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Abstract: Purpose: The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi 
anemia (FA) related pathways and the molecular mechanisms. Methods: siRNA for Fanconi anemia complementa-
tion group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression 
of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence 
quantitative PCR, and the protein levels were also determined by western blot. Results: After silence of the FANCD2 
gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The 
apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene ex-
pression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell 
cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. Conclusions: Inhibition of FANCD2 gene 
expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in 
the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma.

Keywords: Fanconi anemia complementation group D2, osteosarcoma, RNA interference, p53, cell apoptosis

Introduction

Osteosarcoma (OS) is the most common pri-
mary malignant tumor of the bone tissue, main-
ly invading the metaphysis of long bones. OS 
has high degree of malignancy and poor prog-
nosis. New drugs and treatment strategies 
based on full understanding of the mechanism 
of OS are required [1]. Dysfunction of proto-
oncogenes and tumor suppressor genes is one 
of the pathogenic factors for OS. Like most 
other malignancies, OS involves multiple onco-
genes activations and tumor suppressor genes 
mutations, including proto-oncogene c-myc, 
ras, fos, etc., and tumor suppressor gene p16, 
p53, Rb, etc [2-5].

Fanconi anemia (FA) is a rare autosomal or 
X-linked recessive hereditary disorder. It is 
found that FA could result from missing or 
mutation of 15 kinds of FA-related genes. 
These related genes form a complex network 
named FA pathway, in which Fanconi anemia 
complementation group D2 (FANCD2) is a key 
member. After post-translational modifications 
like phosphorylation and ubiquitination, [6, 7], 

FANCD2 protein plays important role in regulat-
ing expression of genes which are involved in 
tumorigenesis, apoptosis, and other important 
life processes [8-10]. A FA patient has consider-
ably higher risk of cancer [11]. Studies have 
shown that 28% of FA patients would have non-
hematopoietic tumors before the age of 40, 
indicating that there is a strong positive correla-
tion between FA and malignant tumors [12]. FA 
patients often suffer from head and neck, skin 
or anogenital squamous cell carcinomas [13]. 
But few researches have investigated the asso-
ciation between osteosarcoma and the FA 
pathway.

OS is one of the complications of FA, and both 
FA and OS are likely to occur in adolescence, 
but the interactions between them remains 
unclear. It is thought that FANCD2 is an impor-
tant protein related to OS, while the associa-
tions and mechanisms need further study.

In this study, siRNA of FANCD2 was constructed 
and transfected to the osteosarcoma MG-63 
cells, gene expressions after silence of FANCD2 
gene were detected by gene chip. Cell prolifera-
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tion and apoptosis, and the apoptosis-related 
signaling pathway were investigated, in order to 
reveal the role of FANCD2 in OS development.

Materials and methods

Construction and transfection of the FANCD2 
siRNA in MG-63 cells

siRNA-FANCD2 and a control siRNA plasmid 
were designed and synthesized by Santa Cruz 
Biotechnology, Inc. (Texas, USA). They were 
transfected into osteosarcoma MG-63 cells by 
liposome. Expression of FANCD2 proteins in 
MG-63 cells were detected by western blots 24 
h and 48 h later in order to evaluate the effica-
cy of siRNA.

Cell proliferation

Cell Counting Kit8 (DOJINDO LABORATORIES, 
Kumamoto, JAPAN) was used to detect cell pro-
liferations of MG-63 cells 4, 8, 12, 24, and 48 
h after siRNA transfection.

Cell cycle and apoptosis detection

24 h and 48 h after siRNA transfection, PI stain-
ing combined with flow cytometry was used to 
detect the percentage of G0/G1, S-phase and 
G2/M cells and cell cycle arrest in MG-63 cells. 
Annexin V-FITC/PI staining was used to detect 
apoptosis in MG-63 cells. Four groups, namely 
the control group (Control), siRNA-control 
group, siRNA-FANCD2 24 h group and siRNA-
FANCD2 48 h group were detected.

Gene expression

24 h and 48 h after siRNA transfection, total 
RNA was extracted using TRIzol reagent 
(Invitrogen, NY, USA) and the changes in gene 
expression in MG-63 cells after FANCD2 gene 
silence were analyzed by Affymetrix GeneChip 
microarray system (Affymetrix, CA, USA). 
Differential gene expression was detected by 

real-time fluorescence quantitative PCR 
(Q-PCR).

The clustering graph and the differentially 
expressed genes were obtained, and a fold 
change of 2.0 was set as threshold for the 
screening of differentially expressed genes.

Apoptosis-related proteins

Tumor protein 53-induced nuclear protein 1 
(TP53INP1), p53, p21 caspase-9 and cas-
pase-3 mRNA expression in MG-63 cells were 
examined by Q-PCR method. And western blot 
assay was performed to detect the production 
of TP53INP1, phos-p53, p21 protein, activation 
of caspase-9 and caspase-3. As mentioned 
above, four groups, namely the control group 
(Control), siRNA-control group, siRNA-FANCD2 
24 h group and siRNA-FANCD2 48 h group were 
detected.

Statistic analysis

The experimental data were expressed as 
mean±standard deviation (SD), and the two 
groups were compared using independent 
sample t-test after test for the homogeneity of 
variance. More than two groups were compared 
using ANOVA. P<0.05 indicates statistical 
significance.

Results

FANCD2 siRNA interfere FANCD2 expression in 
MG-63 cells

FANCD2 protein was detected both in the con-
trol group and the siRNA-control group, and no 
significant difference was observed between 
the two groups, indicating that the negative 
control did not prevent FANCD2 expression in 
MG-63 cells. The production of FANCD2 protein 
was significantly inhibited in the siRNA-FANCD2 
group at 24 h (siRNA-FANCD2 24 h) and 48 h 
(siRNA-FANCD2 48 h), and the interfere effect 
was more pronounced at 48 h (Figure 1).

Cell proliferation

In the control group and the siRNA-control 
group, MG-63 cells showed rapid cell prolifera-
tion. There was no significant difference 
between the proliferation rates of the two 
groups. While the proliferation rates of the siR-
NA-FANCD2 group were significantly lower than 
the control group at 8, 12, 24 and 48 h (Table 
1).

Figure 1. FANCD2 protein expression in MG-63 cells 
after RNAi. Lane 1: Control; Lane 2: siRNA-Control; 
Lane 3: siRNA-FANCD2 24 h; Lane 4: siRNA-FANCD2 
48 h.
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Cell cycle

The siRNA-control group had similar percent-
age of cells in G0/G1, S and G2/M phase as the 
control group. While after siRNA-FANCD2 trans-
fection, cells in the G2/M and G0/G1 phase 
increased significantly, and the percentage of S 
phase was significantly lower than the control 
group (P<0.001); and the percentage of cells in 
G0/G1 phase at 24 h after siRNA interference 
was significantly higher than that of the 48 h 
group (P<0.01) (Table 2). These results indicat-
ed that the RNAi resulted in G0/G1 and G2/M 
phase arrest.

siRNA-FANCD2 induced apoptosis of MG-63

Apoptotic percentages of MG-63 cells after 
FANCD2 siRNA transfection were detected by 
Flow cytometry (Table 3). Compared to the con-
trol group, siRNA-Control group had a higher 
percentage of apoptosis, which may be caused 

involving 54 pathways according to the KEGG 
database. These differentially expressed genes 
were involved in many aspects, including cell 
proliferation, apoptosis, cell cycle control, DNA 
damage repair and signal transduction.

mRNA expression related to the p53 pathway

Compared to the Control group, TP53INP1 
mRNA expression in the siRNA-control group 
was similar, while the p53, p21, caspase-9 and 
caspase-3 mRNA expression increased. For the 
siRNA-FANCD2 24 h and siRNA-FANCD2 48 h 
group, TP53INP1, p53, p21, caspase-9 and 
caspase-3 mRNA expression were significantly 
increased (Table 4), up to 25 times, and this 
effect increased with time.

Protein production related to the p53 pathway

As shown in Figure 2, compared to the control 
group, the production of p53, phos-p53, p21, 

Table 1. Absorbance of MG-63 cells after siRNA-FANCD2 interfere by CCK-8 assay (
_
x ±s, n = 6)

Groups
Changes of absorbance value (A450)

4 h 8 h 12 h 24 h 48 h
Control 0.268±0.012 0.297±0.006 0.289±0.007 0.397±0.016 0.463±0.02
siRNA-control 0.275±0.007 0.288±0.009 0.281±0.013 0.382±0.014 0.483±0.018
siRNA-FANCD2 0.268±0.006 0.263±0.004*** 0.263±0.004*** 0.369±0.017* 0.384±0.009***

*P<0.05 and ***P<0.001 vs. Control.

Table 2. Cell cycle distribution of MG-63 cells after siRNA-FANCD2 
interfere (

_
x ±s, n = 4)

Groups
Positive cell percentage (%)

G0/G1 S G2/M
Control 61.11±1.56 33.22±1.60 5.67±0.32
siRNA-control 62.14±0.87 31.81±0.35 6.08±0.58
siRNA-FANCD2 24 h 72.16±0.31*** 16.19±0.32*** 11.64±0.54***

siRNA-FANCD2 48 h 77.25±1.52***,## 12.66±2.71*** 10.09±1.55**

*P<0.05, **P<0.01 and ***P<0.001 vs. Control; ##P<0.01 vs. siRNA-FANCD2 24 h.

Table 3. Apoptotic percentages of MG-63 cells after FANCD2 siRNA 
interfere by Flow Cytometry (

_
x ±s, n = 4)

Groups
Positive percentage, %

Normal Necrosis Apoptosis
Control 86.68±0.35 0.31±0.12 13.01±0.36
siRNA-control 85.56±0.45* 0.29±0.01 14.15±0.46*

siRNA-FANCD2 24 h 77.45±0.69*** 0.36±0.23 22.17±0.81***

siRNA-FANCD2 48 h 64.00±1.71**,### 0.53±0.30 35.47±1.42***,###

*P<0.05, **P<0.01 and ***P<0.01vs Control; ###P<0.01 vs. FANCD2 siRNA 24 h.

by the affects of transfection 
reagents. The percentage of 
normal cells were significantly 
decreased, while the percent-
age of apoptotic cells was sig-
nificantly increased in the siR-
NA-FANCD2 24 h and siRNA-
FANCD2 48 h group (P<0.01, 
P<0.001, Table 3).

Gene expression profiles of 
MG-63 cells after siRNA inter-
ference by gene microarray

Compared with the control 
group, 35 genes were up-reg-
ulated and 53 were down-reg-
ulated in the FANCD2 siRNA 
24 h group, involving 37 path-
ways according to the KEGG 
database. And 103 genes 
were up-regulated and 30 
were down-regulated in the 
FANCD2 siRNA 48 h group, 
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TP53INP1, cleaved caspase-9 and cleaved cas-
pase-3 were similar in the siRNA-control group. 
Production of p53 in the siRNA-FANCD2 24 h 
and siRNA-FANCD2 48 h group did not change 
significantly, but phos-p53, p21 protein and 
TP53INP1 increased significantly. Caspasae-9 
was cleaved into 37 and 35 kD, caspase-3 was 
cleaved into 19 and 17 kD, and the expression 
was significantly increased, especially the 
cleaved caspase-3.

Discussion

In previous studies, it has been found that 
FANCD2 plays an important role in the FA/
BRCA pathway. Other studies have shown that 
FANCD2 is involved in DNA damage repair, cell 
cycle regulation, chromatin remodeling, DNA 
methylation and apoptosis, and it is essential 
to cell growth, differentiation and maintaining 
normal function of the body [14-16]. However, 
its associations with osteosarcoma remain 

unclear. In this study, we successfully con-
structed an efficient FANCD2 targeting siRNA, 
almost no expression of FANCD2 was observed 
after transfection into the MG-63 cells. And it 
caused suppressed cell proliferation, cell cycle 
arrest and apoptosis. Down-regulated or absent 
of the FANCD2 gene seriously altered the bio-
logical processes of tumor cell proliferation. 
Numerous studies have showed that tumor 
cells have unlimited proliferation, migration, 
invasion [17, 18]. Thus, induction of tumor cells 
apoptosis is the usual method to control tumor. 
After interference of FANCD2 in MG-63 cells, 
apoptosis was observed.

In order to illuminate the involved signal path-
ways, the gene expression changes in MG-63 
cells were further detected using gene chip 
method. There are three major apoptotic path-
way, namely the mitochondrial pathway, endo-
plasmic reticulum pathway and death receptor 
pathway. Mitochondrial pathway is activated 
when the Bcl-2 family members (including Bcl-
2, Bax, Bak and other molecules) received the 
death signal of the cell, then the mitochondrial 
membrane permeability is changed and the 
transmembrane potential is lost, finally leads to 
apoptosis. p53 is a transcription factor located 
on the mitochondrial, which can interact direct-
ly with Bax and induce change of mitochondrial 
permeability, then cause the release of various 
pro-apoptotic factors into the cytoplasm, finally 
leads to apoptosis [19-21]. Endoplasmic reticu-
lum path way is mainly mediated by caspase 
family members. Caspase 12 is located on the 
endoplasmic reticulum, whose over-expression 
results in transfer of caspase 7 from cytoplasm 
to the endoplasmic reticulum surface, and then 
further cleave caspase 3 and induce apoptosis 
[22]. Death receptor pathway is mediated by 
the death receptors, which are a class of trans-
membrane proteins belonging to the tumor 
necrosis factor receptor super family [23-25]. 

Table 4. Relative expression of mRNAs in MG-63 cells after FANCD2 siRNA interfere (
_
x ±s, n = 3)

Groups
mRNA relative expression

TP53INP1 p53 p21 caspase-9 caspase-3
Control 1 1 1 1 1
siRNA-control 1.10±0.02 1.34±0.04* 1.63±0.02* 1.24±0.04* 1.29±0.03*

siRNA-FANCD2 24 h 5.41±0.29** 6.64±0.32** 4.23±0.11** 12.42±0.54*** 14.88±0.60***

siRNA-FANCD2 48 h 13.00±0.21***,# 13.40±1.60***,# 11.14±0.21***,# 21.19±0.23***,## 25.05±1.52***,##

*P<0.05, **P<0.01 and ***P<0.001 vs. Control; #P<0.05, ##P<0.01 vs. FANCD2 siRNA 24 h.

Figure 2. Western blotting picture of p53, phos-p53, 
p21, TP53INP1, cleaved caspase-9 and-3 protein ex-
pression after RNAi. Lane 1: Control; Lane 2: siRNA-
Control; Lane 3: siRNA-FANCD2 24 h; Lane 4: siRNA-
FANCD2 48 h.
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All these three pathways in general depend on 
the final caspase-mediated apoptosis.

After FANCD2 siRNA interference for 48 h, 103 
genes were up-regulated, 30 were down-regu-
lated, involving 54 pathways in KEGG database. 
In these differentially expressed genes, up-reg-
ulation of XAF1 and TP53NP1 attracted our 
attention, because these two genes are closely 
related to p53 pathway. It seemed that the siR-
NA-FANCD2 induced apoptosis is mediated by 
the p53 signaling pathway, which was con-
firmed by the results of Q-PCR and western 
blot.

Mutant p53 gene was found in a variety of can-
cers, such as breast cancer, colorectal cancer, 
lung cancer, liver cancer, osteosarcoma, the 
mutation rate of up to 50% [26]. Wild-type p53 
plays a role in monitoring cell growth, cell cycle 
regulation, cell cycle, DNA damage repair and 
induction of apoptosis [27, 28]. TP53 protein is 
encoded by the p53 gene, which can regulate 
the cell cycle and prevent transformation of 
cancer cells. TP53INP1 is a target gene of p53, 
whose expression is regulated by the transcrip-
tion factor p53, p73 and E2F1, and its activa-
tion can induce cell cycle arrest and p53-medi-
ated apoptosis [29]. Studies have shown that 
over expression of TP53INP1 can cause inhibi-
tion of cell proliferation and apoptosis, and 
cells arrest in the G1 and G2 [30, 31]. XAF1 is a 
negative regulatory protein of the apoptosis 
inhibitor, which widely present in normal human 
tissues, but low or absent [32] in most cancer 
cells, which is located on chromosome 17p13.2 
locus, adjacent to p53. Studies have shown 
that, XAF1 gene was down-regulated in a vari-
ety of malignancies, such as gastric cancer, 
non-small cell lung cancer, liver cancer and 
other tumors [33-35]. In recent years, research-
ers have found that XAF1 is a p53 target gene, 
wild-type p53 gene can down-regulate the 
expression of XAF1 mRNA, and accumulation 
of protein p53 in the nucleus leads to apopto-
sis, indicating that there is a feedback loop 
between the p53 and XAF1 genes [36]. 
TP53INP1, XAF1 and p53 are closely related, 
and therefore we believe that the apoptosis of 
MG-63 by siRNA-FANCD2 is mediated by the 
p53 signaling pathway.

TP53INP1 (upstream protein of p53), phos-
phorylation of p53 (phos-p53), p21 protein 
(downstream protein which is involved in regu-

lation of G1 phase), activation of caspase-9 
and caspase-3 (apoptosis related proteins) 
were detected by western blot methods. After 
siRNA-FANCD2 was transfected into MG-63 
cells for 48 hours, TP53INP1, p53, p21, cas-
pase-9 and caspase-3 mRNA expression were 
significantly elevated; and production of phos-
p53, p21 and TP53INP1 proteins were also 
increased. The experimental results showed 
clearly the MG-63 cell apoptosis was mediated 
by p53 signaling pathway. After transfection of 
siRNA-FANCD2 into MG-63 cells, FANCD2 gene 
expression was suppressed, and TP53INP1 
was activated in the transcription level. Over-
expression of TP53INP1 promoted phosphory-
lation of the Ser15 site of p53 protein; the 
phosphorylated p53 activated p21, and then 
started the p53 apoptotic signaling pathway. 
p21 gene is at the downstream of the p53 
gene, which is a cyclin dependent kinase inhibi-
tor, whose interaction with p53 leads to cell 
cycle arrest. Interaction of activated p53 with 
p21 inhibits tumor cell proliferation, and keeps 
the tumor cells arrest in the G1 phase. In addi-
tion, phosphorylation of p53 mediates the 
mitochondrial pathway of apoptosis. It induces 
change of the mitochondrial permeability, and 
then cause release of a variety of pro-apoptotic 
factors into the cytoplasm, finally induces apop-
tosis in MG-63 cells.

p53 also can activate the caspase pathway, 
and the activation of caspase associated pro-
teins would promote apoptosis. Caspase 
belongs to cysteine protease family, and plays 
a key role in the process of apoptosis [37]. In 
the caspase pathway, caspase 7 is firstly acti-
vated, then caspase 12, and the activated cas-
pase 12 further cleaves caspase 9 and cas-
pase 3, finally triggering apoptosis [38-40]. 
Caspase 3 is in the downstream of this pro-
cess, which is the key enzyme of caspase fam-
ily. It is widely expressed in various tumor tis-
sues [41, 42]. This study showed that caspase 
3 was cleaved and activated after RNAi. The 
activated caspase 3 finally induced the 
apoptosis.

In summary, after silence of the FANCD2 by 
siRNA-FANCD2 in MG-63 cells, inhibited cell 
proliferation, cell cycle arrest and induction of 
apoptosis were detected. The apoptosis was 
likely mediated by p53 signaling pathway. After 
FANCD2 expression was inhibited, TP53INP1 
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gene expression was promoted and then fur-
ther enhanced phosphorylation of p53, thereby 
activated the p21 protein, leading to cell cycle 
arrest in G1, finally induced caspase-depen-
dent cell apoptosis. It was suggested that 
FANCD2 plays an important role in the develop-
ment of osteosarcoma, and inhibition of 
FANCD2 gene expression can effectively pro-
mote apoptosis of osteosarcoma cells, which 
providing new target for the treatment of 
osteosarcoma.
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