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Abstract

Stress is present in everyday life in various forms and situations. Two stressors frequently 

investigated are physiological and psychosocial stress. Besides similar subjective and hormonal 

responses, it has been suggested that they also share common neural substrates. The current study 

used activation-likelihood-estimation meta-analysis to test this assumption by integrating results 

of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE 

corrected.

The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that 

demonstrated overlapping activation for both stressors. Analysis of physiological stress showed 

consistent activation of cognitive and affective components of pain processing such as the insula, 
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striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed 

consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, 

parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in 

physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. 

Additional functional connectivity and decoding analyses further characterized this functional 

heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the 

ventral striatum with reward processing.

Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global 

neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, 

during psychosocial stress attention is shifted towards emotion regulation and goal-directed 

behavior, and reward processing is reduced. Our results show the significance of differentiating 

physiological and psychosocial stress in neural engagement. Furthermore, the assessment of 

deactivations in addition to activations in stress research is highly recommended.
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1. Introduction

In everyday life we are confronted with social, cognitive or physiological stressors in 

various situations. Stress is a response to demands placed upon the body independent of the 

stressors' nature. Various stressor types that are associated with potential threat can induce 

stress (Selye, 1998; reprinted from 1936). The bodily stress reaction activates the 

hypothalamic-pituitary-adrenal gland (HPA) axis and subsequently the release of cortisol 

(Kirschbaum et al., 1993). The psychological homeostatic process is also altered by stress 

(Burchfield, 1979; Koob, 2009). Thus, the stress response is linked to a state of arousal and 

hypermobilization of the body's normal activation and emotion system (Hennessy and 

Levine, 1979; Koob, 2009). According to this view, two distinct types of stressors are 

physiological stress and psychosocial stress.

Physiological stress is indicated by an unpleasant sensoric, emotional and subjective 

experience that is associated with potential damage of body tissue and bodily threat (Peyron 

et al., 2000; Price, 2000; Tracey, 2005). Different bodily conditions may fulfill these criteria, 

e.g. pain, hunger, oxidative stress, etc. (see e.g., Colaianna et al., 2013). In the current study 

we will focus on pain processing as physiological stressor, for two main reasons. First, 

investigating pain as a physiological form of stress has a long lasting history (Lupien et al., 

2007; Selye, 1998; Vachon-Presseau et al., 2013b). Second, pain processing is easily 

manipulated and therefore most frequently investigated in neuroimaging environments. 

Handling pain integrates sensory as well as affective processing (Price, 2000) and it has an 

arousing effect, increasing cortisol release and negative affect (Rainville, 2002; Vachon-

Presseau et al., 2013a; Zubieta and Stohler, 2009). In neuroimaging environments, acute 

pain is induced by paradigms such as electric shocks or ice cold water which are known to 

increase cortisol and noradrenalin release.
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Psychosocial stress is induced by situations of social threat including social evaluation, 

social exclusion and achievement situations claiming goal-directed performance (Dickerson 

and Kemeny, 2004; Pruessner et al., 2010). The need to be affiliated with others and to 

maintain the social-self are core psychological needs (Dickerson and Kemeny, 2004; 

Panksepp, 2003; Tossani, 2013). If the gratification of these needs is threatened, for example 

by a negative judgment of performance by others, then social threat and therefore stress is 

induced (Dickerson and Kemeny, 2004). Social evaluation as well as cognitive achievement 

with unpredictable outcome induce heightened cortisol responses, which are accompanied 

by increases in electrodermal activity, subjective stress reports and negative affect (Dedovic 

et al., 2009a; Dickerson and Kemeny, 2004; Eisenberger and Lieberman, 2004). Individuals 

having higher sensitivity towards social evaluation also express elevated cortisol response to 

acute stressors such as achievement tasks or social exclusion (Kirschbaum et al., 1995; 

Pruessner et al., 2008, 1999; Seidel et al., 2013; Somerville et al., 2010; Stroud et al., 2002).

Generally, neuroimaging studies refer to neural activations; however, studies investigating 

psychosocial stress also frequently report neural deactivations (Dagher et al., 2009; Dedovic 

et al., 2009a; Gradin et al., 2012; Pruessner et al., 2008). The interrelation between activated 

and deactivated neural areas is not well understood (Arsalidou et al., 2013b). Particularly, 

deactivations in limbic and cortical regions associated with emotion processing are reported 

(e.g., Critchley et al., 2000a; Moor et al., 2012; Onoda et al., 2009). However, some studies 

also report activations in these regions (e.g., Cacioppo et al., 2013; Eisenberger et al., 2003; 

Sebastian et al., 2011). Thus, inconsistent results regarding activation and deactivation have 

been reported, particularly in brain regions such as the hippocampus/amygdala, the anterior 

cingulate cortex (ACC) and prefrontal areas.

In contrast to psychosocial stress, the neural correlates of physiological stress are better 

characterized. Various meta-analyses of the neural correlates of pain processing identified a 

network of activated brain areas including primary and secondary motor and somatic 

regions, insula, dorsal ACC, thalamus, periaqueductal grey and prefrontal cortex (e.g., 

Apkarian et al., 2005; Friebel et al., 2011; Strigo et al., 2003). These regions process 

sensory-discriminative information as well as affective-cognitive pain properties (Tracey, 

2005). Similar to psychosocial stress, specific deactivations during pain processing in 

emotion regulation areas such as the amygdala, nucleus accumbens and frontal regions, as 

well as in motor and sensoric-related areas have been reported (e.g., Aziz et al., 1997; 

Becerra et al., 2001; Derbyshire et al., 1997).

Taken together, pain as a physiological stressor and achievement situations and social 

exclusion as psychosocial stressors cause similar subjective, emotional and peripheral stress 

responses (e.g., Eisenberger et al., 2003; MacDonald and Leary, 2005; Mee et al., 2006; 

Meerwijk et al., 2013). Both psychosocial and physiological stress are associated with 

situations that threaten survival (Karremans et al., 2011), and both stressors alter the 

mesolimbic dopamine transmission in the striatum and the prefrontal cortex (Adler et al., 

2000; Pruessner et al., 2008; Saal et al., 2003; Scott et al., 2006). Additionally, it has been 

argued that similar neural regions, such as the limbic-prefrontal circuit, are activated in 

processing psychosocial as well as physiological stress (Zubieta and Stohler, 2009). 

However, until now, this assumption has not been tested quantitatively. The primary interest 
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of the current study lies in assessing the neural correlates of human stress responses to 

different stressors. In addition to neural activations, we wanted to further determine 

deactivations from both psychosocial and physiological stress. Therefore, the current meta-

analysis set out to test whether psychosocial and physiological stress share overlapping and 

also distinct neural deactivations and/or activations. To do so, we used an activation-

likelihood-estimation (ALE) meta-analysis approach (Eickhoff et al., 2012). Based on 

previous results, we expected to find overlaps in deactivations between psychosocial and 

physiological stress in the amygdala, prefrontal regions and distinct somatosensory areas. 

Contrarily, brain regions associated with peripheral arousal, emotion processing and 

avoidance (e.g. prefrontal regions, insula, ACC) were suspected to be activated during both 

psychosocial and physiological stress.

2. Material and Methods

2.1. Selection criteria for used data

Literature research was conducted using PubMed (www.pubmed.com) searching for 

combinations of the keywords: “fMRI”, “PET”, “neuroimaging”, “stress”, “achievement/

cognitive stress”, “psychosocial stress”, “social exclusion”, “social stress”, “social 

rejection”, “ostracism”, “social pain”, “physiological stress”, “pain”, or “pain regulation”. 

Additional studies were identified by review articles, other meta-analyses and by tracing 

references from retrieved studies. Furthermore, in the case that a study did not sufficiently 

report the results, the corresponding authors were contacted and asked to provide more 

information on their data. In the following the term “experiment” refers to any single 

contrast analysis, and the term “study” refers to a scientific publication, usually reporting 

more “experiments” (Laird et al., 2011).

Only data of healthy adults (aged 18 and older) with no prior report of neurological, 

psychiatric or pain-related disorders were considered for the current meta-analysis, while 

results of patient or group effects (e.g., gender differences) were excluded. Furthermore, 

only neuroimaging studies which utilized either functional magnetic resonance imaging 

(fMRI) or positron emission tomography (PET) on a whole-brain level and reported the 

coordinates of brain region activation or deactivation in standard anatomical reference space 

(Talairach/Tournoux; Montreal Neurological Institute [MNI]) were included. We excluded 

articles that conducted solely region-of-interest (ROI) analyses or did not report all 

significant peak-voxels at a specific threshold as well as receptor-PET studies. At last, we 

excluded studies in which any stress type served as an independent factor affecting further 

cognitive domains (e.g., fear conditioning, decision making), any pharmacological/placebo 

studies and correlation or resting-state analyses.

For psychosocial stress we included social exclusion and rejection studies as well as studies 

investigating cognitive achievement under time pressure or concurrent social evaluation. For 

physiological stress we included paradigms manipulating pain experience (e.g., extreme heat 

or cold, electrical stimulation, etc.). As we focused on both activation and deactivation of 

brain regions during a stressful event compared to a control or baseline condition, activation 

peaks were defined as brain regions more strongly activated during stress than during 

control or baseline (stress>control/baseline) and deactivation peaks as less activated during 
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stress compared to control or baseline (control/baseline>stress). As of January 29th, 2014, 

this resulted in inclusion of 43 experiments for psychosocial (26 activation/17 deactivation; 

n=1130) and 82 experiments for physiological (69 activation/13 deactivation; n=967) stress 

(table 1).

2.2. Activation-likelihood (ALE) estimation

All meta-analyses were performed according to the standard analysis method used in 

previous studies (cf. Bzdok et al., 2012; Langner and Eickhoff, 2013; Rottschy et al., 2012). 

In particular, analyses were based on the revised ALE algorithm for coordinate-based meta-

analysis of neuroimaging results (Eickhoff et al., 2012). This algorithm aims at identifying 

topographic clusters of activation/deactivation that show significantly higher convergence 

across experiments than expected under random spatial distributions. Importantly, the 

reported foci are not treated as single points, but rather as centers of 3D Gaussian probability 

distributions. This acknowledges spatial uncertainty and reliability by weighting studies 

according to their sample sizes through the width of the 3D Gaussian probability 

distribution. Thus, larger sample sizes provide more reliable approximations of the true 

activation/deactivation effect and are therefore modeled by smaller Gaussian distributions 

(Eickhoff et al., 2009). The resulting probabilities of all reported foci in a given experiment 

are combined for each voxel yielding a modeled activation (MA) map (Turkeltaub et al., 

2012). The union of all MA maps from all experiments included in the analysis then results 

in voxel-wise ALE scores, which describe the convergence of results at each particular 

location in the brain. These ALE scores are then compared to an empirical null-distribution 

reflecting a random spatial association between experiments' MA maps (Eickhoff et al., 

2012). Hereby, a random-effects inference was invoked, focusing on inference on the above-

chance convergence between studies, rather than clustering of foci within a particular study.

The null-hypothesis was derived by sampling a random voxel from each of the MA maps 

and taking the union of these values. The p-value of a “true” ALE score is given by the 

proportion of equal or higher values obtained under the null-distribution. The resulting non-

parametric p-values were then thresholded at a cluster-level family-wise error (FWE) 

corrected threshold of p<.05 (cluster-forming threshold at voxel-level p<0.001) (Bzdok et 

al., 2012; Eickhoff et al., 2011; Rottschy et al., 2012). Additionally, we conducted contrast 

and conjunction analysis between the meta-analyses of psychosocial and physiological 

stress. Minimum conjunction analyses (Nichols et al., 2005) were computed in order to 

isolate the intersection of the thresholded z-maps of two separate meta-analyses. Thus, any 

voxel determined to be significant by the conjunction analysis constitutes a region in the 

brain which survived inference corrected on cluster-level FWE in each of the individual 

meta-analyses. Differences between psychosocial and physiological stress were tested by 

comparing the two ALEs to a random distribution. First, the true difference between two 

individual analyses was determined by computing the voxel-wise difference between the 

unthresholded ALE maps of each analysis (cf. Eickhoff et al., 2012). Second, we determined 

a null-distribution of differences. This was done by pooling all experiments contributing to 

either analysis and randomly dividing them into two groups of the same size as the two 

original sets of experiments. ALE-scores for these two randomly assembled groups were 

calculated and the difference between these ALE-scores was recorded for each voxel in the 
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brain. Repeating this process 25000 times then yielded an expected distribution of ALE-

score differences under the assumption of exchangeability. The “true” difference in ALE 

scores was then tested against this null-distribution yielding a probability that the true 

difference was not due to random noise in an exchangeable set of labels, based on the 

proportion of lower differences in the random exchange. The resulting probability values 

were thresholded at p>.95 (95% chance for true difference) and inclusively masked by the 

respective main effects, i.e., the significant effects of the ALE analysis for the particular 

condition. For both the conjunction and the contrast analyses only clusters larger than 10 

voxels were considered. Anatomical labeling was conducted with SPM Anatomy Toolbox 

version 1.8 (Eickhoff et al., 2007, 2005).

2.3. Follow-up analyses

In order to specifically determine functional networks for regions of interest derived from 

the current meta-analyses, we additionally conducted resting-state functional connectivity 

analyses as well as functional characterization (e.g., Müller et al., 2014).

2.3.1. Resting-state functional connectivity analysis—Resting-state images were 

obtained from the Nathan Kline Institute “Rockland” sample (available online as part of the 

International Neuroimaging Datasharing Initiative; http://fcon_1000.projects.nitrc.org/

indi/pro/nki.html), consisting of 132 healthy subjects (representing the U.S. population in 

key demographic measures; 18-85 years; mean age: 42.3 ± 18.08 years; 78 male, 54 female). 

260 images were acquired on a Siemens 3T TrioTim scanner using BOLD contrast (gradient 

echo EPI pulse sequence, repetition time (TR)=2.5s, echo time (TE)=30ms, flip angle=80°, 

in-plane resolution=3.0×3.0 mm, 38 axial slices (3.0mm thickness) covering the entire 

brain). Data was processed using SPM8 (Wellcome Trust Centre for Neuroimaging, 

London, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The first four scans were 

discarded from each subject prior to further analyses. EPI images were corrected for head 

movement by affine registration using a two-pass procedure. In a first step, images were 

aligned to the initial volumes and subsequently to the mean of all volumes. Next, the mean 

EPI image was spatially normalized to the MNI single-subject template for each subject 

(Holmes et al., 1998) using the “unified segmentation” approach (Ashburner and Friston, 

2005). Ensuing deformation was applied to the individual EPI volumes. Images were 

smoothed by a 5mm full-width-at-half-maximum Gaussian kernel to improve signal-to-noise 

ratio and to compensate for residual anatomical variations. Time-series of each voxel were 

processed as follows (Müller et al., 2013): Spurious correlations were reduced by excluding 

variance which could be explained by the following variables: (1) the six motion parameters 

derived from image realignment; (2) their first derivatives; (3) mean gray-matter (GM), 

white-matter (WM), and cerebral blood flow (CBF) intensity (each tissue-signal-class 

related signal separately). All nuisance variables entered the model as first and second order 

terms. Finally, data was band-pass filtered (cut-off frequencies of 0.01 and 0.08Hz). The 

time-courses of all voxels within each seed of interest were extracted for each subject as the 

first eigenvariate of all GM voxels within the respective seed. Linear (Pearson) correlation 

coefficients were computed between the resulting characteristic time series of the seed and 

the time series of all other GM voxels of the brain to quantify resting-state functional 

connectivity. The voxel-wise correlation coefficients of each subject were transformed into 
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Fisher's z-scores and fed into a second-level ANOVA including an appropriate non-

sphericity correction implemented in SPM8. Results were again thresholded at a cluster-

level FWE corrected threshold of p<.05 (cluster-forming threshold at voxel-level p<.001; 

k>10).

2.3.2. Functional characterization—Functional characterization of regions of interest 

derived from the meta-analyses was performed by using meta-data categories that classify 

each single experimental contrast from the BrainMap database according to the assessed 

“behavioral domain” (such as emotion, cognition or perception) and “paradigm class” (such 

as flanker task, mental rotation or reward task) (Turner and Laird, 2012; see http://

brainmap.org/scribe/ for the complete list of behavioral domains and paradigm classes). For 

the analyses the forward and reverse inference approaches were calculated (Müller et al., 

2013). The forward inference approach determines the probability of observing activity in a 

brain region when a mental process is present. We tested whether the conditional probability 

of activation given a particular task [P(Activation|Task)] was higher than the baseline 

probability of activation [P(Activation)]. The baseline denotes the probability of finding a 

(random) activation from BrainMap in the region of interest. Significance was tested using a 

binominal test (p<.05, corrected for multiple comparisons). Additionally, the reverse 

inference approach tests the probability of the presence of a mental process given knowledge 

of activation in a particular region of interest. This likelihood [P(Task|Activation)] can be 

derived from P(Activation|Task) as well as P(Task) and P(Activation) using Bayes' rule. 

Significance was assessed by means of a chi-square test (p<.05, corrected for multiple 

comparisons) (Amft et al., 2015).

3. Results

3.1. Activation

Physiol ogical stress—The analysis across experiments reporting activations during 

physiological stress revealed convergent activity in bilateral insula extending to the putamen 

(PUT), caudate nucleus (CN), pallidum (PA) and temporal pole. Additionally, activation of 

bilateral supramarginal cortex and rolandic operculum, bilateral thalamus, as well as the 

right supplementary motor cortex (SMA) extending to the left middle cingulate cortex 

(MCC), left cerebellum, and right middle frontal gyrus (MFG) emerged (for details see table 

2).

Psychosocial stress—Investigation of consistent activation across experiments 

assessing psychosocial stress revealed activation of the right superior temporal gyrus (STG) 

and the right inferior frontal gyrus (IFG) (pars triangularis) extending to the insula (table 2).

Physiological vs. psychosocial stress—This direct comparison revealed stronger 

convergence of activation for physiological stress in the bilateral insula extending to PUT, 

PA and IFG, bilateral supramarginal gyrus extending to the right rolandic operculum, 

bilateral MCC, bilateral thalamus, right MFG, and left cerebellum (figure 1 and table 2).
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Psychosocial vs. physiological stress—For psychosocial compared to physiological 

stress stronger convergence of activation for psychosocial stress emerged in the right STG 

(figure 1 and table 2).

Physiological and psychosocial stress—The conjunction analysis revealed common 

activation for both stressor types in the right IFG (pars triangularis) extending into the insula 

lobe (figure 2 and table 2).

3.2. Deactivation

Physiol ogical st ress—The meta-analysis across experiments reporting deactivation 

upon physiological stress revealed significant convergence in the right paracentral lobule 

(table 3).

Psychosocial st ress—Convergent deactivation across experiments of psychosocial 

stress was found in one cluster extending from the left CN to the PUT (table 3).

Physiological vs. psychosocial stress—Physiological stress directly compared to 

psychosocial stress showed stronger convergence of deactivation in the right paracentral 

lobule (see figure 3 and table 3).

Psychosocial vs. physiological stress—The direct comparison of psychosocial and 

physiological stress revealed significantly stronger convergence of deactivations for 

psychosocial stress in the left CN (see figure 3 and table 3).

Physiological and psychosocial stress—Conjunction analysis did not reveal any 

common deactivations for both stressor types.

3.3. The striatum in physiological and psychosocial stress

Interestingly, engagement of the striatum was found for both stress conditions: for 

physiological stress activation was reported while for psychosocial stress deactivation 

emerged. Notably, this activation-deactivation pattern engaged distinct parts of the striatum. 

Therefore, we additionally compared the results of activation during physiological stress 

with the results of deactivation during psychosocial stress. Contrast analysis revealed 

stronger convergence of activation during physiological stress compared to deactivation 

during psychosocial stress in the dorsal striatum [maximum peak: -20 2 8], while 

deactivation during psychosocial stress compared to activation during physiological stress 

showed significantly more convergence in the ventral part of the striatum [maximum peak: 

-12 20 -8] (figure 4A).

From clusters that derived from the comparison of convergent activation of physiological 

and deactivation of psychosocial stress, we extracted ROIs according to in-house 

cytoarchitectonic maps of the striatum (Ludwig-Zahl et al., 2014) implemented in SPM 

Anatomy Toolbox (Eickhoff et al., 2007, 2005). Both ROIs were then further investigated 

with regard to their functional connectivity profile as well as their functional properties.
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Comparison of resting-state functional connectivity between dorsal and 
ventral striatum—The left dorsal striatum showed higher functional connectivity than the 

ventral striatum with numerous regions such as precentral areas and middle cingulate gyrus, 

supramarginal gyrus extending to the STG, left middle and inferior temporal gyrus or right 

middle frontal gyrus (see figure 4B and table 4). The left ventral striatum demonstrated 

higher functional connectivity than the dorsal striatum with regions such as mid orbital 

gyrus and ACC or angular and supramarginal gyri (see figure 4B and table 4).

Functional characterization of dorsal and ventral striatum—In addition, the 

derived clusters of dorsal and ventral striatum were functionally characterized using the 

“behavioral domain” and “paradigms class” meta-data of the BrainMap database.

Dorsal striatum: Based on the forward inference approach, activation of this cluster was 

particularly related to behavioral domains of action execution, perception of pain, and action 

imagination. Paradigm classes significantly associated with dorsal striatum were finger 

tapping, imagined movement, pain monitor/discrimination, and flexion/tension (figure 4C). 

Similar results (additionally including speech execution and overt recitation/repetition) were 

observed when calculating reverse inference.

Ventral striatum: Activation of the ventral striatum was significantly associated with the 

behavioral domains of cognition and emotion as well as the paradigm class reward using the 

forward inference approach (figure 4C). The same results emerged when applying the 

reverse inference.

Dorsal vs. ventral striatum: These findings were further supported by direct contrast 

analysis revealing significantly stronger association of the behavioral domains of emotion 

and cognition and the paradigm class reward with the ventral than the dorsal striatum. 

Additionally, the behavioral domains of vision and motion perception, action execution and 

imagination, speech execution, cognition of language and speech as well as the paradigm 

classes finger tapping, overt reading, saccades, tone monitor/discrimination, and overt 

recitation/repetition showed significantly stronger associations with the dorsal than with the 

ventral striatum.

4. Discussion

The current study used a meta-analytic approach for quantitatively summarizing activations 

and deactivations of fMRI and PET studies on psychosocial and physiological stress 

processing. For this purpose we included studies on achievement stress and social exclusion 

as indicators for psychosocial stress. Pain processing was used as an indicator for 

physiological stress. Our results show that physiological and psychosocial stressors 

deactivate as well as activate distinct neural regions. Furthermore, the striatum appeared to 

be especially involved in physiological and psychosocial stress. The results are discussed in 

detail in the following.
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4.1. Activation in physiological and psychosocial stress

Physiol ogical stress—The meta-analysis of activation during physiological stress 

revealed convergence in regions typically activated during pain processing (e.g., Peyron et 

al., 2000), so our findings are in concordance with existing literature on pain experience. 

The ACC, prefrontal cortex and thalamic nuclei belong to the affective-cognitive-evaluative 

pain system whereas motor and somatosensory cortices are part of the discriminative-

sensoric pain system (Friebel et al., 2011; Iannetti and Mouraux, 2010). The insula seems to 

mediate systems that are coding intensity and lateralization as well as emotional processing 

of pain, making it a suspect for coordinating emotional and sensoric properties during 

physiological stress processing (Friebel et al., 2011). Therefore, the detection of sensoric 

qualities, the handling of affective information and the integration of those sensoric and 

affective-emotional sensations are particularly significant in physiological stress processing.

Stronger convergence of activation in physiological than in psychosocial stress: 
Stronger convergence of activation in physiological compared to psychosocial stress in 

regions such as the posterior insula, dorsal striatum, IFG (pars opercularis) or MCC indicate 

sensory-motoric processing (Arsalidou et al., 2013a; Friebel et al., 2011; Kurth et al., 

2010b). This specific part of the IFG is reported to be involved in action control (Binkofski 

and Buccino, 2006), indicating motoric processing and preparation of behavioral tendencies. 

Additionally, rostral MFG activation is associated with control of negative as well as self-

referential processing and episodic working memory (e.g., Gilbert et al., 2006; Yang et al., 

2013). The observed activation of regions involved in self-referential working memory and 

action control indicates a preparation of motoric and behavioral patterns that were acquired 

in previous situations of bodily threat. This specific induction of a “fight-or-flight” response 

in situations of physiological stress (Cannon, 1932; Taylor et al., 2000) should be taken into 

account when using this approach to induce stress for research purposes. Furthermore, 

people suffering from physiological stress complaints may benefit specifically from 

targeting these sensoric processing and “fight-or-flight” reactions in stress coping 

interventions.

Psychosocial stress—Analysis of consistent activation across experiments of 

psychosocial stress revealed convergence in the right IFG and the right posterior STG. The 

posterior STG cluster of the current meta-analyses widely overlaps with the anterior 

temporo-parietal junction, which is strongly involved in attentional processes and shows 

negative connectivity with a network involved in social cognition (Bzdok et al., 2013). In 

association with early life and social stress, this region shows decreased resting-state activity 

and greater gray matter volume (De Bellis et al., 2002; Philip et al., 2013). A recent meta-

analysis on emotion regulation (Kohn et al., 2014) indicates the involvement of the right 

STG in cognitive regulation of emotion. In terms of psychosocial stress, the activation of the 

right posterior STG indicates enhanced attention processing and regulation of emotional 

arousal, probably resulting in focused and (ego-centric) goal-directed behavior in situations 

of psychosocial stress.

Stronger convergence of activation in psychosocial than in physiological stress: Here, 

the right STG showed stronger convergence in activation for psychosocial stress than for 
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physiological stress. Given its role in attention processing during emotion regulation and 

goal-directed behavior (Bzdok et al., 2013; Kohn et al., 2014) as well as negative 

connectivity to networks involved in social cognition (Bzdok et al. 2013), our results 

indicate that during psychosocial stress attention is focused towards ego-centric emotional 

arousal while social processing is concurrently reduced. In contrast to pain experience, the 

competitive nature of challenging tasks in psychosocial stress may reduce social processing 

but increase attention as well as emotion control, which is subserving the goal-directed 

orientation when performing the task.

Common activation in physiological and psychosocial stress—A cluster in the 

right IFG (pars triangularis) extending to the insula showed convergence of activation in the 

meta-analyses of both stressor types. This part of the IFG, often referred to as VLPFC, is 

essential for action and cognitive control such as the inhibition of behavior (Aron et al., 

2014) as well as for suppressing emotions and emotional memory (Depue et al., 2007; Quirk 

and Beer, 2006). In addition, IFG activity is associated with processing and regulating 

particularly negative affective states (e.g., negative affect/emotion processing during 

negative experiences: Eisenberger et al. (2003); Wang et al. (2005); cognitive emotion 

regulation: Lieberman et al. (2007); Ochsner and Gross (2005); social rejection: Cacioppo et 

al. (2013)). IFG activation during stress processing may indicate processing negative, 

subjective experiences, which result from and/or are accompanied by the inhibition of 

behavioral impulses such as a potential flight reaction.

Besides IFG, activation of the ventral, anterior part of the insula (AI) emerged in the 

analyses of both psychosocial and physiological stress. The insula merges nociceptive, 

thermoregulatory, and cardiovascular-related activation, and regulates peripheral activation 

and autonomic arousal (Critchley et al., 2000b; Rainville, 2002). It is therefore suspected to 

mediate sensoric and affective processing (Critchley, 2004; Critchley et al., 2000b; 

Rainville, 2002). The ventral anterior part in particular is engaged during reliving and 

processing strong emotions (Kober et al., 2008; Kurth et al., 2010b; Touroutoglou et al., 

2012), and it is assumed to encode the affective and autonomic features of the current state, 

i.e. how unpleasant or aversive one feels in a certain situation (Singer and Lamm, 2009; 

Singer et al., 2004). Therefore, the engagement of the AI during physiological and 

psychosocial stress may reflect mapping and evaluation of emotions.

Hence, activation of the cluster spanning from IFG to AI found for both stressor types may 

reflect a global, neural stress reaction. This cluster may be a potential target for stress 

regulation trainings. Modulating its activation via neurofeedback or non-invasive 

stimulation and investigating the effect on stress reaction may be the focus of future research 

(Bauer et al., 2011; Linden et al., 2012; Votinov et al., 2013).

4.2. Deactivations in physiological and psychosocial stress

While most neuroimaging studies focus on neural activation, some studies additionally 

report neural deactivations during stress processing compared to a control condition or 

baseline activity.
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Physiological stress—Convergent deactivation during physiological stress was found in 

a region covering the right paracentral lobule. The paracentral lobule is especially engaged 

during activation of inner body organs (Blok et al., 1997; Seseke et al., 2006; Zhang et al., 

2005). Additionally, subjective pain sensitivity modulates activation of this region, with 

stronger activation in subjects who experience pain as more intense (Coghill et al., 2003). 

Deactivation of the paracentral lobule during physiological stress may cease the acute 

functioning of essential body organs, suggesting an expedient reaction to situations of bodily 

threat, which requires the prevention of potentially threatened resources and the preparation 

of fast motoric reactions.

Stronger convergence of deactivation in physiological than in psychosocial stress: It 
follows that physiological stress showed stronger convergence in deactivation than 

psychosocial stress in the paracentral lobule. Again we speculate that the ceasing of acute 

functioning of essential body organs seems to be more significant for processing sensoric 

information in the threatening situations of physiological stress compared to situations of 

psychosocial stress.

Psychosocial stress—Psychosocial stress resulted in consistent deactivations in one 

cluster within the striatum extending from the left CN to the PUT. In line with our results, 

Nikolova and colleagues (2012) reported a negative association between recent life stress 

and a concomitant decrease in striatal activation which in turn was associated with lower 

positive affect. In general, the CN is associated with various behavioral and cognitive 

domains, including reward processing and motivation (Arsalidou et al., 2013a). With regard 

to the latter function, Kumar and colleagues (2014) showed that psychosocial stress 

influences reward processing, with decreased CN activation during reward consumption. 

This taken together with our results indicates that psychosocial stress induces an anhedonic 

behavior and decreases processing of positive reinforcement as well as motivation (Wang et 

al., 2007). This is also consistent with reports that emotional complaints such as lack of 

motivation are associated with stress experience (e.g., American Stress Report, American 

Psychological Association, 2010; German Stress Report, Lohmann-Haislah, 2012). The 

PUT, in contrast to the CN, is classically assigned to motor processes and control (Arsalidou 

et al., 2013a; Leisman and Melillo, 2013). It was also shown to be directly related to pain 

sensation (Davis et al., 2002; Favilla et al., 2014) and intensity discrimination (Oshiro et al., 

2009). At first glance, motor as well as pain related properties seem to be diminished, and 

reward processing and the capacity of cognitive resources seems to be reduced during 

psychosocial stress processing.

Stronger convergence of deactivation in psychosocial than in physiological stress: The 

CN cluster also showed stronger convergence in deactivation during psychosocial stress than 

during physiological stress. The deactivation of reward related areas may be associated with 

task engagement particularly during psychosocial stress. Paradigms used to elicit 

psychosocial stress instructed participants to engage in either a demanding achievement or a 

social goal-directed task. Contrarily, physiological stress tasks were mainly passive without 

immediate overt response or cognitive engagement. The effortful nature of the demanding 

task and the self-relevant evaluation of a situation seem to induce anhedonic mood and 
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decrease processing of positive reinforcements (Pizzagalli et al., 2009; Wang et al., 2007). 

The engagement of cognitive resources should be taken into account when using different 

induction methods to assess stress reaction.

4.3. The role of the striatum in psychosocial and physiological stress

The striatum appeared to be involved in both psychosocial and physiological stress 

processing, with activation during physiological stress and deactivation during psychosocial 

stress. This result may be explained by the assumption that physiological stress engages 

motor preparation and sensory processing, whereas psychosocial stress down-regulates these 

processing states. The distinct involvement of the striatum displayed by the current results 

led us to examine this region in more detail. We conducted additional exploratory analysis, 

which revealed functionally divided sub-regions of the left striatum: While physiological 

stress activated dorsal parts, psychosocial stress deactivated ventral parts of the striatum.

Dorsal striatum—The current analyses revealed consistent engagement of the left dorsal 

striatum during physiological stress. Further functional connectivity analysis revealed that 

this cluster was functionally connected to other nuclei of the basal ganglia as well as parietal 

and frontal areas. The functional characterization of this region showed significant 

association with action execution, pain and sensory processing. Our finding of consistent 

activation of the dorsal striatum across experiments of physiological stress indicates a 

dominant role of this region for motor and sensory processes. This, together with results of 

other studies (Arsalidou et al., 2013a), suggests increased sensory processing and supports 

our assumption of the preparation of motor programs during physiological stress.

Ventral striatum—In contrast, during psychosocial stress the ventral striatum showed 

consistent deactivation. Functional connectivity analysis of this region revealed a network 

involved in emotion processing including other striatal and frontal regions. Additionally, 

functional characterization of the ventral striatum showed significant associations with 

cognition, emotion and reward. Therefore, psychosocial stress seems to correlate with 

deactivation of the ventral striatum, which is involved in processing reinforcement, 

motivation and executive functioning (Arsalidou et al., 2013a).

Dorsal vs. ventral striatum—Functional division of the striatum has already been 

suggested by some authors, in particular into three different subzones: a dorsal sensorimotor, 

a medial cognitive-associative, and a ventral limbic and emotional-motivational striatum 

(e.g., Lehéricy et al., 2004; Middleton and Strick, 2000; Postuma and Dagher, 2006). The 

ventral striatum is classically assigned to reward processing (Arsalidou et al., 2013a), and 

the current results as well as previous literature indicate that it has strong connections with 

regions associated with emotion processing and executive functioning (Lehéricy et al., 2004; 

Postuma and Dagher, 2006). Deactivation of the ventral striatum during psychosocial stress 

points to suppression of functions important for cognitive and emotion processing, in 

particular reward processing. In contrast, previous and current result show that the dorsal 

striatum is connected to motor and premotor areas as well as sensory processing brain 

regions (Postuma and Dagher, 2006). Therefore, activation of the dorsal striatum and its 

connectivity to motor regions in situations of physiological stress may indicate the 
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preparation of musculoskeletal systems to induce either a fight or a flight response in life 

threatening situations (Cannon, 1932).

4.4. Limitations and suggestions for future studies

The current study has some limitations that might influence data interpretation.

First, we focused on acute stress reactivity without considering chronic psychosocial or 

physiological stress. Chronic stress is known to have long-lasting effects that are manifested 

on neural levels such as anatomical volume changes and even neural reorganization (e.g., 

Admon et al., 2013; Birbaumer et al., 1997). So far, the amount of neuroimaging studies on 

processing chronic stress is modest, but this factor should be taken into account in future 

research.

Second, it has to be noted that emotion-induction may induce negative affect and mood 

states as well, blurring the borders between emotional arousal and stress processing. 

However, it has been shown that mere emotion-induction studies do not trigger stress 

responses (Dickerson and Kemeny, 2004). Thus, in the current meta-analyses studies using 

stress-induction by emotional triggers (e.g., viewing of emotional pictures) were excluded to 

avoid confusion of mere emotional arousal and stress processing. Third, the current study 

focused on pain manipulation as a physiological stressor. Investigating similarities with 

further possible operationalization of physiological stress, such as hunger or oxidative stress, 

is of high interest to broaden the knowledge on the neural correlates of stress processing. 

Fourth, it may be argued that physiological stress possesses limited variance, whereas 

psychosocial stress may have more variability. One of the reasons to conduct the current 

analyses was to define regions that are involved in these diversified stress constructs of 

physiological and psychosocial stress. The term “stress” is often used without specifically 

differentiating the induction methods. We hope that the current analyses contribute to a 

better methodological separation of the different possibilities of stress induction in stress 

research.

Fifth, it is intriguing that regions often reported to be involved in stress reaction, such as the 

ACC or the amygdala, did not appear to be relevant for stress processing in the current meta-

analyses. Inclusion of studies reporting whole-brain analyses was one precondition of the 

current study. We therefore excluded a fair amount of studies due to region-of-interest 

analyses or small-volume corrections. This may be a factor explaining the missing effects 

within these regions.

Sixth, the amount of studies in the field of psychosocial stress is modest and in both 

psychosocial and physiological stress only a few studies report deactivations. This is the first 

meta-analysis on deactivation and we hope that reports on psychosocial stress and 

deactivations will accumulate within coming years to enable more robust results on these 

data.

At last, future studies may deal with the neural correlates of different stressors when a 

cortisol reaction was observed vs. when there was no accompanying cortisol reaction. The 
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specific contribution of the HPA axis on the neural deactivations and activations of stress 

processing is of great interest and may be addressed via this comparison.

5. Summary and conclusion

The current meta-analyses provide new insights into the neural correlates of stress 

processing which is strongly dependent on stressor type. Both physiological and 

psychosocial stress share activation in a cluster extending from the IFG into the AI; 

therefore, processing and regulation of negative subjective feelings is crucial for both 

stressor types. Besides that, rather distinct regions underlie the processing of both stress 

types. During the life threatening nature of physiological stress, the brain adapts by ceasing 

the functioning of essential body organs. It also engages motoric-sensoric processing and 

self-referential working memory to prepare a fight-or-flight reaction. Contrarily, the 

demanding character of psychosocial stress shifts attention to cognitive control of emotion 

and serves a goal-directed behavior. The effortful nature of psychosocial stress additionally 

deactivates reward processing and induces anhedonia. Overlaps in deactivations for 

physiological and psychosocial stress are missing. Our results have several implications as 

daily stress varies from health concerns to social and emotional complaints. Increases in 

prevalence rates in a variety of stress-related disorders have been reported (Keller et al., 

2012; World Health Organization, 2001), which demonstrates the importance of 

investigating reactions to different stressors in more detail. The current analyses show the 

importance of differentiating physiological and psychosocial stress for specific conclusions 

on neural stress processing. Furthermore, the assessment of deactivations in addition to 

activations in stress research is highly recommended.
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Highlights

• We meta-analytically analyzed physiological and psychosocial stress

• IFG and insula are convergently activated in physiological and psychosocial 

stress

• Physiological stress activates regions included in pain processing

• Psychosocial stress activates the right STG and deactivates the left striatum

• Dorsal and ventral striatum differ functionally in stress processing
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Figure 1. Activations for physiological and psychosocial stress
Contrasts showing stronger convergence in activation in psychosocial stress than in 

physiological stress (red) and stronger convergence in activation in physiological stress than 

in psychosocial stress (blue). (Abbreviations: L=left; R=right; BIL=bilateral; INS=insula; 

IFG=inferior frontal gyrus; ROP=rolandic operculum; MCC=middle cingulate gyrus; 

MFG=middle frontal gyrus; TH=thalamus; CEREB=cerebellum; PUT=putamen; 

SMG=supramarginal gyrus; STG=superior temporal gyrus.) Results are cluster-level FWE 

corrected (p<.05).
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Figure 2. Conjunction of activations
Conjunction of the results of the meta-analysis on activation in psychosocial stress and the 

one on activation in physiological stress revealing a cluster in the right inferior frontal gyrus 

(IFG) extending into the anterior insula (AI). Results are cluster-level FWE corrected (p<.

05).
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Figure 3. Deactivations for physiological and psychosocial stress
Contrasts showing stronger convergence in deactivation in psychosocial stress than in 

physiological stress (red) and stronger convergence in deactivation in physiological stress 

than in psychosocial stress (blue). (Abbreviations: L=left; R=right; CN=caudate nucleus; 

PL=paracentral lobule.) Results are cluster-level FWE corrected (p<.05).
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Figure 4. Dorsal and ventral striatum in stress processing
A) Contrasts showing convergence of deactivation in psychosocial in the ventral striatum 

(red) and activation in physiological stress in the dorsal striatum (blue). B) Regions showing 

functional resting-state connectivity with the ventral (red) and the dorsal (blue) striatum. C) 
Likelihood ratio for significant behavioral domains (graphs in the upper panel) and 

paradigm classes (graphs in the lower panel) for the ventral (red) and the dorsal (blue) 

striatum for the forward inference approach.
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Table 1

Overview of included studies. A) Physiological stress. B) Psychosocial stress. (Included PET-studies are 

marked with an asterisk.)

Study n Deactivation/Activation Task

A) Physiological Stress

Seminowicz and Davis (2007) 23 deactivation/activation electrical stimulation

Aziz et al. (1997)* 8 deactivation/activation esophageal distension

Torta et al. (2013) 17 deactivation/activation mechanical stimulation

Carlsson et al. (2006) 9 deactivation/activation electrical stimulation

Lui et al. (2008) 14 deactivation/activation mechanical stimulation

Becerra et al. (2001) 8 deactivation/activation thermal stimulation

Oshiro et al. (2009) 12 deactivation/activation thermal stimulation

Coghill et al. (1994)* 9 deactivation/activation thermal stimulation

Derbyshire et al. (1994)* 6 deactivation/activation thermal stimulation

Derbyshire et al. (1997)* 12 deactivation/activation thermal stimulation

Derbyshire and Jones (1998)* 12 deactivation/activation thermal stimulation

Perini et al. (2013) 18 deactivation/activation thermal stimulationthermal stimulation/

Strigo et al. (2003) 7 activation esophageal distension

Ladabaum et al. (2001)* 15 activation gastric distension

Benson et al. (2012) 30 activation rectal distension rectal distension/

Dunckley et al. (2005) 10 activation thermal stimulation

Niddam et al. (2002) 10 activation electrical stimulation

Wiech et al. (2006) 12 activation electrical stimulation

Singer et al. (2004) 32 activation electrical stimulation

Ibinson et al. (2004) 6 activation electrical stimulation

Xu et al. (1997)* 6 activation mechanical stimulation

Pujol et al. (2009) 9 activation mechanical stimulation

Farrell et al. (2006)* 10 activation mechanical stimulation

Rolls et al. (2003) 8 activation mechanical stimulation

Iadarola et al. (1998)* 13 activation capsaicin pain

Mochizuki et al. (2007) 14 activation thermal stimulation

Seifert and Maihöfner (2007) 12 activation thermal stimulation

Botvinick et al. (2005) 12 activation thermal stimulation

Lorenz et al. (2002)* 14 activation thermal stimulation

de Leeuw et al. (2006) 9 activation thermal stimulation

Valet et al. (2004) 7 activation thermal stimulation

Bornhövd et al. (2002) 10 activation thermal stimulation

Talbot et al. (1991)* 8 activation thermal stimulation

Vachon-Presseau et al. (2013a) 18 activation thermal stimulation

Hofbauer et al. (2001)* 10 activation thermal stimulation

Kurata et al. (2002) 5 activation thermal stimulation

Peyron et al. (1999)* 12 activation thermal stimulation
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Study n Deactivation/Activation Task

Tracey et al. (2000) 6 activation thermal stimulation

Svensson et al. (1998)* 10 activation thermal stimulation

Coghill et al. (2001)* 9 activation thermal stimulation

Brooks et al. (2002) 18 activation thermal stimulation

Dubé et al. (2009) 12 activation thermal stimulation

Kong et al. (2006) 16 activation thermal stimulation

Oshiro et al. (2007) 12 activation thermal stimulation

Coghill et al. (1999)* 16 activation thermal stimulation

Derbyshire et al. (2002)* 16 activation thermal stimulation

Geuze et al. (2007) 12 activation thermal stimulation

Paulson et al. (1998)* 10 activation thermal stimulation

Schmahl et al. (2006) 12 activation thermal stimulation

Smith et al. (2002) 8 activation thermal stimulation

Keltner et al. (2006) 13 activation thermal stimulation

Becerra et al. (2004) 9 activation thermal stimulation

B) Psychosocial stress

Dedovic et al. (2009b) 28 deactivation/activation MIST

Dagher et al. (2009) 15 deactivation MIST

Derntl et al. (submitted) 80 deactivation/activation MIST

Kogler et al. (2015) 43 deactivation/activation MISTMental arithmetic +

Critchley et al. (2000a)* 6 deactivation isometric exercise

Kern et al. (2008)* 14 deactivation/activation TSST

Moor et al. (2010) 16 deactivation Social evaluation

Gradin et al., (2012) 16 deactivation/activation Cyberball

Bolling et al. (2011) 23 deactivation/activation Cyberball

Bolling et al. (2012) 20 deactivation/activation Cyberball

Sebastian et al. (2011) 16 deactivation/activation Cyberball

Seidel et al. (submitted) 80 deactivation/activation Cyberball

Maurage et al. (2012) 22 deactivation/activation Cyberball

Moor et al. (2012) 15 deactivation/activation Cyberball

Lederbogen et al. (2011) 32 activation MIST

Soliman et al. (2011) 40 deactivation/activation MIST

Fechir et al. (2010) 16 activation STROOP

Koric et al. (2012) 15 deactivation/activation PASAT

Eisenberger et al. (2003) 13 activation Cyberball

Kawamoto et al. (2012) 22 activation Cyberball

Masten et al. (2011) 18 activation Cyberball

DeWall et al. (2012) 25 activation Cyberball

Karremans et al. (2011) 15 activation Cyberball

Lelieveld et al. (2012) 72 activation Cyberball

Onoda et al. (2010) 26 activation Cyberball

Masten et al. (2012) 21 activation Cyberball
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