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We applied a “temporal decomposition” method, which decomposed a single brain functional network into several “modes”;
each of them dominated a short temporal period, on a continuous, “state-” related, “finger-force feedback” functional magnetic
resonance imaging experiment. With the hypothesis that attention and internal/external information processing interaction could
be manipulated by different (real and sham) feedback conditions, we investigated functional network dynamics of the “default
mode,” “executive control,” and sensorimotor networks. They were decomposed into several modes. During real feedback, the
occurrence of “defaultmode-executive control competition-related”modewas higher than that during sham feedback (𝑃 = 0.0003);
the “default mode-visual facilitation-related” mode more frequently appeared during sham than real feedback (𝑃 = 0.0004).
However, the dynamics of the sensorimotor network did not change significantly between two conditions (𝑃 > 0.05). Our results
indicated that the visual-guidedmotor feedback involves higher cognitive functional networks rather than primarymotor network.
The dynamics monitoring of inner and outside environment and multisensory integration could be the mechanisms. This study is
an extension of our previous region-specific and static-styled study of our brain functional architecture.

1. Introduction

Many studies have suggested that our brain is an intricate
system [1, 2]. Understanding the spatial and temporal orga-
nization of this complex system is of great importance to
both basic and clinical neuroscience. Various studies have
demonstrated the complexity of the human brain using
functional magnetic resonance imaging (fMRI) based on
spatiotemporal characteristics with methods such as inde-
pendent component analysis (ICA) [3] and complex network
analysis [4].

Nowadays, a new characteristic of the brain functional
networks has been catching researchers’ eyes. It is the
dynamic functional networks or time-varied functional con-
nectivity which treats the brain functioning as a nonstation-
ary process. Dedicated analysismethods have been proposed.
Among various methods, “temporal decomposition” [5–7]
does not rely on statistical hypothesis, and it is simple, intu-
itive, and straightforward. The main idea of this method is
that only a small proportion of the time frames corresponding

to “suprathreshold signal” of a seed region are utilized and
classified into different subgroups or “modes” depending
on the spatial similarity of these frames. The modes were
interpreted to reflect the intermittent or brief interaction
between the seed region and other different brain regions at
different time [5–7].

However, in their original paper [7], the analysis was only
performed on resting-state fMRI data. The interpretation
and the biological meaning of their findings have only been
simply discussed because the resting-state brain activity and
its functions have been still an elusive concept [8]. In their
latter paper [5, 6], they made a methodological alteration in
which the fMRI data was totally blindly decomposed without
a priori seed region definition.The total data-driven method,
in addition to passive resting-state experimental design, has
hindered us from further interpretation of the biological
meaning and underlying mechanism of this method. To our
best knowledge, there has been no study utilizing thismethod
in a task-related experiment. Hence, the resultant dynamic
modes could not be compared between different states which
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are manipulated by researchers. In turn, one could not
understand the specific function of the dynamic modes.

In the current study, we applied this method to a con-
tinuous, “state-related” task fMRI experiment and sought to
discover different dynamic characteristics during different
conditions. We hypothesized that, through such an exper-
imental manipulation, the dynamic feature of some modes
could be modulated. We specifically conducted a continuous
finger force feedback experiment on a group of healthy
volunteers. The manipulation was finger force control with
true pressure data shown via a visual feedback “real feed-
back” or with false pressure feedback data “sham feedback.”
Previous fMRI studies using the similar experiment have
found task activation differences [9] and fractional amplitude
of low-frequency fluctuation (fALFF) differences [10] in the
DMN between different feedback conditions. Besides, block-
designed fMRI studies have reported differences in activation
in the contralateral motor cortex during various motor feed-
back tasks [11, 12]. Neurofeedback can also improve executive
functioning in children [13], indicating the alternation of
the executive control network (ECN) [14]. Therefore, we
chose the PCC, left motor cortex (LMC), and dorsolateral
prefrontal cortex (DLPFC) as seed regions, which are key
nodes of the DMN, sensorimotor network (SMN) [15], and
ECN, respectively.

The first goal was to investigate dynamic characteristics of
these brain networks under continuous feedback condition,
which could reveal the competition or cooperation among
different brain networks during brief time period.The second
goal was to investigate the difference in participation of these
networks between the real and sham feedback conditions,
to further understand the biological mechanisms of the
dynamic brain functional organization.

2. Materials and Methods

2.1. Subjects. There were totally forty-three healthy right-
handed adults (22.7 ± 1.6 years, range 19–25; 23 females) par-
ticipating in this study. Each subject gave written informed
consent.The entry criteria included no history of brain injury,
neurological illness, and psychiatric disorders. Data from five
subjects were excluded due to technical problems or excessive
head motion. The remaining 38 subjects (mean age 22.3 ±
1.6 years; 19 females) were further analyzed. All experiments
were approved by the Ethics Committee of the National Key
Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University, and were conducted in accordance with
the Declaration of Helsinki.

2.2. Experimental Design. Each participant underwent three
8-minute fMRI scans during resting state, the real feedback
state (RF), and the sham feedback state (SF). During resting
state, subjects were instructed to keep their eyes closed,
remain still, and stay relaxed.The purpose of this session was
to allow the subjects to adapt to the fMRI scanning environ-
ment. The order of RF and SF sessions was counterbalanced
across subjects. In the RF state, the subjects were asked to grip
a pressure sensor using the right index finger and thumb.This

sensor is one module of an MRI-compatible physiological
multichannel analyzer (modelMP150, BIOPACSystems, Inc.,
Goleta, CA, USA). The sampling frequency was 250Hz and
the pressure sensitivity was 0.01 cmH

2
O.The sensor recorded

the pressure in real time via an airtight tube.The pressure was
synchronously presented to the participant on a screen. The
target force was set at 20mmH

2
O, which is small enough to

reduce the possibility of muscular fatigue. The subjects were
asked to continuously maintain the pinch force at the target
level. In the SF state, the subjects were also asked to maintain
the pinch force at the same level, but with a video of another
participant’s performance during RF presented. Before the
experiment, all the subjects had a short training session. For
more details please refer to our previous paper [10].

2.3. Image Acquisition. MR images were collected using a
Siemens Trio 3-Tesla scanner in the imaging center at Beijing
NormalUniversity.The participants lied supinewith the head
snugly fixed by foampads tominimize headmovement. After
localization scanning, three fMRI sessions were conducted
using echo-planar imaging sequence with the same parame-
ters: 33 axial slices, repetition time (TR) = 2000ms, echo time
(TE) = 30ms, flip angle = 90∘, thickness/gap = 3.5/0.7mm,
field of view (FOV) = 200 × 200mm2, and matrix = 64 ×
64. Then a 3D T1 magnetization-prepared rapid gradient
echo (MPRAGE) image was acquired (128 sagittal slices,
thickness/gap = 1.33/0mm, in-plane resolution = 256 × 192,
TR/TE = 2530/3.39ms, inversion time = 1100ms, flip angle =
7∘, and FOV = 256 × 256mm2).

2.4. Image Preprocessing. The fMRI data was preprocessed
using DPARSFA v2.3 [16] and REST v1.8 [17] based on SPM8
(http://www.fil.ion.ucl.ac.uk/spm/) and Matlab 2013a (the
MathWorks, Inc., Natick, MA, USA). Major steps included
removal of the first four time points, slice timing correction,
head motion correction, spatial normalization to Montreal
Neurological Institute (MNI) space, spatial smoothing with
a Gaussian kernel (FWHM = 6mm), temporal filtering
(0.01–0.08Hz), removal of linear and quadratic trends, and
regression of covariates, including the global signal, the time
series of the white matter and cerebrospinal fluid, and six
affine motion parameters [7]. The exclusion criterion for
excessive headmotion was >2mm translation or >2∘ rotation
in any direction. We also calculated framewise displacement
(FD) as anothermeasure of headmotionwhich could identify
possible “bad” frames [18]. These bad frames might affect the
following temporal decomposition result. To rule out such an
effect, we conducted the following analyses with and without
removing the bad frames.

2.5. Temporal Decomposition. We chose the PCC, LMC, and
DLPFC as regions of interest (ROIs), which are the major
nodes of the DMN, SMN, and ECN. Seed regions were 12mm
diameter spheres centered at (0, −53, 26), (−38, −22, 56),
and (44, 36, 20) in MNI coordinates, respectively, which
were chosen based on previous studies [19–21]. The average
time series in each ROI was extracted. A 15% threshold was
applied on the time series extracted from the PCC, LMC,



BioMed Research International 3

M
od

e4
M

od
e3

M
od

e2
M

od
e1

M
ea

n

R L

z = −35 −23 −11

−1.5

1 13 25 37 49 61 73

1.5

Z

Figure 1: The posterior cingulate cortex- (PCC-) related modes after temporal decomposition. All results were converted to Z-maps and
arranged by the occurrence frequency. The first line represents the average pattern of the four modes. Black arrow in the first row points out
the seed region approximately.

and DLPFC; that is, only time frames with BOLD intensity
exceeding that threshold were selected for following analysis
[7]. This threshold can be set manually, but here we only
follow parameter setting of Liu et al. The fMRI frames for all
subjects and both RF and SF sessions were chosen and put
together and then sorted by 𝑘-means clustering method [22]
based on their spatial similarities. The fMRI frames sorted
into the same cluster were averaged and transformed to Z-
statistical maps by dividing the SE. In paper by Liu et al.,
after inspection of a series of results with different cluster
numbers, the one which showed the best balance between
richness and redundancy was reserved. Several automatic
cluster number estimation methods were also used but the
results were suboptimal [5, 6]. Following their method, we
also set this number to be 4, 6, and 8 and then inspected
the clustering results separately. We found that the resultant
“modes” were clearer when the number of clusters was 4.
Therefore, we only showed this result in this paper.

2.6. Characterizing Participation of Each Mode and Compar-
ing It betweenDifferent States. If a specificmode is dominant,
it will show more frequently. We used the occurrence of a
specific mode to characterize participation of each mode in
the task. We hypothesized that the occurrence of the same
modes should be different between real and sham feedback
states. We calculated the number of suprathreshold time
frames of the four modes for every subject and for RF and SF
sessions separately and used the ratio between this number
and the total time frames as the occurrence of modes. Paired
t-tests were performed on the ratios between the real and
sham feedback states.

3. Results

3.1. DynamicModes of PCC, LMC, andDLPFC. The temporal
decomposition results based on the seed regions of the PCC,
LMC, and DLPFC are shown in Figures 1–3. They were

ranked by the occurrence of modes despite the task state
(i.e., overall occurrence for both RF and SF sessions). The
DMN, SMN, and ECN were dominant in these three results.
Besides this, several other brain networks also took part in
the feedback process. In Figure 1, the average map of the four
modes matched well with the DMN, while the spatial pattern
of the four modes differed from each other. Mode 1 showed
activation of the DMN as well as deactivation of the regions
in dorsal attention network (DAN) and ECN [19], whichwere
typical anticorrelated networks demonstrated by Fox and his
colleagues [23]. Mode 2 also showed activation of the DMN,
but without obvious anticorrelated networks. Besides DMN,
the activation of the frontoparietal control network (FCN)
[24] was also found in a few upper slices. Mode 3 showed
the coactivation of the SMN and DMN, with deactivation
of the DAN and ECN. Mode 4 showed the coactivation of
the DMN and the visual areas. With all bad frames removed,
reanalyses of the temporal decomposition produced similar
results (see Figure S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/824710). A quantita-
tive differentiation of these modes was further conducted
using Dice coefficient to measure the dissimilarity among
them, indicating a fundamental difference in spatial pat-
tern between each other (see Supplementary Material and
Figure S2).

In Figure 2, the averaged map shows an obvious pattern
of sensorimotor network. However, Mode 1 looked like the
combination of the DAN and ECN, with the decreased
activity of the DMN.Mode 2 showed the activationmainly in
the SMN.Modes 3 and 4 both showed activation of the SMN,
but in Mode 3 we also found the pattern of DMN, while in
Mode 4 we could have found the decreased activity in visual
areas.

The averaged map in Figure 3 shows ECN dominance.
Mode 1 shows the anticorrelation between the ECN and the
DMN. FromMode 2, we could find the activation of the ECN
and FCN and the deactivation of the visual areas. Mode 3
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Figure 2:The left motor cortex- (LMC-) related modes after temporal decomposition. All results were converted to Z-maps and arranged by
occurrence frequency. The first line represents the average result of the four modes. Black arrow in the first row points out the seed region
approximately.
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Figure 3: The dorsal lateral prefrontal cortex- (DLPFC-) related modes after temporal decomposition. All results were converted to Z-maps
and arranged by occurrence frequency. The first line represents the average result of the four modes. Black arrow in the first row points out
the seed region approximately.

showed the coactivation of the ECN and the visual areas.
Mode 4 showed the coactivation of the FCN and DMN.

3.2. Different Occurrence Frequency under Different Feedback
States. Figure 4 shows the occurrence frequency of the dif-
ferent modes derived from three different seed regions under
real and sham feedback states. The paired t-test was per-
formed on occurrence frequency between the two states for
every mode. As we performed totally 12 times (3 seed regions
× four modes) of paired t-tests, we divided a significant P
value of 0.05 by 12 to performmultiple comparison correction
(i.e., use P < 0.0042 to achieve the corrected P value of
0.05).

We found that PCC-related Mode 1 (real > sham, P =
0.0003) and Mode 4 (sham > real, P = 0.0004) were signif-
icantly modulated by different feedback states. However, for

LMC-related modes, no difference was found. For DLPFC-
related modes, Mode 1 (real > sham, P = 0.0011) and Mode
3 (sham > real, P = 0.0031) were found to have different
occurrence between two states. The surface view of these
modes as well as their occurrence frequency for all subjects
under RF and SF states is plotted in Figures 5 and 6.

4. Discussion

In this study, we performed a new method, investigated the
dynamic characteristics of brain networks on finger force
feedback fMRI data, and had two main findings. Firstly, we
found that the DMN, SMN, and ECN did not act inde-
pendently. Instead, several other networks or brain regions
are coactivated or competed with them, which formulated
different modes from a brief time period. Secondly, different
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Figure 4: The occurrence frequency of different modes for three seed regions under real and sham conditions. (a) PCC-related modes, (b)
LMC-related modes, and (c) DLPFC-related modes.
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occurrence frequency. The sign of ∗ represents the P value lower than 0.05 (corrected).
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Figure 6: The brain surface view of the DLPFC-related Mode 1 and Mode 3. For a better view, we set a threshold of Z = 0.5 here to separate
the brain regions. The paired t-test results of these two modes are shown at the bottom. x-axis represents two states, while y-axis represents
the occurrence frequency. The sign of ∗ represents the P value lower than 0.05 (corrected).

modes participated differently during RF and SF states. Such
a difference was not in spatial pattern but in temporal
information (i.e., occurrence frequency).

4.1. Biological Meaning of Different Modes. We found that
different modes did not represent different brain networks;
they were more likely to be combinations of several networks
[25]. Previous study has already shown a complex and
dynamic functional architecture of the PCC [26]. This may
explain the variety of the modes derived from the time
frames when PCC was active. From PCC-related Mode 1 and
DLPFC-related Mode 1, we found an obvious competition
between the DMN and ECN.Thismight reflect the reciprocal
relationship between internal monitoring or self-reference
and high-order cognition-related functions. Interestingly,
though this competition occupied most of the time, PCC-
related Mode 2 and DLPFC-related Mode 4 indicated that
these two networks could be coactivated sometimes. PCC-
related Mode 2 validated the finding from Spreng et al. [24]
in which they found that the FCN acted as regional con-
vergence zones that functionally interact with both default
and dorsal attention regions during cognitive tasks [24].
Another interesting finding is that, for all seed regions, there

were always several modes having a close relationship with
the visual areas. Although such a relationship was not
predominant throughout the time course, it occurred at some
brief time period as discovered by the dynamic analysis
method we used. This might be due to the intensive visual
feedback during the tasks. We also compared the temporal
decomposition result with that derived from a widely used
functional connectivity analysis method, ICA, using MICA
toolbox (http://www.nitrc.org/projects/cogicat/, [27]). The
two results were quite different (see Supplementary Mate-
rial and Figure S3), indicating that conventional stationary
analysis method could not find dynamically interacted brain
networks.

4.2. Different Occurrence of the Modes under Different Feed-
back States. We found all of the modes based on both RF
and SF feedback fMRI data. However, the same modes did
not mean the same occurrence. The paired t-test results
showed significant differences in occurrence frequency of the
PCC-related Modes 1 and 4 as well as the DLPFC-related
Modes 1 and 3. The PCC-related Mode 1 and the DLPFC-
related Mode 1 (they both reflected “default mode-executive
control competition”) appeared more frequently during RF,
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while the other two modes (“default mode-visual facilita-
tion” or “executive control-visual facilitation”) appearedmore
frequently during SF. The “default mode-executive control
competition” might be the basis of finger force feedback,
since this type of feedback involves both self-monitoring and
executive controlling. The “default mode/executive control-
visual facilitation” might be caused by the unmatched self-
produced finger force and visual feedback. We should note
that although subjects had realized that the finger force curve
shown in the screen was not produced by themselves, they
might still try to follow the curve in some instant. This
speculation was further validated by inquiring the subjects
after the experiments. No significant difference in occurrence
frequency was found for the SMN-related modes. We specu-
lated that, for motor network, there was no difference in task
demand between RF and SF states, since both tasks required
similar continuous finger force pressure holding.

4.3. Limitations. Our study has several limitations. First, the
RF and SF data were put together into temporal decomposi-
tion, which has to be based on a hypothesis that the spatial
pattern of the modes should be similar during two states.
However, we had no direct evidence to support this point.
Second, the combination and competition of different brain
networks need to be extensively investigated, together with
integration of other data, such as behavioral performance and
physiological signal recording, to facilitate the interpretation.
Third, we only simply averaged the time frames in the
same category and this may eliminate the information of
the occurrence orders (i.e., precise timing information).
Such information may be more informative, which needs
further investigation. Fourth, as the intersubject differences
or variability is of great importance in neuroscience specially
resting-state studies, we also did the temporal decomposition
for a randomly selected subject. However, with blurred
patterns (result not shown here), the four modes derived
from this subject had no correspondence with those derived
from all the subjects. We admitted that the application of
this method at individual level is currently not applicable.
High individual variability should be expected. However,
such an individual variability could be an interesting topic for
correlation with individual behavior data. Finally, the spatial
and temporal resolution will affect the result, especially for
dynamic functional connectivity studies like ours. As cluster-
ing is based on spatial similarity, the higher spatial resolution
is the more accurate spatial clustering result that can be
achieved. Besides, the increase of temporal resolution will
produce more frames for the following clustering, and one
might detect much more transient functional connectivity
patterns. In the future, an imaging sequence with both high
spatial and temporal resolution should be used, that is,
multiband echo-planar imaging [28].

5. Conclusions

In this study, we performed temporal decomposition analysis
on a group of subjects who performed finger force feedback
tasks and revealed different modes combined by various

brain networks. The occurrence frequency of several modes
showed difference between two feedback states. These find-
ings could help us better understand the dynamics of the
functional integration of our brain.
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