclusion

Closed multiple testing is a highly flexible and relatively simple approach to multiple 

testing, which explains its popularity in biopharmaceutical research settings. With these 

benefits come a few issues that researchers should keep in mind. One is that the set of 

hypotheses that must be formed and tested can be quite large, containing up to 2m nulls. If a 

shortcut such as the one described in Section 3 cannot be applied, the number of calculations 

to perform closure can quickly become infeasible. Fortunately, the conditions for a shortcut 

to exist are met with AC and MINP tests, which are common in clinical trials.

Also, while closed testing controls the probability of at least one incorrect rejection by 

design, other error rates, such as the probability of at least one incorrect rejection or 

incorrectly declaring the direction of an effect (defined as the combined error rate CER), are 

not necessarily controlled. However, as Westfall et al. (2013) note, the cases in which the 

CER is not controlled are rather pathological. Nevertheless, as these authors also note, the 

existence of excess Type I directional errors suggests that it is safest to supplement the 

results of multiple testing procedures in pharmaceutical research with compatible confidence 

intervals, in which case the directional error problem disappears.

Another conclusion from this article that is of interest to biopharmaceutical research, 

particularly clinical trials, is the relatively poor performance of the AC types of tests relative 

to MINP tests when used in a closure setting. In this article, we illustrate that the power 

properties of the intersection tests are not inherited automatically when these tests are used 

in the closure setting. The lack of power is most pronounced with large numbers of tests 

with a degree of sparseness of a signal. However, for researchers considering using AC tests 

in group sequential trials, this is not a problem: the number of tests is usually small, the 

signal is consistent across groups assuming a relatively homogeneous patient pool, and the 

main emphasis is usually on the overall test rather than group-specific tests. On the other 

hand, if non-homogenous subgroup analyses are entertained, then the results of this paper 
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suggest using closed MINP tests rather than closed AC tests. A further benefit of MINP tests 

is that dependence structures are allowed, whereas to perform AC tests with correlated data, 

the correlations must be incorporated into the critical values, for example, by bootstrapping. 

With positively correlated endpoints as found in clinical trials, the "borrowing strength" 

effect that one gets via additive combination will likely make the results shown in this article 

more favorable towards the AC types of tests, but of course comparative power analysis is 

always prudent before selecting a method for the data analysis plan. A final take-home 

message is that the recently popular graphical methods (Brannath and Bretz, 2010), being 

Bonferroni-based, are well supported by the analyses shown in this paper, particularly for 

larger numbers of heterogeneous hypotheses.
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Figure 1. 
The closure hierarchy for m = 4 hypotheses illustrating the shortcut. All circled hypotheses 

must be rejected if H2 is to be rejected.
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Figure 2. 
A comparison of global (a) and closure (b) powers of the Bonferroni (Holm) (solid line) and 

Fisher combination (dashed line) tests, exemplars of the MINP and AC test classes, 

respectively.
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Figure 3. 
Comparison of global (a) and closure (b) powers of p-value combination tests for the 

"moderate and sparse" evidence pattern. Fisher is dashed, Liptak is dash-dot, Hommel is 

solid, and TPM is dotted.
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Figure 4. 
Comparison of global (a) and closure (b) powers of p-value combination tests for the 

"moderate and even" evidence pattern. Fisher is dashed, Liptak is dash-dot, Hommel is 

solid, and TPM is dotted.

Henning and Westfall Page 31

Stat Biopharm Res. Author manuscript; available in PMC 2016 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison of global (a) and closure (b) powers of p-value combination tests for the 

"moderate and concentrated" evidence pattern. Fisher is dashed, Liptak is dash-dot, Hommel 

is solid, and TPM is dotted.
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Figure 6. 
AC methods are more powerful than MINP methods over the full range of the number of 

tests we consider when π = 1. Fisher is dashed, Liptak is dash-dot, Hommel is solid, and 

TPM is dotted.
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Figure 7. 
The intersection hypotheses ("hurdles") that must be explicitly tested using the closure 

shortcut. If any one of these hypotheses cannot be rejected, H1 cannot be rejected. The small 

p-value for H1 is combined with the largest (K − 1) p-values in the closure shortcut.
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Figure 8. 
Estimated power curves for the MINP and AC methods when taking subsets of size K = 1, 2, 

…, 50 out of a total of m = 100 hypotheses. Each intersection hypothesis of cardinality K 

contains p1 and the (K − 1) largest p-values. The rejection probability using Bonferroni for 

each intersection hypothesis is set at β = 0.90. Fisher is dashed, Liptak is dash-dot, Hommel 

is solid, and TPM is dotted.
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Figure 9. 
Power of the closure method using AC and MINP tests to reject H1, the only alternative 

among the m hypotheses. The power of the Bonferroni test is set at βBon = 0.90. Fisher is 

dashed, Liptak is dash-dot, Hommel is solid, and TPM is dotted.
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Table 1

Summary of the combination tests and their associated critical values. Pure AC methods reject for values 

larger than the critical value. Pure MINP methods and the TPM reject for values smaller than the critical 

value.

Test Statistic Critical Value Type

Fisher − 2∑i ln(pi) Ψ2m
−1 (1 − α) AC

Chi-Squared ∑i Ψ1
−1 (1 − α) Ψm

−1 (1 − α) AC

Liptak ∑i Φ
−1 (1 − Pi) m Φ (1 − α) AC

Bonferroni mp (1) α MINP

Simes mini mp(i)/i α MINP

Tippett 1 – (1 – p(1))m α MINP
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Table 2

Descriptors for the patterns of evidence we consider for both the global and closure cases.

Proportion of Alternatives(π)

Power
(βBon)

0.50
0.75
0.90

0.10 0.50 0.90

Moderate & Sparse Moderate & Even Moderate & Concentrated

Strong & Sparse Strong and Even Strong and Concentrated

Very Strong & Sparse Very Strong & Even Very Strong & Concentrated
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Table 3

Recommended classes of PVCT for testing global hypotheses, considering the number of tests and the 

dispersion of evidence among the tests, based on simulated power behaviors in this section. An asterisk 

indicates that the Liptak test, although it is an AC test, is not recommended.

Recommended Tests Proportion of Alternatives

m 0.10 (Sparse) 0.50 (Even) 0.90 (Concentrated)

≤ 20 MINP AC* AC

21 – 50 MINP;AC*; TPM AC* AC

> 50 AC*;TPM AC;TPM AC;TPM
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Table 4

Recommended classes of PVCT for use in closure, considering the number of tests and the dispersion of 

evidence among the tests, based on simulated power behaviors in this section. An asterisk indicates that the 

Liptak test, although it is an AC test, is not recommended.

Recommended Tests Proportion of Alternatives

m 0.10 (Sparse) 0.50 (Even) 0.90 (Concentrated) 1.0

≤ 20 MINP MINP MINP; AC*;TPM AC

21 – 50 MINP MINP MINP AC

> 50 MINP MINP MINP AC
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