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Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
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ABSTRACT The balance and interplay between pro-death and pro-survival members of the B-cell ymphoma-2 (Bcl-2) family
proteins play key roles in regulation of the mitochondrial pathway of programmed cell death. Recent NMR and biochemical
studies have revealed that binding of the proapoptotic BH3-only protein PUMA induces significant unfolding of antiapoptotic
Bcl-xL at the interface, which in turn disrupts the Bcl-xL/p53 interaction to activate apoptosis. However, the molecular mecha-
nism of such regulated unfolding of Bcl-xL is not fully understood. Analysis of the existing Protein Data Bank structures of Bcl-xL
in both bound and unbound states reveal substantial intrinsic heterogeneity at its BH3-only protein binding interface. Large-scale
atomistic simulations were performed in explicit solvent for six representative structures to further investigate the intrinsic confor-
mational dynamics of Bcl-xL. The results support that the BH3-only protein binding interface of Bcl-xL is much more dynamic
compared to the rest of the protein, both unbound and when bound to various BH3-only proteins. Such intrinsic interfacial confor-
mational dynamics likely provides a physical basis that allows Bcl-xL to respond sensitively to detailed biophysical properties of
the ligand. The ability of Bcl-xL to retain or even enhance dynamics at the interface in bound states could further facilitate the

regulation of its interactions with various BH3-only proteins such as through posttranslational modifications.

INTRODUCTION

Intrinsically disordered proteins (IDPs) frequently play
crucial roles in cell signaling and regulation and are associ-
ated with numerous human diseases (1-7). Intrinsic con-
formational disorder of IDPs may offer many potential
functional advantages, such as larger binding surface areas,
inducibility by posttranslational modifications, and struc-
tural plasticity for binding multiple partners (2,7). Attesting
to the fundamental importance of intrinsic disorder in
biology, sequence analysis has revealed that over one-third
of eukaryotic proteins contain long disordered segments or
domains (8). Intensive efforts have been focused on charac-
terizing the conformational properties of unbound IDPs and
understanding how these properties may support facile and
robust binding to specific targets (9,10). The ability of many
regulatory IDPs to undergo coupled binding and folding
transitions upon specific binding, in particular, has attracted
much attention (9,11). It is also increasingly recognized that
substantial conformational heterogeneity, and sometimes
full disorder of the entire binding domain, may persist in
the bound states of IDPs (12—15). Furthermore, examples
have started to emerge in recent years where cellular
signaling and regulation are achieved via regulated unfold-
ing of proteins (16). Regulated unfolding could be local or
global, and may be driven by a wide range of signaling stim-
uli, including posttranslational modifications (17), ligand or
protein binding (18-20), changes in environmental condi-
tions such as pH (21,22), and mechanical stress (23,24).
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Together, these examples illustrate a fascinatingly broad
and versatile use of protein conformational disorder in
cellular signaling and regulation.

A particularly intriguing example of regulated folding in-
volves the binding of intrinsically disordered PUMA to pro-
tein Bel-xL (18). Bel-xL is an antiapoptotic member of the
Bcl-2 family proteins, which are critical regulators of the
mitochondrial pathway of programmed cell death (25). In-
teractions and balance between proapoptotic and antiapop-
totic members of the Bcl-2 family proteins underlie the
regulatory network that controls the switch between life
and death of the cell (26). Misregulation of the Bcl-2 family
proteins is frequently involved in cancers (25). Bcl-xL in-
hibits the proapoptotic function of cytoplasmic tumor sup-
pressor p53 by sequestering it into inactive complexes
(27,28). It also protects cells from programmed death by in-
teractions with numerous proapoptotic BH3-only Bcl-2
family proteins, including BID, BIM, BAD, PUMA, BIK,
HRK, BMF, and NOXA (29-31). All BH3-only Bcl-2 fam-
ily proteins except BID are IDPs (32). Upon binding to
Bcl-xL, the BH3 domain of PUMA folds into a single helix
(18) (see Fig. 1 B). Intriguingly, PUMA binding also leads to
local unfolding of Bcl-xL (18), mainly in the a2 and «3
segments near the BH3-only protein binding interface (see
Fig. 1 B), which in turn disrupts the interactions with cyto-
solic p5S3 and releases the inhibition of the proapoptotic
function of p53. The apparently unique ability of PUMA
binding to drive drastic local unfolding of Bcl-xL appears
consistent with the fact that PUMA is the only BH3-only
protein that can efficiently release p53 from the inactive
complex with Bcl-xL (33). However, the molecular basis
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of regulated unfolding in the Bcl-xXL/PUMA interaction is
not fully understood.

PUMA contains a unique Tryptophan at position 71
among BH3-only proteins. Of importance, its w-stacking
interaction with Bcl-xL His-113 has been shown to be
necessary for the observed regulated unfolding of Bcl-xL
(18) (see Fig. 1 B). Mutation of PUMA Trp-71 to Ala largely
suppresses Bcl-xL partial unfolding in the bound state, and
further abolishes the ability of PUMA binding to release
cytosolic p53 from Bcl-xL inhibition (18). These observa-
tions have led to the conclusion that the 7-stacking interac-
tion between PUMA Trp-71 and Bcl-xL His-113 drives local
unfolding in the adjacent o2 and «3 segments of Bcl-xL.
However, the m-stacking interaction itself does not appear
to be thermodynamically important, because the W71A
mutant and wild-type PUMA BH3 domain bind to Bcl-xLL
with similar high affinities (18). It appears unusual that a
single specific interaction between Bcl-xL His-113 and
PUMA Trp-71, located on the edge of the binding inter-
face, could fully account for the dramatic conformational
changes observed for Bcl-xL. Curiously, the BH3 domain
of BAD also contains a Tryptophan at position 70 (PUMA
numbering), which is in position to potentially make a
similar w-stacking interaction with Bcl-xL His-113 (see
Fig. 1 F), but it does not lead to similar local unfolding
upon binding (18) (we note that &3 does become sufficiently
distorted in Protein Data Bank (PDB):1G5J such that it is
not fully assigned to the helical state in the secondary struc-
ture analysis; see Figs. | F and 2). In this work, we analyze
all existing PDB structures of Bcl-xL both in the apo form
and in complex with various small molecule and peptide li-
gands, and perform extensive molecular dynamics (MD)
simulations for six selected Bcl-xL apo structures and com-
plexes to characterize the inherent conformational dynamics
of Bcl-xL. The results together demonstrate that the BH3-
only protein binding interface of Bcl-xL is much more dy-
namic than currently recognized. Such intrinsic interfacial
conformational dynamics could provide a physical basis
that enables Bcl-xL to respond sensitively to the nature of
the bound ligand and/or environmental conditions, thus al-
lowing facile unfolding upon specific binding of appropriate
ligands such as PUMA.

MATERIALS AND METHODS

A total of 45 PDB entries were identified that contain either unbound Bcl-
xL monomer or its complex with small molecule or peptide ligands (as of
September 2014) (18,28,34-54). Four domain-swapped dimers of Bcl-xL,
namely, 3FDL, 2YQ6, 2YQ7, and 4A1U, are also included, where «l is
involved in intermolecular interactions and adopts a very different config-
uration (e.g., see Fig. S1 in the Supporting Material). Information about
all PDB entries included in the current analysis is provided in Table S1.
For structural analysis, all entries were preprocessed to remove extra atoms
that do not belong to Bcl-xL or its primary ligand (if present). The residue
numbering of Bcl-xL was modified in all PDB entries to match the one used
in 2M04 (Bcl-xL/PUMA) for convenience of comparison. For PDB entries
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containing multiple models/chains, only chain A of model 1 was included
in the analysis. Clustering analysis was performed using the fixed radius
clustering algorithm as implemented in the MMTSB/cluster.pl tool
(with -kclust option) (55).

Atomistic MD simulations in explicit solvent were performed to further
characterize the structure and dynamics of Bcl-xL in both bound and un-
bound states. These simulations were initiated from six representative
PDB structures. Two were based on the NMR and x-ray structures of
unbound Bcl-xL, namely, 2M03 (18) and 1R2D (36). The other four simu-
lations were based on the complex structures of Bcl-xL with various BH3-
only protein ligands, including 1BXL for Bcl-xL/BAK (43), 1G5J for
Bcl-xL/BAD (53), 2M04 for Bcl-xL/PUMA (18), and 3FDL for Bcl-xL/
BIM (52). We note that the long and presumably disordered loop between
«l and o2 is absent in all original PDB structures noted previously. To our
best knowledge, this loop is not involved in the complex formation between
BH3-only peptides and Bcl-xL, and thus omitted in the current simulations.
A caveat is that the potential impacts of the disordered loop on the structure
and dynamics of the rest of the protein will not be captured. All structures
were solvated using TIP3P water molecules, with proper counter ions added
to neutralize the whole system. The final solvated systems are illustrated in
Fig. S2. They consist of 40,740 to 97,371 atoms with cubic box dimensions
ranging from ~73 to 98 A. See Table 1, which provides a summary of the
residue ranges, total atom numbers, box sizes, and total simulation times
of all simulations.

Each solvated system was energy minimized using steepest descent and
adopted basis Newton-Raphson methods, followed by a short equilibration
simulation of 100 ps using CHARMM (56,57) with a small harmonic re-
straint imposed on protein heavy atoms to slowly relax the system. After
that, unrestrained MD production simulations were performed using
NAMD (58). CHARMM36/CMAP force field was used to model proteins,
water, and ions (59-61). These simulations were carried out under constant
temperature (298 K) and constant pressure (1 bar), and periodic boundary
conditions were imposed. Nonbonded interactions were truncated at a
distance of 13 A, with a smooth switching function starting from 12 A
The pair list was updated every 10 steps with a pair list distance of 15 A
Long-range electrostatic interactions were treated with the particle
mesh Ewald method (62) with a grid spacing of ~1 A. Lengths of all
hydrogen-related bonds were kept constant using the SHAKE algorithm
(63), and a time step of 2 fs was used to integrate the equations of motion.
The total production simulation lengths range from 310 ns (for 1BXL) to
730 ns (for 1R2D) (see Table 1). All analysis was performed using
CHARMM and in-house scripts, and molecular illustrations were prepared
using the visual molecular dynamics software (64).

RESULTS AND DISCUSSION
Analysis of existing PDB structures of Bcl-xL

We first analyzed existing PDB structures of Bcl-xL in
both bound and unbound states to examine the confor-
mational flexibility of the BH3-only protein binding inter-
face of Bcl-xL. Bel-xL structure consists of eight helices
(a1-8) connected by loops of different lengths (Fig. 1
A). As summarized in Fig. 2, most helices are consistently
present in all PDB structures except o3. Interestingly,
PUMA does not appear to be the only ligand that can drive
partial unfolding in the «2/a3 region of Bcl-xL. Instead,
a3 appears to be unfolded in many complexes, such as
37ZK6, 3ZLN, 3ZLO, 202N, 1YSG, 1YSI, 1BXL, 1G5]J,
3PL7, and 4A1U. These complexes involve both small
molecule and peptide ligands, none of them contain anal-
ogous w-stacking interactions to the one between PUMA
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FIGURE 1 (A-F) Representative experimental structures of the BH3-
only protein binding interface of Bcl-xL. Bel-xL is colored in gray except
for residues 98-120, which are colored in red. The BH3-only protein
binding partners (PUMA, BIM, and BAD) are shown in blue. Additional
details of these PDBs are provided in Table 1. The cluster IDs are
shown in parenthesis (see Table S2 for details). To see this figure in color,
go online.

Trp-71 and Bcl-xL His-113 that has been postulated to be
critical in driving partial unfolding in Bcl-xL (except
potentially for 1G5J; see Fig. 1 F). Even for the structures
where o3 is not fully unfolded, the length and position
of a3 can vary significantly among different PDB
entries. For example, in 2LPC, a3 consists of 10 residues
(residues 102-111), whereas in 1PQ1, «3 is only com-
posed of 4 residues (residues 108—111). Other regions
near the BH3-only protein binding interface, including
both C-terminus of a2 and N-terminus of a4, also display
substantial variance among different PDB structures. In
particular, the C-terminus of «2 becomes disordered in
two apo structures of Bcl-xL (1LXL and 2ME9), similar
to what was observed in the Bcl-xL/PUMA complex
(2MO04).

Variations in the Bcl-xL PDB structures can be quantified
by calculating the root mean-square fluctuation (RMSF)
profiles. RMSF quantifies the magnitude of atomic posi-
tional fluctuation around the mean, and has been shown to
correlate strongly with order parameters derived from
NMR relaxation analysis (65). For this, all structures were
first aligned using C, atoms in the core region, which was
identified as regions with minimal secondary and tertiary
structure variations and included residues 85-98, 123-127,
140-156, and 162-175. We note that RMSF profiles calcu-
lated with structures aligned using the whole protein are not
qualitatively different (e.g., see Fig. S3). Bcl-xL in domain
swapped-dimers contains a dramatically different pose of
al (see Fig. S1). Inclusion of the four domain-swapped
dimer PDBs thus leads to artificially high RMSF values in
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FIGURE 2 Secondary structures of Bcl-xL in 49 PDB entries in 2M04
numbering scheme. Helical residues are colored in red and disordered/
loop residues in gray. White regions mark residues absent in the PDB struc-
ture. The PDB entries are ordered and colored based on the nature of the
bound ligands: p53 (green), an a-(-foldamer homologs of the BIM BH3
domain (magenta), BH3-only peptides/proteins (blue), small molecules
(red), and unbound (black). Note that some structures contain single or dou-
ble mutations in Bcl-xL (see Table S1 for details). To see this figure in color,
go online.

al (Fig. 3, black trace). Excluding these four PDBs yields
a RMSF profile that more accurately reflects the structural
variations within the Bcl-xXL monomer in bound and un-
bound states (Fig. 3, red trace). Clearly, the BH3-only pro-
tein binding interface of Bcl-xL is highly variant. The
RMSF values exceed 3.5 A in regions near «3, and are
much higher than most loops except the long one between
«l and «2 (which is disordered and not resolved in most
structures). Of importance, these variations among PDB
structures seem to reflect the intrinsic conformational dy-
namics of Bcl-xL. For example, the RMSF profile converted
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FIGURE 3 RMSF profiles calculated using all 49 Bcl-xL PDB structures
(black trace) or 45 Bcl-xL PDB structures excluding 2YQ6, 2YQ7, 3FDL,
and 4A1U (red trace). The four PDBs excluded form domain-swapped di-
mers with distinct a1 configurations (see Fig. S1). The green trace is con-
verted from the B-factors of one representative PDB structure (IR2G). Only
C,, atoms of residue 4-23 and 85-194 were used to calculate RMSF because
these residues are present in all PDB entries. All structures were aligned us-
ing C, atoms in the core region (residues 85-98, 123-127, 140-156, and
162-175) before RMSF calculation. To see this figure in color, go online.

from the B-factors of a representative x-ray crystal structure
of unbound Bcl-xL (1R2G), shown as the green trace in
Fig. 3, is highly consistent with that derived from all
PDBs (red trace), which also suggest that regions near o3
is much more dynamic than the rest of the protein. Similar
observations can be made on the RMSF profile calculated
from the 20-member NMR ensemble of 2M04 (Fig. S4).
The notion that the BH3-only protein binding interface of
Bcl-xL is intrinsically more dynamic is further supported
by sequence analysis by PrDOS (66), which predicts
elevated disorder propensities near a3/4 compared to the
other helical regions (Fig. S5).

Clustering analysis was performed to analyze the
conformational distribution of the BH3-only protein bind-
ing interface of Bcl-xL. For this, all structures were also
first aligned using the highly conserved and minimally
varying core region, and then clustered based on mutual
C, root mean-square deviation (RMSD) of residues 98—
120. The clustering led to many small clusters with a cut-
off radius of 2.0 A, confirming the significant level of
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conformational heterogeneity at the interface. A total of
seven clusters were obtained when the clustering cutoff
was set to 3.0 A. The results are summarized in Table
S2 and Fig. S6. Most unbound structures of Bcl-xL. were
assigned to the same cluster (cluster 1), whereas structures
in complexes populate the other six clusters. The six
PDB structures selected for MD simulations are represen-
tative of the four most populated clusters, with 2M04 rep-
resenting the case with the most dramatic local unfolding
of Bel-xL.

Stability and fluctuation of simulation trajectories

MD simulations were performed in explicit solvent to
further investigate the conformational dynamics of Bcl-xL
in both unbound and bound states. For this, we focus on
two representative structures of unbound Bcl-xL, namely
1R2D (by x-ray crystallography) (36) and 2MO03 (by
NMR) (18), and four Bcl-xL complexes that involve various
BH3-only protein ligands as summarized in Table 1. The
complexes were selected based on the varying degrees of
Bcl-xL structural disorder observed at the binding interface
(see Figs. 1 and 2). For example, Bcl-xL undergoes substan-
tial unfolding in both «2 and «3 upon PUMA binding
(2M04), but remains similarly structured when bound with
BIM (3FDL). The helical structures in a3 appear to be suf-
ficiently distorted both Bcl-xL/BAD (1G5J) and Bcel-xL/
BAK (1BXL) complexes to be assigned as coil using the
standard DSSP classification (67). Interestingly, a2 of
Bcl-xL is extended by an extra turn upon BAK binding
(Fig. 1 €). The Bcl-xL/BIM complex (3FDL) was simulated
without its domain-swapped partner for the sake of compu-
tational efficiency.

All six structures were stable during the simulations that
lasted 310 to 730 ns. As shown in Fig. 4, the core region
(see Fig. 3 caption for definition) deviated no greater than
~2 A from their corresponding initial conformations in
all simulations. Without its domain-swapped partner, pack-
ing of al is very unstable during the initial stages of the
Bcl-xL/BIM simulation (the 3FDL trace), leading to large
fluctuations in the overall RMSD (Fig. 4 A). During the
simulation, a1 moves quickly toward the rest of the protein
within the first 20 ns, and undergoes additional major con-
formational transitions around 170 and 250 ns (see Figs. S4
and S5). However, the final configuration of a1 in the 3FDL

TABLE 1 Summary of All Six Simulations

PDB Proteins Bcl-xL Residues® Water No. Na™ No. Total Atom No. Initial Box Size (;&) Simulation Time (ns)
1IR2D Bcel-xL 1-27, 82-196 12,824 6 40,740 73.0 730

2MO03 Bcl-xL 1-44, 85-200 13,660 12 43,498 74.8 570

2M04 Bcl-xL/PUMA 1-44, 85-200 18,237 14 57,654 82.4 460

1G5J Bcl-xL/BAD 1-44, 85-211 14,233 10 45,836 76.5 580

3FDL Bcl-xL/BIM 1-26, 83-194 17,922 5 56,421 81.6 450

1BXL Bcl-xL/BAK 1-44, 85-217 31,439 12 97,371 98.1 310

“Residue numbering is based on that of 2M04.
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FIGURE 4 Evolution of Bcl-xL backbone heavy atom RMSD for (A) the
whole protein and (B) core region during six simulations initiated from
various PDB structures. See Fig. 3 caption for the definition of the core re-
gion. To see this figure in color, go online.

simulation remains quite different from the typical con-
figuration observed in Bcl-xL monomer structures (see
Fig. S9), which likely reflects limitations in conformational
sampling with the 450 ns production run in explicit solvent.
Moderate overall RMSD values of the 2M04 and 1R2D tra-
jectories mainly arise from the unfolded BH3-only protein
binding interface and fluctuations in the packing of «l,
respectively. The structures of the bound BH3-only pep-
tides were also very stable, except that PUMA helix be-
comes unfolded at the C-terminus (see Figs. SO and S10).
Interestingly, PUMA C-terminal spontaneous unfolding
has also been implicated when bound to another Bcl-2 pro-
tein Mcl-1 and was shown to facilitate its dissociation from
Mcl-1 (68).

Once establishing the stabilities of all PDB structures
during the simulations, we quantify the conformational dy-
namics of Bcl-xL by performing RMSF analysis. For this,
all conformations in each trajectory were first aligned using
C, atoms in the core region. The resulting RMSF profiles,
shown in Fig. 5, are highly similar to those extracted
from existing PDB structures (Fig. 3). The implication is
that variations among PDB structures indeed reflect the
intrinsic conformational dynamics of Bcl-xL. The BH3-
only protein binding interface (e.g., residues 98-120) is
the most flexible region in all simulations, except that the
al segment is artificially more dynamic in the 3FDL tra-
jectory due to the absence of the domain-swapped partner.
We note that the a3 region shows significantly larger fluc-
tuations compared with other helices even for structures
with well-formed «3 helix (e.g., 2MO03, blue trace). Inter-
estingly, binding of various BH3-only peptides do not
appear to suppress the interfacial dynamics in general.
Instead, the interface tends to become even more dynamic
upon binding, e.g., comparing 1BXL (black trace) and
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FIGURE 5 RMSF of Bcl-xL derived from all six simulations. Only C,
residues 1-26 and 85-194 are shown because this is the common region
among all simulation systems. The core region is marked with x. RMSF
profiles are consecutively shifted by 1.0 A along the y axis for clarity. To
see this figure in color, go online.

1GSJ (red trace) versus 1R2D (green trace). Enhancement
in interfacial dynamics is particularly dramatic in the case
of Bcl-xL/PUMA complex due to complete local unfolding
(cyan trace).

Conformational dynamics of the BH3-only protein
binding interface

To further examine the details of conformational fluctuation
at the BH3-only protein binding interface of Bcl-xL, we
first focus on the stability and fluctuation at the secondary
structure level. The results, summarized in Figs. 6 and
S11, reveal that the o3 segment can undergo spontaneous
helix-coil changes in both bound and unbound states. For
example, for the Bcl-xXL/PUMA complex, a3 is completely
unfolded in the original PDB structure (2M04), but starts to
sample short helical structures after ~300 ns of simulations.
The average residue helicity in the a3 segment calculated
from the second half of the 2M04 simulation trajectory
reach ~0.3 (Fig. 7). Similar observation can be also made
in simulations initiated from the 1G5J and 1BXL structures,
except that the reformation of short helixes in the o3
segment occurred much earlier during the simulations.
The neighboring region of «3, including both the N-termi-
nus of a4 and C-terminus of «2, is dynamic as well. For
example, o4 N-terminus of the unbound Bcl-xL became
unfolded after ~350 ns in the trajectory initiated from
2MO03, but was extended after 75 ns in the trajectory initi-
ated from 2MO4. The averaged residue helicity profiles
calculated from these trajectories, shown in Figs. 7 and
S12, again illustrate the intrinsic dynamics and conforma-
tional heterogeneity of the BH3-only protein binding inter-
face of Bcl-xL.

Biophysical Journal 109(5) 1049-1057
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FIGURE 6 Evolution of secondary structures near the BH3-only protein binding interface of Bcl-xL during six sets of simulations. The coloring scheme is
the same as in Fig. 2. See Fig. S11 for the results for all Bcl-xL residues. To see this figure in color, go online.

Conformations of the BH3-only protein binding interface
sampled during the atomistic simulations can be further visu-
alized using the principal component analysis. For this, all
snapshots from both the PDB set and six simulation trajec-
tories were first aligned using the core region (see Fig. 3
caption for definition), and the C, positions of residues 98—
120 were then analyzed. The first two major components
derived from the set of 49 PDB structures were used to proj-
ect all PDB structures and MD snapshots. The results, sum-
marized in Fig. 8, show that PDB structures assigned to
different clusters nicely segregate on the two-dimensional
projection as expected. All six atomistic simulations appear
to mainly sample local conformational spaces centered
around their corresponding initial conformations. The only
exception is the 2MO04 trajectory. With a completely unfolded
a3, the interfacial structure of 2M04 quickly deviates from
the initial conformation (marked by the blue ® in Fig. 8
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FIGURE 7 Average residue helicity profiles of Bcl-xL calculated from
the second half of the simulation trajectories. Only residues 85-135 were
shown here for clarity. See Fig. S12 for the full residue helicity profiles.
To see this figure in color, go online.
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B), and mainly sample a moderately large space projected
to overlap with clusters 3 and 4 (orange and purple Xs).
We note that the 2MO4 ensemble is quite heterogeneous
but most of its members (particularly model 1 used to initiate
the simulation) do not overlap with the final conformational
space sampled (Fig. S13). The limited conformational sam-
pling could suggest that the interfacial structures of Bcl-xL
is restricted to different conformational subspaces depending
on the binding partner, but is also likely a direct consequence
of the finite simulation times in explicit solvent. Particularly
for unbound Bcl-xL. (2MO03 and 1R2D trajectories), sponta-
neous unwinding and reforming of interfacial helices and
changes in interfacial tertiary structures likely occur at time-
scales beyond those accessed by the current simulations. A
more advanced sampling technique might be required to reli-
ably probe the conformational space accessible to Bcl-xL in
bound and unbound states (69-71).

CONCLUSION

It has been increasingly recognized that regulated unfolding
of proteins is widely involved in cellular signaling and trans-
duction (16). Bcl-xL, in particular, has been recently shown
to undergo dramatic local unfolding upon binding and
folding of the intrinsically disordered PUMA protein (18).
There is an important need to understand the molecular prin-
ciples of how such binding-induced folding and unfolding
may be achieved with high reliability and efficiency to be
viable in cellular signaling and regulation. Critical analysis
of existing PDB structures of Bcl-xL in bound and unbound
states has revealed that its BH3-only binding interface is
intrinsically more dynamic than the rest of the protein. In
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particular, the specific m-stacking interaction between
PUMA Trp-71 and Bcl-xL His-113 is clearly required for
Bcl-xL interfacial unfolding in the case of PUMA (18),
but does not appear necessary for Bcl-xL partial unfolding
itself. Intrinsic dynamics at the BH3-only protein binding
interface of Bcl-xL has been further confirmed by atomistic
simulations of six representative bound and unbound struc-
tures in explicit solvent, even though these simulations are
apparently insufficient to sample large-scale spontaneous
conformational fluctuations in explicit solvent. Together,
the current study supports that the BH3-only protein binding
interface of Bcl-xL is highly dynamic and poised to adopt
alternative conformations in response to ligand binding, as
well as changes in solution conditions and posttranslational
modifications. Such intrinsic interfacial conformational
plasticity is likely the main physical basis of regulated un-
folding observed in the Bcl-xL/PUMA interaction. With
the ability to interact with numerous proapoptotic proteins
including p53, Bcl-xL has been targeted by small molecules
for cancer therapy (72). The dynamic nature of its BH3-only
binding interface should be a critical consideration in such
rational drug design and optimization efforts.
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