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Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay
differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function
that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made
in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that
mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall
organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging
information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific
to certain types of psychiatric disorders.

1. Introduction

The human brain is the most mysterious and vital organ.
Recent neuroimaging techniques, including functional mag-
netic resonance imaging (fMRI), electroencephalography
(EEG), and magnetoencephalography (MEG), now allow us
to probe the brain at unprecedentedly high temporal or
spatial resolution without the use of invasive techniques.
Since the first fMRI brain scans of the 1980s, scientists have
achieved great progress not only in technical procedures
employed to acquire brain imaging data but also in data
processing methods which subsequently reveal an inspir-
ing understanding of the brain drawn from various data
perspectives. fMRI has become the dominant technique in
neuroimaging due to its noninvasiveness, lack of radiation
exposure, a relatively good spatial and temporal resolution,
and relative ease to acquire.

In this paper, we will review popular data processing
methods used in task-based fMRI and resting-state fMRI (see
Figure 1 for a summary of mainstream fMRImethods). Some
methods introduced in task-based fMRI, such as MVPA, are
also applied in the case of resting-state fMRI data. Different

analysis methods probe specific brain activity patterns. The
application of these methods to investigating psychiatric dis-
orders will be discussed in great detail.We also point out here
that within neuropsychology there is an ongoing paradigm
shift from identifying foci of abnormalities to delineating the
functional connectivity among several brain regions, towards
developing a global understanding of aberrations at the level
of large-scale, whole brain networks. The advantages and
disadvantages of each neuroimaging method are discussed
and compared in order to help researchers select themethods
most appropriate to their purposes.

2. Task-Based fMRI

Due to the great sensitivity of fMRI signals to event-related
changes in neuronal blood flow, we can compare the BOLD
signal differences between patients with psychiatric disorders
and normal subjects when performing different kinds of tasks
in order to elucidate how a brain in a state of disorder func-
tions differently from a normal one. In this section, we will
introduce several methods frequently used in task-related
fMRI analyses and discuss the advantages and disadvantages
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Figure 1: A summary of mainstream fMRI neuroimaging methods.

of each method (see Table 1). Also note that these techniques
are not mutually exclusive, such that two or more of them
may be applied to the same dataset according to the quality
of the dataset and the purpose of the study. Of importance,
we discussed how these analyses can inform each other and
some caveats in using these methods, such as choosing the
frequency bands in resting-state fMRI (R-fMRI).

2.1. Subtraction and Correlation. The general linear model
(GLM) has gained growing popularity in task-related fMRI
analysis since its introduction into the neuroimaging com-
munity by Friston et al. [1] in 1994, due to its easy inter-
pretability and fast computability. GLM provides a frame-
work for most kinds of data modeling and can minimize
confounding factors, such as head motions or respiration
from the subject, provided that these data are modeled. The
aim of the general linear model is to explain the variation
of the time course, 𝑦

1
, . . . , 𝑦

𝑖
, . . . , 𝑦

𝑛
, in terms of a linear

combination of explanatory variables plus a Gaussian error
term.The general linear model in matrix form can be written
as

𝑌 = 𝑋𝛽 + 𝜀, (1)

where 𝑌 is the vector of observed pixel values, 𝛽 is the
vector of parameters, and 𝜀 is the vector of error terms. The
matrix 𝑋 is known as the design matrix (Figure 2(a)). It has
one row for every time point in the original data and one
column for every explanatory variable in the model. In the
GLM, the columns of 𝑋 contain vectors corresponding to
the “on” and “off” elements of the stimulus presented. By
finding the magnitude of the parameter in 𝛽 corresponding
to these vectors, the presence or absence of activation can be
detected. The aim of GLM analysis is to identify the brain
regions that show significant signal change in response to
the experimental conditions. Each pixel is assigned a value
dependent on the likelihood of the null hypothesis being
false. The null hypothesis is that the observed signal changes
can be explained purely by random variation in the data.

The brain image containing such information for all voxels
is called a statistical parametric map [1]. One of the simplest
methods for obtaining results from an fMRI experiment
is to perform a simple subtraction on two experimental
conditions. By averaging together all the images acquired
during the “on” phase of the task and subtracting the average
of all the “off” images, brain regions that are activated during
the “on” phase of the task can be drawn out of the data pool
and identified. Using parametric design, researchers can also
examine parametric correlation with behavior in the brain.
GLM is also the base of the majority of functional/effective
connectivity estimation techniques which will be introduced
in the following sections.

GLM is the dominant method used in task-based fMRI.
Studies on psychiatric disorders have used this method to
compare brain activities induced by certain experimental
manipulations in the patient group and in the control
group. For example, Juckel et al. [2] scanned patients with
schizophrenia and healthy subjects using fMRI while they
performed a “monetary incentive delay” task, in which they
anticipated potential monetary gain, loss, or neutral out-
comes. Following preprocessing, the fMRI data was modeled
by GLM with three explanatory variables (“gain,” “loss,” and
“neutral outcome,” indicating experimental cues) convolved
withCohen’s gamma-function. Activations of different exper-
imental conditions can be compared based on the BOLD
response differences which can be assessed using linear
combinations of the estimated GLM parameters (𝛽 values).
Within-group activation (e.g., “gain versus neutral outcome”)
and intergroup differences can be compared by including
the BOLD response variations of all subjects in each group
in a second-level random effects analysis. However, GLM
has also undergone some criticism focusing primarily on
the assumptions the model makes [3]. Greater attention
should be paid to checking the model’s assumptions when
applying GLM as a tool to analyze task-related fMRI data.
This approach is the main method used in task-based fMRI
in psychiatric research.

2.2. Psychophysiological Interaction (PPI). One important
goal of neuroimaging research is to describe the pattern
of brain connectivity among different regions. Functional
connectivity refers to undirected associations between brain
regions while effective connectivity reveals a directed and
causal relationship. Psychophysiological interaction, in a
clever use of the GLM,measures how functional connectivity
is affected by psychological variables without specifying the
directions of such influences [4]. It examines how brain
activity can be explained by the interaction between an exper-
imental variable (e.g., level of attention) and the coupling
between signals from a particular brain area (the source
area) and signals from voxels in the rest of the entire brain
(Figure 2(b)). A psychophysiological interaction means that
the contribution of one area to another changes significantly
with the experimental or psychological context. In other
words, regional responses in the source area to an exper-
imental or psychological factor are modulated by signals
from a distal brain region. Das et al. [5] used a behavioral
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Table 1: Comparisons among different task-based fMRI analysis methods.

Methods Purposes Strengths Limitations

General linear model

Estimating to what extent each
known predictor contributes to the
variability observed in the voxel’s
BOLD signal time course

(i) Mathematically simple, easily
interpreted, and readily available in
standard packages (e.g., the SPM
software)
(ii) Flexible to incorporate multiple
quantitative and qualitative
independent variables, such as low-
frequency drifts and head motion

(i) Relies on assumptions such as
appropriate repressors in the matrix
and normality of the fMRI noise
which are difficult to check

Psychophysiological
interaction

“Searching” for regions that
correlate differently with a
particular region under certain
experimental context

(i) Can explore the connectivity of the
source area to the rest of the brain and
how it interacts with the psychological
variables

(i) Only involves one region of
interest in one model
(ii) Limited in the extent to which
you can infer a causal relationship

Structural equation
model

Estimating the degree to which the
activity between different brain
regions is connected and how this
connectivity is affected by an
experimental variable

(i) Can examine interactions of several
regions of interest simultaneously and
offer estimations of causal
relationships
(ii) Predetermined connections are
based on prior anatomical or
functional knowledge

(i) Causality is predetermined, and
this might overlook several aspects
of neural activity
(ii) Assumes the interactions are
linear (i.e., structural equation
models are not time-series)
(iii) Lacks temporal information

Dynamic causal
model

Estimating and making inferences
about the coupling among brain
regions and how this coupling is
affected by changes in experimental
context at the neuronal level

(i) Biologically more accurate and
realistic than other methods because
DCMmodels interactions at the
neuronal rather than the
hemodynamic level and complex
connectivity patterns between regions
can be arbitrarily postulated

(i) Prespecified models are needed
(ii) Requires much longer time to
estimate parameters than SEM
(iii) Neurodynamics in each region
are characterized by a single state
variable (“neuronal activity”)

Granger causality
model

Measuring the predictability of one
neural time-series from another

(i) No a priori specification of a model
is needed. Thus this model can
complement the hypothesis-driven
methods and help to form directed
graph models of regions and their
interactions

(i) The causal relationship may be
caused by the differences in
hemodynamic latencies in different
parts of the brain if long repetition
times (TR) are used

Multivoxel pattern
analysis

Applying pattern- classification
algorithms to demonstrate the
relationship between measures of
brain activity and a perceptual state
and provide an
information-theoretic framework
for the isolation of regions that
uniquely represent a behavior

(i) Simultaneously examines the
disparate signals carried within a set of
voxels rather than examining
individual voxels in parallel
(ii) Can decode more complex
information due to improved
sensitivity and use of spatial
information

(i) The possibility of overfitting
increases as the classifier becomes
more complex, which may result in
poor performance in tests of
generalization

task in which schizophrenia patients and healthy participants
were asked to identify the emotions displayed on a series of
facial images presented either supraliminally or subliminally
during scanning. Subtraction analyses of fMRI data showed
that, compared to healthy controls, schizophrenia patients
showed reduced activity in the right amygdala and MPFC
during conscious perception of fear (relative to neutral) and
also in the bilateral amygdala and rostral ACC of the MPFC
during subliminal perception of fear. PPI analyses revealed
reduced neural activity in schizophrenia patients, relative
to control subjects, in the pathway from the amygdala and
its projection to the medial prefrontal cortex (MPFC) in
response to fear perception. In another fMRI study, Wang
et al. [6] applied PPI analysis to explore how abnormal
functional connectivity in mPFC in schizophrenics altered
as a result of psychological context or variables. They found

that schizophrenic patients showed highermPFC-LSTG con-
nectivity under self-generated conditions than under other-
generated conditions.

2.3. Structural Equation Model (SEM). The structural equa-
tionmodel, which was developed in the field of econometrics
and first applied to neuroimaging data in 1991 [7], is another
way to measure effective connectivity. Like PPI, SEM is
also used to describe how effective connectivity is affected
by experimental context. But, compared to PPI, SEM is
better at identifying causal relationships and it combines
covariances in activity between different brain areas with
anatomical models of these brain areas’ connections [8, 9].
SEM contains a group of regions and a group of directed
connections and these connections are presumed to represent
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Figure 2: A summary of task-related fMRI analysis methods. (a) An example of the general linear model containing the BOLD signal time-
series 𝑌 within a particular voxel, the design matrix𝑋 including three regressors of interest, the regressor parameters 𝛽, and the unexplained
residuals 𝜀. (b) Psychophysiological interaction can identify how the connectivity between two particular brain regions is modulated by an
experimental variable or how a specified region modulates the relationship between an experimental variable and another brain region. (c)
Structural equation model includes the stimulus to have an influence on all variables without input within the model. (d) An illustration of
the dynamic causal model. (e) An illustration of the Granger causality model. Time-series A can be said to cause time-series B because the
pattern of B is similar to A and A has temporal precedence. (f) An example of multivoxel pattern analysis. A specific classifier is chosen to
identify the pattern of a certain mental state, whereafter the accuracy of the classifier will be tested using a new dataset.

causal relationships (Figure 2(c)). SEM requires an a priori
assumption of causality without inference from the data and
from this basis subsequently builds a model about how the
regions are connected to each other. Free parameters in these
models are “path coefficients”—representing the strength
of connections. This approach offers a move from corre-
lational analysis (inherently bidirectional) to unidirectional
connections (paths) which imply causality. One well-known
strength of SEM is the method’s ability to specify latent
variable models that provide separate estimates of relations
among latent constructs and their manifest indicators (the
measurement model) and of the relations among constructs
(the structural model) [10]. Another strength of SEM is
the availability of measures of global fit that can provide a
summary evaluation of even complex models that involve a
large number of linear equations [10]. It has proved useful
in distinguishing a patient’s neural network from a normal
subject’s neural network in one fMRI simulation study [11].
In another fMRI study, schizophrenic patients were scanned
while performing a “2-back” working memory task. SEM
was used to assess effective connectivity within a cortical-
subcortical-cerebellar network for mnemonic information
processing and comparison of group differences [12].

2.4. Dynamic Causal Model (DCM). Similar to SEM, the
dynamic causal model is also an approach to estimate
effective connectivity and how this connectivity is influenced
by experimental variables. However, underlying SEM and
DCM are two very distinct generative models (see [10] for a
comprehensive comparison of DCM and SEM). DCM treats
the brain as a deterministic, dynamic systemwith a nonlinear
and dynamic nature in which the observed BOLD signal
recorded by fMRI results from changes in neuronal activity
caused by external inputs [6, 13, 14], while SEM does not
distinguish “neuronal” levels from “hemodynamic” levels and
changes in effective connection lead directly to changes in the
covariance structure of the observed hemodynamics in this
method. Considering changes in effective connectivity in the
brain occur at a neuronal level, DCM is a better method for
fMRI analysis.

The goal ofDCM is to estimate andmake inferences about
the coupling among brain areas and how that coupling is
influenced by changes in experimental context by building
a reasonably realistic neuronal model of interacting brain
regions. This model is then supplemented with a forward
model of how neuronal or synaptic activity is transformed
into a measured response such as the BOLD signal [13]. This
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enables estimation of the parameters of effective connectivity
from observed data. With DCM, a causal model is built in
which neuronal activity in a certain region causes changes
in neuronal activity in other regions through interregional
connections and self-connections that can be modulated by
experimental variables (Figure 2(d)). Effective connectivity
is parameterized in terms of coupling among unobserved
brain states (e.g., neuronal activity in different regions).
The objective is to estimate these parameters by perturbing
the system and measuring the response. In brief, the core
of DCM distinguished from conventional approaches such
as SEM and GCM is that it attempts to model neuronal
interactions instead of signals [15] and explore the estimation
problem according to the designed perturbations that accom-
modate experimental inputs. DCM has been broadly used
in psychiatric fMRI. For example, in a stoke patient’s fMRI
study, Grefkes et al. [14] applied DCM of a bilateral network
comprising M1, the lateral premotor cortex, and the supple-
mentary motor area (SMA) to assess changes in the endoge-
nous and task-dependent effective connectivity between the
cortical motor areas activated by a hand movement task at
baseline, following vertex stimulation and contralesional M1
stimulation with repetitive transcranial magnetic stimulation
(rTMS). In another fMRI study, Roebroeck et al. [16] used
DCM to examine the effects of Parkinson’s disease and
dopaminergic therapy and concluded that the DCM model
selection is robust and sensitive enough to study clinical
populations and their pharmacological treatment.

2.5. Granger CausalityModel (GCM). GCM is another popu-
lar method of estimating effective connectivity [16–18], based
on the reasoning that one time-series can be considered to
cause another if using the past information of the former
can help forecast the latter better than only using the past
information of the latter [19]. GCM can provide an estimate
of connection directionality when one time-series resembles
a time-shifted version of the other, supposing that one with
temporal precedence caused the other [20] (Figure 2(e)).This
method does not depend upon an a priori assumption of a
structural model that contains preselected ROIs and connec-
tions between them, which differs from SEM with the goal
of contrasting the predefined causal model with real datasets.
Furthermore, GCM defines the causal relationship between
two stochastic time-series relying purely on temporal prece-
dence in their interdependency. Demirci et al. [21] scanned
schizophrenic patients and healthy subjects with fMRI while
performing a Sternberg item recognition paradigm (SIRP)
and auditory oddball (AOD) tasks. The fMRI data were
then decomposed into maximally independent spatial com-
ponents and corresponding time courses by applying ICA.
The time courses for each of the components that were most
related to the cognitive task with the most important and
meaningful activation patterns were then used as inputs to
a Granger causality test that investigated group differences in
causal relationships between independent components over
a frequency spectrum. Granger causality can also be applied
to resting-state fMRI data to infer instantaneous correlation
and causal influences. Hamilton et al. [22] measured BOLD

signals of patients suffering from major depressive disorder
during resting state and found that hippocampal and vACC
activation in depressed participants predicted subsequent
decreases in dorsal cortical activity by applying GCM.

2.6. Multivoxel Pattern Analysis (MVPA). MVPA is gaining
increasing interest in the neuroimaging community because
it allows us to detect differences between conditions with
higher sensitivity than conventional univariate analysis by
focusing on the analysis and comparison of distributed
patterns of activity (Figure 2(f)). In such a multivariate
approach, data from individual voxels within a region are
jointly analyzed. MVPA applies pattern-classification algo-
rithms like support vector machines (SVM) [23–27], neural
networks [28–30], or linear discriminant analysis (LDA) [31,
32] as classifiers to distinguish spatial patterns of different
mental states and decode the perceptual or cognitive states
of an individual. In the analysis of fMRI data, the features
that are descriptive of the objects are first chosen, whereafter
a subset of these features to be used for classification is
selected. The data is divided into two parts: a “training
set” and a “testing set.” The pattern-classification algorithm
utilizes the training set to train the classifier with the features
and the prespecified classes of objects. The classifier thus
“learns” a functional relationship between the features and
the classes. Finally, the classification algorithm is tested for its
generalization capabilities with the testing set.Thepercentage
of correct classifications can be measured.

Like other multivariate approaches (e.g., PCA and ICA),
MVPA takes into accountmultivoxel patterns of brain activity
or connectivity. Information contained in these patterns can
then be decoded by applying powerful pattern-classification
algorithms. This method thus incorporates spatially dis-
tributed patterns of activity into the analysis, unlike univari-
ate methods which treat every brain voxel independently.
MVPA is often presented in the context of “brain reading”
applications reporting that specific mental states or represen-
tational content can be decoded from fMRI activity patterns
after performing a “training” or “learning phase.”

MVPA has been successfully applied to identify func-
tional connectivity difference between males and females
[23], patterns in perception of pain [33], moral intentions
[34], consciousness [35, 36], and brain maturity [37]. In
a study on subjects with autism spectrum disorder (ASD)
conducted by Coutanche et al. [38], reliable correlations
between MVPA classification performance and standardized
measures of symptom severity that exceeded those observed
using a univariate measure were found, which indicated
MVPA had the potential to predict clinical symptom severity.

3. Resting-State fMRI Analyses

Brain regions which are active when our minds wander
may hold a key to understanding neurological disorders
and even consciousness itself. Resting-state fMRI, which
measures spontaneous low-frequency fluctuations (<0.1Hz)
in the BOLD signal, is a relatively new pathway for evaluating
regional interactions in the absence of tasks [39–41]. For a
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Table 2: Comparisons among resting-state fMRI analysis methods.

Methods Purposes Strengths Limitations

Seed-based FC analysis
Estimating correlations between
the predefined voxel or regions
and the rest of the brain voxels

(i) Easy to calculate and
understand

(i) Requires a priori selection of ROI,
which may lead to potential biases

Regional homogeneity

Using Kendall’s coefficient
concordance to measure the
similarity of a given voxel with its
nearest neighbors based on the
BOLD time-series

(i) Easy to calculate and
understand

(i) Potential biases attached to prior
seed selection

Amplitude of
low-frequency fluctuations

Estimating the intensity of
regional spontaneous brain
activity by calculating the
voxel-wise magnitude within a
defined low-frequency range

(i) Can serve as a potential
confounding variable when
investigating functional
connectivity and network

(i) Sensitive to physiological noise,
which makes fractional ALFF (fALFF)
approach a better choice

Principal component
analysis

Finding spatial and temporal
components that capture as
much of the variability of the
data based on decorrelation as
possible

(i) Can verify the facticity of
difference in the activations
between conditions or groups
without specifying any prior
knowledge of the form of BOLD
response or the structure of the
experimental design

(i) Based on strong assumptions like
linearity, orthogonal principal
components, and high signal noise
ratio

Independent component
analysis

Separating distinct resting-state
networks that are spatially or
temporally independent of each
other and identifying noise
within the BOLD signal

(i) Can generate spatially or
temporally distributed DM
functional connectivity patterns
with relatively few a priori
assumptions

(i) May be less sensitive to
interindividual variation in the
composition of such networks and
may be more likely to produce errors
at the group level if a network is
presented across multiple components
in some subjects.

Graph theory

Describing the topology of the
functional brain networks by
calculating connectional
characteristics of the graph
comprised of nodes (voxels) and
edges (connections between
voxels)

(i) Directly describes and
compares different brain
networks utilizing topological
parameters

(i) Difficult to interpret

long time neuroscientists have thought that the brain enters
a “quiet” state while a person is not doing anything but
remaining still. However, the recent studies of resting-state
fMRI reveal that there is a persistent level of background
activity in the brain during rest, which is called “the default
mode” (DM) [8, 11, 41–43]. Some neuroscientists believe
that the default mode network (DMN) may be critical in
uncovering the neural mechanism of psychiatric disorders
ranging from Alzheimer’s disease to depression [44–51]. On
the other hand, due to its capacity for exploring individual
differences, as well as its ease of acquisition, resting-state
fMRI has become one of the most popular techniques in
neuroimaging. In this section we will introduce several
popular resting-state fMRI analysis methods and compare
their advantages and disadvantages (see Table 2).

3.1. Seed-Based FC Analysis. The seed-based approach
extracts BOLD time-series data from a “seed”—a priorly
selected voxel or ROI—and assesses the correlation between
the average BOLD signal of the seed and the time course of all
other brain voxels (Figure 3(a)). Seed-based analysis has been

applied in resting-state fMRI to explore the relationships
between resting-state brain activity and motor response
regions [39], intelligence [52], descent into sleep [53],
cognitive decline in normal aging [54], memory [55],
task-related activation correlated with schizophrenia [56],
and task-positive and task-negative networks [57]. In an
fMRI study conducted by Zhou et al. [58], to investigate
patients with paranoid schizophrenia, the right dorsolateral
prefrontal cortex and the posterior cingulate cortex were
selected as two seed regions. Then, the investigators
computed a correlation map by computing the correlation
coefficients between the reference time-series in the seed
region and the time-series from all other brain voxels from
which they found abnormal interregional connectivity
in the intrinsic organization in patients with paranoid
schizophrenia. Parkinson’s disease (PD) is characterized by
motor symptoms resulting from the death of dopamine-
generating cells. Previous studies on PD have been associated
with abnormal task-related brain activation in sensory and
motor regions as well as reward related network. In order
to study corticostriatal skeletomotor circuit dysfunction
in Parkinson’s disease, in a recent resting-state fMRI
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(a) Seed-based FC analysis (b) Regional homogeneity

0.08Hz

(c) Amplitude of low-frequency fluctuations

(d) Principal component
analysis

(e) Independent compo-
nent analysis

(f) Graph theory

Figure 3: A summary of research analysis methods applied to resting-state functional MRI. (a) With seed-based functional connectivity
analysis, a voxel or region is predefined and correlations are estimated between the selected “seed” and the remaining brain voxels. (b) An
illustration of regional homogeneity (ReHo). (c) An illustration of amplitude of low-frequency fluctuations (ALFF). (d) Principal component
analysis (PCA) transforms the original data into a new coordinate system where orthogonal variables are identified while retaining most of
their variance. (e) Independent component analysis (ICA) is useful for searching a set of underlying sources of resting-state signals that are
maximally independent of each other which can explain the resting-state patterns. (f) Graph theory views ROIs as nodes and correlations
between them as the connectivity of the edges and then computes the connectional features of the graph.

study, the putamen and supplementary motor area (SMA)
were selected as seed regions due to their roles in reward
processing andmotor control [59]. Enhanced putamen-SMA
functional connectivity was also found in the PD group.
Similarly, the periaqueductal gray (PAG) plays a key role
in the descending modulation of pain and its functional
connectivity has been intensively examined in chronic
pain patients [60]. While seed-based FC analysis has the
advantage of statistical transparency and comprehensible
results, seed-based analysis also suffers from the potential
biases attached to prior seed selection. For example, to
examine the default network, researchers have used a variety
of seeds and generated different versions of the default mode
network [61].

3.2. Regional Homogeneity (ReHo). ReHo is another straight-
forward technique that uses Kendall’s coefficient concor-
dance (KCC) to measure the similarity of a given voxel
with its nearest neighbors based on the BOLD time-series
[62] (Figure 3(b)). Multiple studies which applied ReHo to
resting-state fMRI data processing have shown diminished
ReHo of specific regions in heavymale smokers [63], patients
with Alzheimer’s disease [64], patients with depression [65,
66], patients with schizophrenia [67], patients with Parkin-
son’s disease [68], children with ASD [69, 70], adults with
ADHD [49], and normal aging people [68]. On the contrary,
a positive correlation has also been found between ReHo of
certain regions and intelligence [71], early blindness [72], and
internet addiction disorder [73]. ReHo is very useful in iden-
tifying regional abnormality in psychiatric disorders, which
may guide further network based analysis. For example,

a recent study found that ReHo changes in schizophrenia are
widespread [74], leading to brain-wide network analysis in
schizophrenia [75, 76].

3.3. Amplitude of Low-Frequency Fluctuations (ALFF). ALFF
is an index that reflects the intensity of regional spontaneous
brain activity by calculating the voxel-wise magnitude within
a defined low-frequency range (Figure 3(c)). In order to
reduce ALFF’s sensitivity to physiological noise, Zou et al.
[77] proposed a fractional ALFF (fALFF) approach calcu-
lating the ratio of power spectrum of low-frequency (0.01–
0.08Hz) to that of the entire frequency range. A number
of resting-state fMRI studies have observed higher ALFF in
the DMN areas than other areas [77–79]. Applications of
ALFF in studies of conditions like depression [80], ADHD
[81], PTSD [82], normal aging [83], and schizophrenia [84]
have also revealed some exciting findings. Recently, by
decomposing R-fMRI low-frequency (typically 0.01–0.1Hz)
oscillations (LFOs) into two distinct frequency bands [slow-5
(0.01–0.027Hz), slow-4 (0.027–0.073Hz)], researchers found
that LFO amplitudes in the slow-4 band were higher than
those in the slow-5 in many brain regions [85, 86]. Yu et al.
(2014) further demonstrated that the abnormalities of LFOs
in schizophrenia are dependent on the frequency band and
suggest that future studies should take the different frequency
bands into account when measuring intrinsic brain activity
[85].

3.4. Principal Component Analysis (PCA). PCA is a data-
driven method that does not require the input of any prior
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information about the connectivity pattern. It has been found
useful in estimating whether there are functional regions
with correlated signal responses in human brain mapping
[87]. It was first formulated by Pearson [88] and then devel-
oped as a useful technique for reducing the dimensionality
of complex data sets and for extracting new orthogonal
variables identified as principal components [89]. The basic
idea of PCA is to find a set of orthogonal bases that can
maximize the variance of data and to separate out the most
meaningful information from the noise so as to uncover
the hidden structure (Figure 3(d)). For fMRI data, PCA has
the advantage of verifying the facticity of differences in the
activations between conditions or groups without specifying
any prior knowledge of the form of BOLD response or the
structure of the experimental design [90]. It is often applied
in psychiatric fMRI analysis combined with other techniques
such as ICA andMVPA. For example, Shen et al. [91] aimed at
classifying individuals into schizophrenic and healthy control
groups by a quantitative method. They collected fMRI data
from patients with schizophrenia and healthy subjects and
reduced the data size by using PCAdecomposition.Then ICA
was employed to extract data on the functionally connected
networks in the brain, yielding less noisy components, which
would be used as input to the classifier algorithm. However,
the effectiveness of PCA is based on strong assumptions like
linearity, orthogonal principal components, and high signal
noise ratio (SNR) [92]. Sometimes data sets cannot be said to
fit within these assumptions.

3.5. Independent Component Analysis (ICA). As an extension
of PCA, ICA is likewise a data-driven method that has been
successfully used in describing fMRI data [93–96]. With the
identical goal of finding a new set of variables with lesser
redundancy that would provide the best possible represen-
tation of observed phenomena, ICA measures redundancy
by the much richer concept of independence (Figure 3(e))
and only requires relatively weak assumptions about the
independence of source signals compared with PCA, which
extracts interested variables based on decorrelation and
requires some stringent assumptions [97]. The independent
components are assumed statistically independent in ICA.
One of the most useful applications of ICA is reducing the
negative effects of artifacts for standard GLM-based analysis
by using decomposition information [98, 99]. Another useful
application of ICA is in detecting the resting-state functional
connectivity and identifying RSNs (resting-state networks)
[39, 94, 96, 100, 101]. Besides, ICA is also used in task-
related fMRI group analysis called FENICA [102]. ICA has
been widely applied to the study of brain diseases, such as
Alzheimer’s disease [20, 44], schizophrenia [21, 22], bipolar
disorder [2, 103], and epilepsy [2].

3.6. GraphTheory. A hot recent method used in resting-state
fMRI is graph theory. Graph theory is a mathematical theory
and approach to studying graphs made up of nodes and
edges and how these nodes connected by edges interact with
each other [58, 104] (Figure 3(f)). The brain network can be
described as being analogous to a graph in which voxels can

be viewed as nodes and connections between voxels as edges
[105]. In fMRI studies, graph theory has been used by some
ambitious researchers seeking to present a comprehensive
map of how the brain is organized. The unique character-
istic of graph theory compared with the more traditional
univariate fMRI methods is that graph theory can serve
as a tool to directly describe and compare different brain
networks utilizing topological parameters such as clustering-
coefficient, characteristic path length, degree of connectivity,
centrality, and modularity [106]. Evidence from graph theory
in fMRI studies has shown that the brain is structured in a
highly efficient organization with both a small-world topol-
ogy achieved through the presence of hubs and a scale-free
topology [107, 108]. Graph theory has been applied not only
to resting-state fMRI and task-based fMRI so as to analyze
the topology of functional brain networks [105, 109] but also
to studies of cortical thickness [110, 111], surface area, and
diffusion weighted imaging data [91, 112, 113] so as to analyze
the topology of structural brain networks. These studies
have illustrated an alteration of arrangements in structural
and functional brain networks associated with normal aging
[114, 115], multiple sclerosis [116, 117], Alzheimer’s disease
[118–120], schizophrenia [121–123], depression [124, 125], and
epilepsy [110, 126].

4. Conclusion

Over the past decades, the development of fMRI tech-
niques has made great contributions to our understanding
of the neural mechanism underlying psychiatric disorder.
In the present review, we summarize several major MRI
methods widely used in psychiatric neuroimaging. Some
methods such as ReHo and VBM focus on regional changes,
whereas others take a systematic approach and emphasize
the whole brain network. These methods together can reveal
the abnormalities in brain structures and functions in psy-
chiatric disorders. However, the functional significance of
many measures such as ReHo and ALFF is still not well
understood. Psychiatric disorders may be associated with
very subtle changes in the brain. One single method may not
be enough to fully capture the nature of such alternations.
A systematic approach using multimodal neuroimaging and
a variety of analysis methods has the potential to identify
reliable biomarkers for specific psychiatric disorders. With
ongoing progress being made in neuroimaging methods,
neuroimaging holds clear promise in helping to diagnose and
quantify psychiatric diseases.
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et al., “Characterizing brain anatomical connections using
diffusion weightedMRI and graph theory,”NeuroImage, vol. 36,
no. 3, pp. 645–660, 2007.

[113] Y. Iturria-Medina, R. C. Sotero, E. J. Canales-Rodŕıguez, Y.
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