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Abstract

Objectives

Perivascular spaces are associated with MRI markers of cerebral small vessel disease,

including white matter hyperintensities. Although perivascular spaces are considered to be

an early MRI marker of cerebral small vessel disease, it is unknown whether they are asso-

ciated with further progression of MRI markers, especially white matter hyperintensities. We

determined the association between perivascular spaces and progression of white matter

hyperintensities after 2-year follow-up in lacunar stroke patients.

Methods

In 118 lacunar stroke patients we obtained brain MRI and 24-hour ambulatory blood pres-

sure measurements at baseline, and a follow-up brain MRI 2 years later. We visually graded

perivascular spaces and white matter hyperintensities at baseline. Progression of white

matter hyperintensities was assessed using a visual white matter hyperintensity change

scale. Associations with white matter hyperintensity progression were tested with binary

logistic regression analysis.

Results

Extensive basal ganglia perivascular spaces were associated with progression of white

matter hyperintensities (OR 4.29; 95% CI: 1.28–14.32; p<0.05), after adjustment for age,

gender, 24-hour blood pressure and vascular risk factors. This association lost significance

after additional adjustment for baseline white matter hyperintensities. Centrum semiovale

perivascular spaces were not associated with progression of white matter hyperintensities.

Conclusions

Our study shows that extensive basal ganglia perivascular spaces are associated with pro-

gression of white matter hyperintensities in cerebral small vessel disease. However, this

association was not independent of baseline white matter hyperintensities. Therefore,
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presence of white matter hyperintensities at baseline remains an important determinant of

further progression of white matter hyperintensities in cerebral small vessel disease.

Introduction
Perivascular spaces (PVS) are cerebrospinal fluid-filled spaces surrounding the small penetrat-
ing cerebral vessels in the basal ganglia and centrum semiovale [1]. Magnetic resonance imag-
ing (MRI) visible PVS are associated with risk factors for cerebral small vessel disease (cSVD),
such as age and hypertension [2,3]. They are also cross-sectionally associated with severity of
other MRI markers of cSVD, especially white matter hyperintensities (WMH) [4]. Therefore,
PVS are considered to be an early MRI marker of cSVD. The location of PVS may indicate dif-
ferent types of underlying cSVD: basal ganglia PVS are more strongly associated with blood
pressure-related arteriopathy, whereas centrum semiovale PVS are associated with cerebral
amyloid angiopathy [5]. Perivascular spaces in these two regions are also anatomically differ-
ent: two leptomeningeal layers surround the basal ganglia small vessels, and superficial perfo-
rating small vessels in the centrum semiovale are only surrounded by one layer [2].

There is increasing evidence that blood-brain barrier (BBB) breakdown [4,6] is one of the
primary steps in the pathogenesis of blood pressure-related cSVD. Derangement of the BBB
leads to leakage of plasma components over the BBB into the vessel wall and perivascular
space, and it is thought that this leads to enlargement of PVS [4,6]. Hypertension may cause
BBB dysfunction through effects on the endothelium [7]. Previous studies have shown that ele-
vated blood pressure (BP) levels are related with MRI markers of cSVD, including PVS and
WMH [3,8–13], and that high BP levels are associated with WMH progression over time [14–
15]. Furthermore, there is evidence that basal ganglia PVS are more strongly associated with
hypertension and WMH than PVS in the centrum semiovale [4,16–17].

Although PVS are considered to be an early MRI marker of cSVD, it is unknown whether
PVS, mainly in the basal ganglia, are related with progression of cSVD, and particularly with
progression of WMH. Therefore, we aimed to determine the association between severity of
PVS in the basal ganglia and centrum semiovale at baseline and progression of WMH after
2-year follow-up in lacunar stroke patients. We studied a patient cohort with highly prevalent
MRI features of cSVD, namely lacunar stroke patients, and we included 24-hour BP levels in
our analysis.

Materials and Methods

Study Population
From a lacunar stroke research project with first-ever lacunar stroke patients presenting at
Maastricht University Medical Centre or Orbis Medical Centre Sittard, the Netherlands,
between 2003 and 2008, we selected all first-ever lacunar stroke patients who had a baseline
brain MRI and 24-hour ambulatory BP monitoring, and a two-year follow-up brain MRI [3,
12]. All patients participated with written informed consent in this research project, which has
been approved by the local Medical Ethical Committee (Maastricht University Medical Cen-
tre). Lacunar stroke was defined as one of the recognized lacunar stroke syndromes [18] with a
small (<2cm) lacunar lesion in the deep grey matter, pons or internal capsule, compatible with
occlusion of a single deep perforating artery. In absence of such a lesion on baseline MRI, we
used established clinical criteria for lacunar stroke syndromes [18]. Patients with potential car-
dioembolic sources or>50% carotid stenosis in at least one carotid artery were not included.
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Age, gender and vascular risk factors (hypertension, hypercholesterolemia, diabetes mellitus
and smoking) were recorded as defined earlier [12].

BPmeasurements
Ambulatory BP monitoring during a 24-hour period was performed after the acute stroke
phase, between 1 and 6 months after stroke (mean 101±42 days). Patients continued their pre-
scribed medication, and we registered the use of antihypertensive drugs. We calculated
24-hour ambulatory systolic blood pressure levels (24-h SBP) and 24-hour ambulatory dia-
stolic blood pressure levels (24-h DBP). Details were described elsewhere [12].

MRI scoring
Baseline MRI images (at 1,5 or 3T MRI scanner, Philips) were obtained as soon as possible and
within 6 months after stroke onset. The MRI protocol consisted of axial T2-weighted fast spin
echo and fluid attenuated inversion recovery (FLAIR) sequences, with slice thickness of 5 mm,
gaps 0.5 mm and in-plane resolution 0.45 x 0.45 mm. The MRI protocol at two-year follow-up
was similar to the baseline protocol. Two vascular neurologists independently assessed baseline
and follow-up imaging.

Perivascular spaces (PVS) were defined as round, oval, or linear-shaped lesions with a
smooth margin, absence of mass effect and with signal intensity equal to cerebrospinal fluid on
T2-weighted images, and (if visible) hypointense on fluid–attenuated inversion recovery
images without a hyperintense rim to distinguish them from old lacunar infarcts [1]. We dis-
tinguished PVS at the level of basal ganglia and centrum semiovale. We visually graded PVS on
the slide with the highest number in one hemisphere, using a formerly described semi-quanti-
tative three-category severity scale (none-to-mild, moderate and extensive) [3] (Fig 1). The
inter-observer agreement was fair to good; weighted Cohen’s kappa 0.73 for basal ganglia PVS
and 0.71 for centrum semiovale PVS [3]. We graded deep and periventricular WMH at base-
line according to Fazekas’ scale [19]. The inter-observer agreement was good to excellent;
weighted Cohen’s kappa 0.77 for periventricular WMH, and 0.84 for deep WMH [16].

At follow-up imaging, progression of WMH was assessed by a validated visual WMH
change scale (The modified Rotterdam Progression Scale) [20]. This scale (range -7 to 7) mea-
sures a decrease, no change, or increase (-1,0,1 respectively) of WMH in three different peri-
ventricular and four different subcortical regions. We defined progression of WMH as an
increase of WMH in one or more periventricular and/or subcortical regions. The inter-
observer agreement was good; weighted Cohen’s kappa 0.79 for progression of WMH.

Statistical analysis
Statistical analysis was performed using SPSS version 21.0 (Chicago, IL). Data are presented as n
(%) for categorical variables or as mean ± standard deviation for parametric data. We determined
the association between PVS categories and presence or absence of progression of WMH by
binary logistic regression analysis. We corrected for age, gender, 24-hour SBP and 24-hour DBP.
Next, we performed two models in which we additionally corrected for other vascular risk factors
(including hypercholesterolemia, diabetes mellitus and smoking), or for baseline deep and peri-
ventricular WMH. Second, we also performed a binary logistic regression analysis to determine
the possible relation between 24-hour ambulatory BP levels and progression of WMH.We per-
formed two models in which we first corrected for age, gender and vascular risk factors (includ-
ing hypercholesterolemia, diabetes mellitus and smoking), and second for age, gender and deep
and periventricular WMH at baseline imaging. Statistical significance was considered at p<0.05.
All relevant data are available in the Supporting Information files (data in S1 Dataset).
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Results

Patients and Baseline Characteristics
Of 281 first-ever lacunar stroke patients who presented at Maastricht University Medical Cen-
tre, 35 patients were excluded because of presence of a carotid artery stenosis or possible cardi-
oembolic source (most commonly atrial fibrillation). In total 116 patients refused to participate
or had absolute contra-indications for MRI imaging. Of the remaining 130 patients, we
excluded 16 patients because of an inadequate baseline MRI and/or inadequate BP monitoring
data, leaving 114 patients at baseline. By applying the same inclusion and exclusion criteria we
recruited 29 patients from Orbis Medical Centre Sittard (number and characteristics of non-
included patients were not listed), which totals 143 included patients at baseline [3]. Patients
were offered a clinical follow-up MRI after 2 years. Twenty patients were lost to follow up (5
patients died and 15 refused follow-up or could not be contacted), leaving 123 patients. To

Fig 1. Examples of the categories of perivascular spaces by using a semi-quantitative three-category severity scale. (A-C): Perivascular spaces
(PVS) in the basal ganglia; respectively none-to-mild, moderate and extensive. (D-F): PVS in the centrum semiovale; respectively none-to-mild, moderate
and extensive.

doi:10.1371/journal.pone.0137323.g001
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avoid overestimation of WMH progression, we excluded an additional 5 patients who had fol-
low-up MRI at higher field strength than baseline MRI. Of the finally included 118 patients, 95
patients had baseline and follow-up MRI at 1.5 T (tesla), 20 patients had baseline MRI at 3.0 T
with follow-up MRI at 1.5 T and 3 patients had baseline and follow-up MRI at 3.0 T.

Table 1 shows baseline patient characteristics of these 118 patients. Table 2 shows baseline
and follow-up MRI characteristics. On baseline imaging, 34 (28%) patients had extensive basal
ganglia PVS and 41 (35%) patients had extensive centrum semiovale PVS. On 2 year follow-up
imaging, 54 (46%) patients had progression of WMH.

Association between PVS and progression of WMH
Table 3 shows the association between baseline PVS and progression of WMH after 2 year of
follow-up. Extensive basal ganglia PVS were associated with progression of WMH after 2 years
(OR 5.23; 95% CI: 1.96–13.96; p<0.01). After adjusting for age, gender, 24-h SBP and 24-h
DBP this association remained significant (OR 3.98; 95% CI: 1.23–12.88; p<0.05) and also
with additional adjustment for other vascular risk factors (OR 4.29; 95% CI: 1.28–14.32;
p<0.05). However, with additional adjustment for periventricular and deepWMH at baseline,
the association between extensive PVS and WMH progression lost statistical significance (OR
1.49; 95% CI: 0.37–6.07; p = 0.58). No association was found between centrum semiovale PVS
andWMH progression.

Association between BP and progression of WMH
Table 4 shows the associations between baseline 24-hour ambulatory BP levels and progression
of WMH after 2 year of follow-up. We did not find a significant association between baseline
24-h SBP and progression of WMH after 2 years. Twenty-four hour DBP levels seemed to be
negatively associated with progression of WMH (OR 0.83; 95% CI: 0.49–0.96; p<0.05). How-
ever, this association lost significance after adjustment for age, gender, vascular risk factors and
baseline WMH.

Discussion
Our study shows that extensive basal ganglia PVS are associated with progression of WMH
over two years of follow-up, independent of age, gender and vascular risk factors. However,
this association was not independent of the presence of WMH at baseline. We did not find a

Table 1. Baseline patient characteristics.

N = 118

Age at stroke onset (years), mean±SD 63±12

Male (%) 72 (61)

Hypertension (%) 79 (67)

Diabetes Mellitus (%) 16 (14)

Hypercholesterolemia (%) 93 (79)

Smoking (%) 49 (42)

24-h SBP (mmHg), mean±SD 139±18

24-h DBP (mmHg), mean±SD 83±12

Numbers (%) or means±SD (standard deviation); 24-h SBP: 24-hour ambulatory systolic blood pressure;

24-h DBP: 24-hour ambulatory diastolic blood pressure.

doi:10.1371/journal.pone.0137323.t001
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positive association between centrum semiovale PVS and WMH progression and we did not
find an association between 24-h SBP or 24-h DBP levels at baseline and WMH progression.

Studies with a cross sectional design showed that PVS, and in particular basal ganglia PVS,
are associated with severity of other MRI markers of cSVD, including WMH [3–4,16–17] and
with increased BBB permeability [21]. Hypertension could lead to endothelial dysfunction and
BBB breakdown [2,7], which are considered to be the primary steps in the pathogenesis of
cSVD [4,6]. Leakage of plasma components over the BBB leads to damage of the cerebral small
vessel wall and enlargement of PVS [6]. Therefore, as PVS seem to appear early in the course of
cSVD, the amount of PVS might be an early MRI marker of brain damage related to cSVD. In
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoence-
phalopathy), a genetic form of cSVD, severity of temporal PVS is strongly related with total
WMH volume [22] and PVS in the temporal lobes have a pathological correlation with tempo-
ral WMH [23]. Our study shows that extensive basal ganglia PVS are associated with progres-
sion of WMH in lacunar stroke patients. Even though our results need to be confirmed in
other cohorts, we suggest that basal ganglia PVS might be an early marker for progression of
WMH in blood pressure-related cSVD, although the presence of WMH still remains most
important for further progression.

It has been suggested that WMH tend to form around PVS [6], however we did not find an
association between PVS in the white matter of the centrum semiovale and progression of
WMH. However, we tested the association between overall severity of centrum semiovale PVS
and general progression of WMH, which does not correlate them spatially. Another

Table 2. MRI characteristics.

N = 118

Baseline MRI

Periventricular WMH (%)

Fazekas grade 0 46 (39)

Fazekas grade 1 33 (28)

Fazekas grade 2 8 (7)

Fazekas grade 3 31 (26)

Fazekas grade 3 31 (26)

Deep WMH (%)

Fazekas grade 0 33 (28)

Fazekas grade 1 50 (42)

Fazekas grade 2 14 (12)

Fazekas grade 3 21 (18)

PVS at basal ganglia (%)

none-to-mild 42 (36)

moderate 42 (36)

extensive 34 (28)

PVS at centrum semiovale (%)

none-to-mild 27 (23)

moderate 50 (42)

extensive 41 (35)

Follow-up MRI

Progression of WMH (%) 54 (46)

WMH: white matter hyperintensities; PVS: perivascular spaces.

doi:10.1371/journal.pone.0137323.t002
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explanation could be that severity of centrum semiovale PVS is underestimated in those cases
with overshadowing presence of extensive WMH. Finally, PVS in the centrum semiovale may
have a different pathogenesis than basal ganglia PVS. They may be linked to cerebral amyloid
angiopathy rather than blood pressure-related cSVD [5,24].

We did not find a positive association between 24-hour ambulatory BP levels and progres-
sion of WMH after 2 years. Even though several other studies showed that high BP levels are
associated with WMH progression [14–15], this was not found by all [25]. The relationship
between WMH and BP remains complex [2]. Previous studies have shown that cumulative,
prior elevated BP levels are more associated with WMH compared to concurrent BP [26–28].
A J-curved relation between BP and WMH has also been shown [29]. We do not have data on
severity and duration of hypertension, nor on previous treatment of elevated BP levels in our

Table 3. Association between baseline PVS and progression of WMH by binary logistic regression analysis.

Progression of WMH

OR (95% CI)

Unadjusted Model 1 Model 2 Model 3

Basal ganglia PVS

Non to mild 1.00 1.00 1.00 1.00

Moderate 2.07 (0.84–5.10) 1.85 (0.67–5.11) 1.70 (0.60–4.83) 1.22 (0.37–3.99)

Extensive 5.23 (1.96–13.96) ** 3.98 (1.23–12.88)* 4.29 (1.28–14.32) * 1.49 (0.37–6.07)

Centrum semiovale PVS

Non to mild 1.00 1.00 1.00 1.00

Moderate 0.89 (0.34–2.32) 0.99 (0.36–2.75) 0.82 (0.29–2.37) 1.15 (0.34–3.88)

Extensive 2.05 (0.77–5.51) 2.05 (0.72–5.87) 1.88 (0.65–5.49) 2.42 (0.64–9.14)

Model 1 adjusted for age, gender, 24-h systolic blood pressure (24-h SBP) and 24-h diastolic blood pressure (24-h DBP). Model 2 adjusted for age,

gender, 24-h SBP, 24-h DBP and vascular risk factors (diabetes mellitus, hypercholesterolemia and smoking). Model 3 adjusted for age, gender, 24-h

SBP, 24-h DBP and baseline white matter hyperintensities (WMH). OR: odds ratio; CI: confidence interval; PVS: perivascular spaces.

*p<0.05;

**p<0.01.

doi:10.1371/journal.pone.0137323.t003

Table 4. Association between baseline ambulatory 24-hour blood pressure levels and progression of
WMH by binary logistic regression analysis.

Progression of WMH

OR (95% CI)

Unadjusted Model 1 Model 2

ambulatory 24-h BP (mmHg)

SBP 0.86 (0.69–1.06) 0.80 (0.63–1.02) 0.78 (0.59–1.02)

DBP 0.83 (0.49–0.96)* 0.89 (0.55–1.14) 0.81 (0.43–1.04)

Results binary logistic regression analysis presented as OR per 10 mmHg increase in systolic blood

pressure (SBP) or 5 mmHg in diastolic blood pressure (DBP). Model 1 adjusted for age, gender and

vascular risk factors (diabetes mellitus, hypercholesterolemia and smoking). Model 2 adjusted for age,

gender and baseline white matter hyperintensities. OR: odds ratio; CI: confidence interval; WMH: white

matter hyperintensities; 24-h BP: 24-hour ambulatory blood pressure;

*p<0.05.

doi:10.1371/journal.pone.0137323.t004

Perivascular Spaces andWMH Progression

PLOS ONE | DOI:10.1371/journal.pone.0137323 September 9, 2015 7 / 10



patients, and this may be important in the association between BP and progression of WMH.
Furthermore, a substantial portion of our patients had anti-hypertensive treatment during the
follow-up period and this may have influenced WMH progression. There is evidence that
patients with untreated and uncontrolled hypertension have greater progression of WMH
compared to patients with controlled or treated BP levels [15,30].

Our study has several limitations. First, not all patients were scanned at the same MRI field
strength, which might have led to bias in grading lesions. However, analysis including only
patients with the same field strength at baseline and follow up (n = 98) did not change the
results of our main analysis (results not shown). Second, we measured PVS and progression of
WMH by using visual scales and not quantitative volumetric techniques. However, a quantita-
tive method for counting PVS does not exist and visual semi-quantitative assessment is still the
reference-standard method [1]. The modified Rotterdam Progression Scale is the most reliable
visual assessment tool for WMH progression and correlates well with volumetrics [20,31].
Third, a cohort of lacunar stroke patients with advanced cSVD and a substantial amount of
WMH at baseline, might not be ideal to test for an association between severity of PVS at base-
line and progression of WMH. To confirm the predictive role of PVS as an early MRI marker
of WMH progression, we suggest a study in a population at risk and in an early stage of cSVD
(for example hypertensive patients), with a long follow-up time.

In conclusion, extensive basal ganglia PVS are associated with WMH progression after 2
year follow-up in lacunar stoke patients. However, this association was not independent of
WMH at baseline. Therefore, baseline WMH still remain an important determinant of progres-
sion of WMH in cSVD.

Supporting Information
S1 Dataset.
(XLSX)
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