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Abstract

Protein kinase C (PKC) plays key roles in the regulation of signal transduction and cellular 

function in various cell types. At least ten PKC isoforms have been identified and intracellular 

localization and trafficking of these individual isoforms are important for regulation of enzyme 

activity and substrate specificity. PKC can be activated at downstream of Gq-protein coupled 

receptor (GqPCR) signaling and translocated to the various cellular compartments including 

plasma membrane (PM). Recent reports suggested that a different type of GqPCRs would activate 

different PKC isoforms (classic, novel and atypical PKCs) with different trafficking patterns. 

However, the knowledge of isoform-specific activation of PKC by each GqPCR is limited. α1-

Adrenoceptor (α1-AR) is the one of the GqPCR highly expressed in the cardiovascular system. In 

this study, we examined the isoform-specific dynamic translocation of PKC in living HEK293T 

cells by α1-AR stimulation (α1-ARS). Rat PKCα, βI, βII, δ, ε and ζ fused with GFP at C-term 

were co-transfected with human α1A-AR into HEK293T cells. The isoform-specific dynamic 

translocation of PKC in living HEK293T cells by α1-ARS using phenylephrine was measured by 

confocal microscopy. Before stimulation, GFP-PKCs were localized at cytosolic region. α1-ARS 

strongly and rapidly translocated a classical PKC (cPKC), PKCα, (< 30s) to PM, with PKCα 

returning diffusively into the cytosol within 5 min. α1-ARS rapidly translocated other cPKCs, 

PKCβI and PKCβII, to the PM (<30s), with sustained membrane localization. One of novel PKCs 

(nPKCs), PKCε, but not another nPKC, PKCδ, was translocated by α1-AR stimulation to the PM 

(<30s) and its membrane localization was also sustained. Finally, α1-AR stimulation did not cause 

a diacylglycerol-insensitive atypical PKC, PKCζ translocation. Our data suggest that PKCα, β and 

ε activation may underlie physiological and pathophysiological responses of α1-AR signaling for 
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the phosphorylation of membrane-associated substrates including ion-channel and transporter 

proteins in the cardiovascular system.

INTRODUCTION

Protein kinase C (PKC) is a multi-gene family of serine/threonine kinase that plays key roles 

in the regulation of signal transduction and cellular function in various cell-types/tissues 

[1-4]. PKC forms a multi-gene family and at least 10 PKC isoforms have been identified 

that differ in primary structure, tissue distribution, subcellular localization and substrate 

specificity [1-4]. These isoforms can be sub-grouped into three subfamilies. Members of the 

first family (include PKCα, βI, βII and γ) are regulated by Ca2+, diacylglycerol (DAG) and 

phospholipids, and are known as Ca2+-dependent PKCs [or classical PKCs (cPKC)]; 

members of the second family (include PKCδ,ε, η and θ) have phospholipid-dependent but 

Ca2+-independent activation mechanism, and are known as Ca2+-independent PKCs or 

novel PKCs (nPKC); members of the third family (include PKCζ and ι/λ) are not regulated 

by either intracellular Ca2+ concentration or phospholipid and their activity are maintained 

by other mechanisms (e.g. by protein-protein interactions), and are known as atypical PKCs 

(aPKC). Intracellular localizations of these individual isoforms are important for regulation 

of isoform-specific enzyme activity and substrate specificity [2,3]. Since the stimulation of 

GqPCRs such as α1-adrenoceptor (α1-AR), endothelin-1 receptor or angiotensin II receptor 

can generate DAG and also mobilize cytosolic Ca2+ elevation by releasing Ca2+ from the 

intracellular stores by stimulating inositol trisphosphate (IP3) receptors [5], cPKC and nPKC 

isoforms, but not aPKC are located downstream of GqPCR signaling pathways. Growing 

evidence suggests that stimulation of different GqPCRs exhibits receptor-specific pattern of 

activation and translocation of PKC isoforms [3]. However, since prior research 

investigating PKC translocation were mostly conducted using general PKC activators, such 

as phorbol esters [3], the knowledge of receptor-specific regulation of PKC-isoform 

activation/translocation is still incomplete.

One of GqPCRs, α1-AR, is stimulated by catecholamines (norepinephrine and epinephrine) 

[6-9]. α1-AR is expressed in variety of human tissue [10] and α1-AR stimulation has been 

shown to play important roles in cellular physiological functions, such as 1) regulation of 

smooth muscle contraction and tone in vascular system [9], prostate, urethra, bladder [11], 

uterine [12] and iris [13], 2) myocardial inotropy and chronotropy [14], 3) hepatic glucose 

metabolism [15], 4) water secretion at salivary gland [16] and 5) neurotransmission in 

central nerve system [9]. In addition, chronic α1-AR stimulation leads to pathophysiological 

responses in the various cells/tissues via both cPKC and nPKC isoform signaling pathways, 

including cardiac hypertrophy [17,18], hypertension and atherosclerosis [19,20] in 

cardiovascular system and portal hypertension and fibrosis in liver [21]. Despite strong 

interest in the mechanism underlying α1-AR signaling-mediated pathology, especially in 

cardiovascular system, little is known about the molecular mechanisms for the PKC 

isoform-specific kinetics of activation and translocation.

Here we examined the isoform-specific dynamic translocation of PKC in live HEK293T 

cells by α1-AR stimulation using GFP-tagged PKC isoforms, especially monitoring their 
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translocation to the plasma membrane (PM). We tested six PKC isoforms (α, βI, βII, δ, ε and 

ζ) in this study which are endogenously expressed in this cell line [22]. Our results show that 

PKCα, βI, βII and ε are able to be translocated to the PM upon α1-AR stimulation, while 

PKCδ did not show any significant PM translocation upon α1-ARS, although all isoforms 

are translocated to PM by a common PKC activator, phorbol 12-myristate 13-acetate (PMA) 

with a relatively slow time course. Our data suggest that PKCα, βI, βII and ε activation may 

underlie physiological responses of α1-AR signaling. In addition, due to a prolonged 

retention of PKCβI, PKCβII and PKCε at PM by α1-AR stimulation, these isoforms may be 

particularly important for the cellular pathophysiology in various cell types including 

cardiovascular system during chronic α1-AR stimulation.

MATERIAL AND METHODS

An expanded Material and methods section is available in the online supplementary file.

Live cell imaging

HEK293T cells and stable HEK293T cell line [23] carrying HA-tagged α1A-AR 

(Supplementary Fig.1) were transfected with GFP-tagged and/or DsRed2-tagged PKC 

isoforms and used for experiments 48 hours after transfection [24,25]. Time-dependent 

changes in localization of PKC isoforms by either phenylephrine (Phe) or PMA stimulation 

in HEK293T cells was measured using laser scanning confocal microscopy (Olympus, 

Tokyo Japan) without fixation at room temperature [25,26]. PM localization of PKC isoform 

was quantified by line scan intensity measurements through each cell beginning in the 

cytosol region (avoiding the nucleus area) and ending at the cell periphery. Translocation of 

each PKC isoform was evaluated by fluorescence intensity ratio between membrane and 

cytosolic region (membrane/cytosol ratio: M/C ratio) [25,26].

Statistical Analysis

All results are shown as mean ± standard error (SE). One-way ANOVA followed by 

Dunnet’s test (for multiple comparison) and paired-T-test (for two-group comparison) were 

done with the significance level set at P<0.05.

RESULTS

PKCα transiently translocates to the PM in response to α1-ARS

We co-expressed a GFP-tagged Ca2+-dependent PKC isoform PKCα with α1A-AR in 

HEK293T cells, stimulated the cells with a specific α1-AR agonist 100 μM Phe, and 

observed time-dependent changes in the subcellular localization of PKCα upon Phe 

stimulation (Fig.1A). Prior to stimulation (0 min), PKCα-GFP mainly localized in cytosol, 

with no nuclear localization (Fig.1A and B). After Phe stimulation PKCα-GFP rapidly 

translocated to the cell membrane (less than 30s) and gradually returned to cytosol. PKCα 

localization was restored within 5 min despite continuous Phe stimulation. This PKC 

translocation was completely blocked by the α1-AR-selective antagonist, 1 μM prazosin 

(Fig.1B and Supplementary Fig.2). We also tested the effect of PKC activator PMA on 
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PKCα-GFP translocation. PKCα-GFP showed relatively slower translocation to PM by 

PMA treatment compared to Phe (Fig.1B and Supplementary Fig.2).

As a control experiment, we co-expressed GFP with α1A-AR in HEK293 cells and 

confirmed that GFP localization did not alter by Phe stimulation (Supplementary Fig.3).

PKCβI and PKCβII translocate to the PM in response to α1-ARS

We next co-expressed other Ca2+-dependent PKC isoforms (GFP-tagged PKCβI or PKCβII) 

with α1A-AR in HEK293T cells and observed time-dependent changes in the subcellular 

localization of each PKC isoform by Phe (Fig.1C to F). Prior to stimulation, both PKCβI and 

PKCβII were localized in the cytosol, with no nuclear localization. Phe stimulation induced 

translocation of both PKCβI and PKCβII to the PM rapidly (after 30 sec) and PM 

localization was maintained throughout the course of the Phe application. Both PKCβI-GFP 

and PKCβII-GFP showed slower translocation to the PM by a PKC activator PMA treatment 

compared to Phe stimulation (Fig.1D and F), which is a similar time course as the one 

observed in PKCα (see Fig.1B). Interestingly, magnitude of PKCβII translocation by Phe 

stimulation was larger than that of PKCβI (Fig.1D and F).

To confirm the different translocation dynamics of PKCβI and βII by either Phe or PMA, we 

stimulated cells expressing both GFP- and DsRed2-tagged PKCβs. To normalize the 

magnitude of signal inputs (namely receptor signals via the Gq-protein) between the 

individual cells, HEK293T cells stably overexpressing α1A-AR (α1A-AR-HEK293T cells) 

were used for these experiments (Supplementary Fig.1). First, we confirmed that GFP- and 

DsRed2-tagged PKCβII showed similar translocation profiles under Phe or PMA 

stimulations in α1A-AR-HEK293T (Fig.1G and H). Using α1A-AR-HEK293T cells co-

expressing PKCβI-GFP and DsRed2-PKCβII, we next confirmed that magnitude of PKCβII 

translocation by Phe stimulation was significantly larger than that of PKCβI (Fig.1I and J). 

In contrast, PMA stimulation induces larger translocation of PKCβI than that of PKCβII 

(Fig.1J).

PKCε but not PKCδ translocate to the PM in response to α1-ARS

We next tested whether Ca2+-independent PKC isoforms translocates to the PM by α1-ARS. 

We co-expressed GFP-tagged PKCδ or PKCε with α1A-AR in HEK293T cells and observed 

time-dependent changes in the subcellular localization of these PKC isoforms upon Phe 

application. Prior to stimulation, PKCδ was localized in cytosol (Fig.2A). Some cells have 

strong punctuated fluorescence areas around the nucleus (Supplementary Fig.4). No 

significant time-dependent changes were observed in the subcellular localization of PKCδ 

by Phe treatment (Fig.2A and B). As a positive control, we observed significant 

translocation of PKCδ in response to treatment with PMA in the same cells (Fig2A and B). 

After PMA treatment, PKCδ was translocated from the cytosol to the PM and also to the 

nuclear membrane (Fig.2A, 2B and supplementary Fig.4). We also confirmed the lack of 

GFP-tagged PKCδ translocation by Phe using α1A-AR-HEK293T cells co-transfected with 

DsRed2-PKCβII (Fig.2C). In contrast, PKCε was significantly translocated from the cytosol 

to the PM 3 min after Phe stimulation and its PM localization was maintained during the 

course of the Phe application (Fig.2D and E). Magnitude of GFP-tagged PKCε translocation 
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by 10-min Phe stimulation was larger than that in PKC βI and also reached to the similar 

level of that in PKCβII (see Fig.1D and F). To quantitatively compare the translocation 

levels of PKCε and PKCβI by Phe, we stimulated α1A-AR-HEK293T cells expressing both 

GFP-PKCε and DsRed2-tagged PKCβI. The magnitude of PKCε translocation was 

consistently higher after Phe stimulation than that of PKCβI when measured in the same cell 

(Fig.2F, left). In contrast, PMA stimulation induces similar translocation profiles in these 

PKC isoforms (Fig.2F, right).

PKCζ does not show any translocation in response to α1-ARS

Finally, we tested whether DAG- and PMA-insensitive isoform (aPKC) change its 

subcellular localization in response to α1-ARS. We co-expressed one of the aPKC isoform 

PKCζ in HEK293 cells and monitored time-dependent changes in the subcellular 

localization of PKCζ upon Phe application. Prior to stimulation, PKCζ was localized in 

cytosol and no nuclear localization was observed (Fig. 3). There was no significant time-

dependent change in the subcellular localization of PKCζ by α1-ARS.

DISCUSSION

In this study, we examined the translocation profiles of PKC isoforms to the PM in live cells 

expressing GFP- and DsRed2-tagged PKC isoforms upon α1-AR stimulation. One 

advantage of using fluorescence protein-tagged PKC expression system is the ability to 

obtain more precise and quantitative spatiotemporal kinetics information on PKC activation 

and translocation profiles compared to classical methods, including Western blotting of 

fractionated proteins and the immunocytochemstry of fixed cells using isoform-specific 

antibodies [2,3]. Our results clearly indicate that each PKC isoform shows a different 

spatiotemporal pattern of translocation under α1-ARS (Fig. 4). We found the significant 

translocation of Ca2+-dependent PKCs (α, βI and βII) and one Ca2+-dependent PKC (PKCε) 

to the PM in response to α1-AR stimulation, which may underlie acute responses of α1-AR 

signaling at the PM. However, subcellular localization of another Ca2+-dependent PKC, 

PKCδ was not significantly modified by α1-ARS in the current experiments, despite 

showing a strong response to PMA (Fig.2).

Physiological and pathophysiological functions of each PKC isoform are diverse even 

though their substrate specificity is low and multiple isoforms are expressed in each cell-

type [2,3]. For instance, in the human myocardium, PKCα was the most abundant isoform 

present [19; 20] and PKCα activation has been linked to heart failure, hypertrophy and 

diabetes [21-27]. However, subsequent studies in genetic models of PKCα overexpression 

or knockout in mice failed to yield significant role of PKCα in generating hypertrophy to 

PKCα, identifying a more predominant role for PKCα in the regulation of cardiac 

contraction [28]. On the other hand, expression level of Ca2+-dependent PKCβ increases in 

the cardiovascular system during disease states. PKCβ activation has been linked to 

increased vascular inflammation and atherosclerosis [29]. In addition, genetic models 

showed that PKCβ expression is not necessary for the development of cardiac hypertrophy 

nor does its absence attenuate the hypertrophic response [30]. PKCε has been suggested to 

have a protective role in myocardial ischemia-reperfusion injury [31] and arrhythmias [32]. 
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Moreover, the use of specific PKC isoenzyme blockers may lead to novel treatments for 

heart failure [35; 36] and also for cancers [33] and Alzheimer’s disease [34]. Targeting PKC 

to the PM is crucial for the phosphorylation of membrane-associated substrates, including 

ion-channel and transporter proteins [27]. PMA is one of the well recognized activators of 

DAG-sensitive PKC subfamilies and is frequently used to mimic GqPCR signaling for 

investigating the effect of PKC translocation [2,3] to the PM, including in the studies for the 

regulation of ion channel function. However, we showed in live cells that the translocation 

kinetics of PKCs are largely different in response to either PMA treatment or receptor 

stimulation. First, α1-AR stimulation by Phe initiates PKC translocation much faster than 

PMA started (≅ 30 sec after stimulation). Second, while GqPCR-mediated PKCα 

translocation to the PM is transient, PMA treatment induces this isoform to be retained at the 

PM (Figs.1 and 4). Finally, isoform-specificity is also different between GqPCR and PMA 

responses; PMA caused sustained translocation of all DAG-sensitive isoforms tested to the 

PM (Figs.1 and 2), while α1-AR-mediated PKCδ translocation to the PM was not observed 

(Fig.2). This observation is consistent with previous data showing that connexin43, a gap 

junction channel protein, can be phosphorylated by PMA treatment through both PKCδ and 

PKCε [28,29], but PKCδ does not likely phosphorylate Connexin43 under GqPCR 

stimulation [30]. Thus, these results indicate that great caution is required when extending 

the results obtained with general PKC activators to PKC isoform activation by more 

physiological signaling pathways.

While we did not observe significant PKCδ translocation by α1-AR stimulation from cytosol 

to the PM using transfected PKCδ-GFP, our data does not exclude the possibility that PKCδ 

can be activated by α1-AR stimulation and translocated to the other cellular compartments 

including mitochondria and nucleus. For instance, Newton and colleagues detected a 

relatively small but significant PKCδ translocation to the outer mitochondrial membrane 

(OMM) after the application of a phorbol ester using fluorescence resonance energy (FRET) 

by generating an OMM-targeted [31] CFP (mt-CFP) and PKCδ-GFP [32]. They also 

confirmed that PKCδ activity was increased at the OMM upon phorbol-ester stimulation, 

using the OMM-targeted FRET-based PKCδ kinase activity reporter. Taken together, the 

data suggest that GqPCR stimulation may activate and translocate PKCδ to other 

intracellular compartments, but not to PM.

In summary, we showed that α1-AR induces PKCα, PKCβ and PKCε translocation to the 

PM, but not PKCδ and PKCζ by tracking the subcellular localization of transfected GFP-

tagged PKC after Phe stimulation. In addition, we found that kinetics of α1-AR-mediated 

activation of PKCs is isoform-specific. Our data suggests that activation of PKCα, PKCβ 

and PKCε may underlie physiological and pathophysiological responses of α1-AR signaling 

for the phosphorylation of PM-localized proteins such as ion channels and transporters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

α1-AR α1-adrenoceptor

α1A-AR-HEK293T cells HEK293T cells stably overexpressing α1A-AR

aPKC atypical protein kinase C

cPKC classical protein kinase

DAG diacylglycerol

nPKC novel protein kinase

Phe phenylephrine

GqPCR Gq-protein coupled receptor

M/C ratio membrane/cytosol ratio

PKC protein kinase C

PM plasma membrane
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Highlights

• Isoform-specific translocation pattern of PKC was observed in live cells.

• PKCα, βI, βII, and ε translocates to plasma membrane by α1-adrenergic 

stimulation.

• PKCδ did not show any translocation to plasma membrane by α1-adrenergic 

stimulation.

• PKC translocation kinetics were different between PMA and α1-adrenergic 

stimulation.

• PKCα, βI, βII and ε may underlie physiological responses of α1-adrenergic 

signaling.
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Fig.1. Ca2+-dependent PKC isoforms translocate to the PM in response to α1-ARS
A. Representative cell images (top) and fluorescence intensity profiles at white dot lines 

(bottom) in cells expressing α1A-AR and PKCα-GFP during Phe stimulation. A.U., 

fluorescence arbitrary units. B. Time-dependent changes in the subcellular localization of 

PKCα-GFP by Phe in the presence or in the absence of α1-AR antagonist prazosin. The 

effect of PMA is also shown. *p<0.05, compared to control (0 min, before Phe 

stimulation). #p<0.05, compared to control (0 min, before PMA stimulation). C. 
Representative cell images (top) and fluorescence intensity profiles (bottom) in cells 

expressing α1A-AR and PKCβI-GFP during Phe stimulation. D. Time-dependent changes in 

the subcellular localization of PKCβI-GFP by Phe in the presence or in the absence of α1-

AR antagonist prazosin. The effect of PMA is also shown. *p<0.05, compared to control (0 

min, before Phe stimulation). #p<0.05, compared to control (0 min, before PMA 

stimulation). E. Representative cell images (top) and fluorescence intensity profiles (bottom) 

in cells expressing α1A-AR and PKCβII-GFP during Phe stimulation. F. Time-dependent 

changes in the subcellular localization of PKCβII-GFP by Phe in the presence or in the 

absence of α1-AR antagonist prazosin. The effect of PMA is also shown. *p<0.05, compared 

to control (0 min, before Phe stimulation). #p<0.05, compared to control (0 min, before 

PMA stimulation). G. Representative cell images and fluorescence intensity profiles in α1A-

AR-HEK293T cells co-expressing PKCβII-GFP and DsRed2-PKCβII during Phe 

stimulation. H. Time-dependent changes in the subcellular localization of PKCβII-GFP and 

DsRed2-PKCβII by Phe (top) or PMA (bottom) in α1A-AR-HEK293T cells. I. 
Representative cell images and fluorescence intensity profiles in α1A-AR-HEK293T cells 

co-expressing PKCβI-GFP and DsRed2-PKCβII during Phe stimulation. J. Time-dependent 

changes in the subcellular localization of PKCβI-GFP and DsRed2-PKCβII by Phe (top) or 
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PMA (bottom) in α1A-AR-HEK293T cells. *p<0.05, compared to PKCβI-GFP at each time 

point.
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Fig.2. Ca2+-independent PKC, PKCε does (but PKCδ does not) translocate to the plasma 
membrane in response to α1-ARS
A. Representative cell images (top) and fluorescence intensity profiles at white dot lines 

(bottom) in cells expressing α1A-AR and PKCδ-GFP during Phe stimulation. PKC δ 

translocation by PMA treatment was also observed in same cell as a positive control (right) 

(see also Supplementary Fig.4). A.U., fluorescence arbitrary units. B. Time-dependent 

changes in the subcellular localization of PKCδ-GFP by the treatment of Phe or 

PMA. #p<0.05, compared to control (0 min, before PMA stimulation). C. Left, 

representative cell images (top) and fluorescence intensity profiles at white dot lines 

(bottom) in α1A-AR-HEK293T cells co-transfected with PKCδ-GFP and DsRed2-PKCβII 

before and after Phe stimulation. The results shown are representative of five cells. Right, 

representative cell images (top) and fluorescence intensity profiles at white dot lines 

(bottom) in α1A-AR-HEK293T cells co-transfected with PKCδ-GFP and DsRed2-PKCβII 

before and after PMA stimulation. The results shown are representative of six cells. A.U., 

fluorescence arbitrary units. D. Representative cell images (top) and fluorescence intensity 

profiles at white dot lines (bottom) in cells expressing α1A-AR and PKCε-GFP during Phe 

stimulation. E. Time-dependent changes in the subcellular localization of PKCε-GFP by 100 

μM Phe in the presence or in the absence 1 μM prazosin. The effect of PMA is also shown 

as a positive control. *p<0.05, compared to control (0 min, before Phe stimulation). #p<0.05, 

compared to control (0 min, before PMA stimulation). F. Time-dependent changes in the 

subcellular localization of PKCε-GFP and DsRed2-PKCβI by Phe (left) or PMA (right) in 

α1A-AR-HEK293T cells. *p<0.05, compared to DsRed2-PKCβI at each time point.
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Fig.3. Atypical PKC, PKCζ does not show any translocation by α1-ARS
Representative cell images (top) and fluorescence intensity profiles at white dot lines 

(bottom) in cells expressing α1A-AR and PKCζ-GFP during α1-ARS (100 μM Phe). The 

results shown are representative of four cells. A.U., fluorescence arbitrary units.

O-Uchi et al. Page 14

Biochem Biophys Res Commun. Author manuscript; available in PMC 2016 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.4. Isoform-specific translocation of PKC by α1-ARS in HEK293Tcells
A. Summary table of the Isoform-specific translocation of PKC by α1-ARS (Phe treatment) 

or PMA treatment in HEK293Tcells. B. Summary of the time-dependent translocation of 

PKC isoforms to the PM by α1-ARS in HEK293T cells. M/C ratio in each isoform was 

normalized by that obtained after 10-min application of PMA (set as a 100% translocation).
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