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Abstract. Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated
crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is
often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer
rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton.
Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement
of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species.
The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities
below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making
them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported
in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient
uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and
radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adap-
tations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity.
We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging.
We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Man-
agement practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced
damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling
ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of
anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes.
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Introduction
Waterlogging is a worldwide phenomenon that strongly
influences the distribution of plant species and crop

production. According to a 2007 FAO report, 20–30 mil-
lion hectares of irrigated land area was affected by soil
waterlogging as a result of poor soil drainage, intensive
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irrigation and highly variable weather patterns. This in
turn affects crop production in many parts of the world
(Setter and Waters 2003). Soil waterlogging dramatically
reduces the oxygen (O2) diffusion rate through soils, and
when coupled with O2 depletion by respiration of microor-
ganisms and plant roots, soil O2 levels quickly fall below
critical levels. This process is further exacerbated by high
temperatures, which accelerate respiratory activity. Even
under incomplete waterlogging when soil air-filled porosity
might only be marginally below 10 % (Hodgson 1982),
these levels can be critical for roots, lowering respiration
rates below the level required to sustain maximum energy
production.

Submerged plant organs undergo a dramatic decline in
O2 availability. Plant species which are adapted to low O2

conditions often obtain atmospheric O2 through rapid dif-
fusion along gas-filled root aerenchyma (air spaces in
cortical tissues). In such cases, cellular O2 deficiency not
only depends on O2 concentrations in the bulk soil but
also on the length of diffusion path, resistance to radial
leakage from roots, respiration rate of root tissues and
thickness of the diffusive boundary layer around roots
(Armstrong et al. 2009). Once O2 concentrations in root
tissues drop below the critical O2 pressure (COP) for respir-
ation, they become O2 limited (Armstrong and Drew
2002). In roots, partial O2 deficiency in soils (hypoxia)
can result in the complete absence of O2 (anoxia) in the
stele, inhibiting aerobic respiration, energy generation
and nutrient acquisition (Jackson and Drew 1984).

Oxygen deficiency initiates various deleterious events,
viz. metabolic pathways that cause accumulation of
by-products of fermentation in roots (e.g. acetaldehyde,
ethanol), acid loads in cells (Felle 2005) and toxic
substances in soil (volatile fatty acids, phenolic acid,
hydrogen sulfide, nitric oxide (NO), methane and carbon
dioxide (CO2)) (Zeng et al. 2013). Waterlogging alters the
cation exchange capacity of soil particles and valency of
nutrients (more reduced forms), making them toxic or
unavailable for plant uptake (Setter et al. 2009).
Hypoxia-induced nutrient deficiency/toxicity interferes
with a range of shoot physiological processes such as
photosynthesis, respiration and growth, causing chlorosis
and necrosis and ultimately, plant death (Dodd et al.
2013; Bailey-Serres and Colmer 2014).

Waterlogging tolerance in plants is a function of toler-
ance to anaerobiosis and chemical toxicities (Setter et al.
2009). Plants undergo various anatomical, morphological,
physiological and metabolic adjustments for their survival
in O2-deficient environments, although rates of acclima-
tion vary with species, temperature and rapidity of the
onset of waterlogging. Development of aerenchyma is a
common but not universal response to flooding, occurring
particularly in grasses where it facilitates O2 diffusion

along the axes of roots (Jackson and Drew 1984). While
this important phenomenon has been exhaustively stud-
ied in monocotyledons and marsh species, few data are
available for dicotyledonous crop species.

Some genera of dicotyledons (e.g. Rumex and Lotus)
have been shown to express waterlogging tolerance via a
suite of morphological changes. The range of mechanisms
include increased root porosity (intercellular spaces), devel-
opment of adventitious root and hypertrophied lenticels
and rapid shoot elongation during submergence (Kozlowski
and Pallardy 1984; Teakle et al. 2007; Bailey-Serres and
Voesenek 2008).

At the physiological level, waterlogging may induce
stomatal closure, thereby decreasing transpiration and
photosynthesis in a variety of plant species. Metabolic
responses including energy production via fermentation,
catalytic adjustments, anaerobic protein synthesis and
hormonal regulation are also crucial for survival of plants
exposed to low O2 concentration.

Cotton (genus Gossypium) belongs to family Malvaceae.
Although, there is debate over taxonomy of the genus Gos-
sypium, Smith (1995) classified 43 species of Gossypium, of
which 37 are diploid (2n ¼ 2x ¼ 26) and six are tetraploid
(2n ¼ 4x ¼ 52). On the basis of genetic similarity, this
genus is divided into eight diploid genomes (designated
A–G and K) and one tetraploid genome (Stewart 1995).
At present, Gossypium hirsutum L. and Gossypium barba-
dense L. are the major cultivated cotton species, both
being AD-genome tetraploid species (Wendel 1989). Gossy-
pium hirsutum contributes up to 90 % of the world fibre
production (Jenkins 2003) while 5 % comes from
G. barbadense (Wu et al. 2005).

Cotton (G. hirsutum) is an important fibre and oilseed
crop grown over 30 million hectares worldwide (USDA
2012). Improvements in production systems and breed-
ing programs over the past decade have substantially
increased the per hectare cotton lint yield (International
Cotton Advisory Committee on Cotton Yields—ICAC 2009).
However, unfavourable environments significantly inhibit
cotton production. In particular, cotton is frequently culti-
vated in poorly drained heavy clay soils that may incur sig-
nificant yield penalties after heavy summer rainfall events
that cause subsequent waterlogging. A better under-
standing of physiological and biochemical responses to
hypoxia/anoxia could help to improve tolerance through
improved soil monitoring and selective plant breeding.
This review aims to provide information on the possible
mechanisms through which waterlogging damages cot-
ton crops and suggests remediation pathways. However,
much of the analysis that follows is based on inferences
from studies on waterlogging damage in other crop spe-
cies because there has been relatively little investigation
of cotton under waterlogging in the past 35 years (Fig. 1).
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Root Growth
Sustained elongation of roots, even in intensively irrigated
and fertilized crops, is critical for resource acquisition dur-
ing vegetative growth. Therefore, the environmental fac-
tors that influence root growth, such as waterlogging,
are critical if final yield is to be maximized.

Laboratory studies show that root apices must be at or
above the COP for normal root growth and extension
(Armstrong and Webb 1985); COP varies among plant
species. The O2 concentration below which root extension
begins to decline depends on the COP for respiration
(COPR), which in turn is influenced by the characteristics
of the tissues through which O2 must diffuse (e.g. propor-
tion of stele) and the O2 affinity of oxidases (Armstrong
and Drew 2002). In field-grown cotton, root growth is a
function of O2 consumption in the soil by roots and
microbes (Meyer et al. 1987); growth inhibition starts
under mildly hypoxic (O2 , 10 %) conditions. Exposure
of cotton plants to short-term (2–3 min) anoxia caused
transitory cessation of tap root elongation but it resumed
as the O2 supply was re-established, while just 3 h of
anoxia resulted in complete death of the terminal apices
of cotton roots (Huck 1970). We consider that cotton roots
are relatively intolerant to low O2 supply.

However, the processes responsible for slow root exten-
sion in waterlogged soils are complex, with the primary
impact of respiratory impairment interacting with a pleth-
ora of downstream (secondary) effects. Armstrong and
Drew (2002) proposed that inhibited energy generation
in hypoxic root tips arrests root extension by inhibiting
cell division with consequences for water and nutrient
acquisition. Zhang et al. (2015) also demonstrated that
despite up-regulation of fermentative genes, waterlogging
also induces oxidative damage to cotton root tissues.

In order for sufficient adenosine triphosphate (ATP) turn-
over to be sustained by fermentation during O2 deficits,
well-adapted plant tissues can accelerate carbohydrate

breakdown and therefore, energy generation from glyco-
lytic flux (Gibbs and Greenway 2003). This heightened
consumption of carbohydrates can cause carbohydrate
starvation, a situation that is exacerbated when transloca-
tion of carbohydrates from leaves to roots is suppressed
(Brändle 1991) and sugar unloading in roots is impaired
(Saglio 1985). There are more subtle measures that con-
serve energy in anoxia-tolerant tissues, with strong argu-
ments being made for the re-direction of scarce ATP to
critical reactions (Edwards et al. 2012).

Root structural modification

A comprehensive study of waterlogging tolerance using
different plant species confirmed that primary tolerance
mechanisms reside in roots rather than in shoots (Davies
et al. 2000). Specifically, the root system plays a central
role in shoot response to waterlogging through:

(i) Water and nutrient uptake from soils and supply to
the aboveground organs;

(ii) Synthesis of hormones regulating plant response to
hypoxia.

Root structural characteristics and functional pro-
cesses strongly depend on biotic and abiotic soil factors,
and are especially strongly influenced by the distribution
and availability of gases and nutrients in waterlogged soil.
The major pathways for O2 supply to roots are through the
soil medium or through intercellular gas spaces and aeren-
chyma when they exist in the shoot–root continuum. In
waterlogged or O2-deficient soils, shoots and their inter-
face with the atmosphere become the major source of O2

supply to roots of flood-tolerant species. Depending on
the shape and arrangement of cortical cells, path lengths,
cellular O2 demands and radial losses, radius of the stele
vs cortex and shape of the root apex, roots will receive
some proportion of the O2 they require for normal aerobic
function (Colmer 2003). Within a single root axis, apices
and the stele are potentially anoxic while the outer cor-
tical tissues may continue to be aerobic (Armstrong and
Beckett 1987). Factors controlling these tissue-specific
variations in O2 status are not well described for less
tolerant dicotyledonous species such as cotton, where
phenotypic variation in radial dimensions and biophysical
characteristics of roots might yet be exploited.

Notwithstanding these adaptive features, primary root
elongation, even in waterlogging-tolerant plants, is sup-
pressed when exposed to O2 deficiency. Tolerant species
such as many grasses develop lateral and adventitious
roots, enabling nutrient uptake from waterlogged soils.
When cotton plants were re-aerated, primary axes
initiate lateral roots after death of the apical meristem.
Initiation of adventitious root primordia is controlled
by an interaction between plant hormones, particularly

Figure 1. Annual publication rate for manuscripts dealing with
waterlogging, anaerobiosis, anoxia and/or O2 deficiency in cotton
and other crop species (rice, maize and wheat).
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ethylene (Verstraeten et al. 2014). Ethylene accumulation
also triggers various adaptive traits within root axes,
such as cortical cell senescence, increased fractional
root porosity and secondary growth of phelloderm in
dicotyledonous species (Evans 2004). Such changes facil-
itate gaseous exchange between aerobic shoots and
anaerobic roots of various crops including wheat, maize
and rice (Armstrong and Drew 2002). Significantly, eudi-
cotyledons such as cotton do not display the same wide-
spread tendency to form aerenchymatous roots (Fig. 2)
(Conaty et al. 2008). However, there are other potential
adaptations to waterlogging, with cotton enhancing sur-
vival in short-term hypoxia by developing hypertrophic
lenticels (Fig. 3); similar responses have been reported
in Lotus tenuis (Teakle et al. 2007).

Nutrient uptake

The acquisition of inorganic nutrients is critical for high
productivity of irrigated crops such as cotton. A fall in

O2 levels after heavy rainfall initiates a series of chemical
reactions within the soil. As the intensity of waterlogging
increases, soils shift from hypoxic to anoxic and slowly,
redox potentials enter the range that renders ions toxic
or unavailable. Excluding, sequestering or re-oxidizing
these solutes is important to avoid root damage. These
control mechanisms depend heavily upon rhizosphere
O2 levels if re-oxidation of toxic ions is to be achieved,
but this is unlikely in non-aerenchymatous cotton roots
until the bulk soil begins to re-aerate. Where atmospheric
O2 supply is very limited such as the case in cotton, root
energy status to sustain active transport systems and
membrane integrity become critical, both during and
after waterlogging events. Evidence suggests that a com-
bination of these adaptive mechanisms can prevent Mn
toxicity from developing after 8 days of waterlogging
(Hocking et al. 1987). However, damage to root tissues,
particularly apices, is not unique to periods of O2 depriv-
ation, with re-aeration post-waterlogging imposing a

Figure 2. Waterlogging-induced aerenchyma formation in roots of rice (A) and wheat (B) (micrographs courtesy of Plants in Action; Atwell et al.
1999), while no aerenchyma formation in waterlogged cotton roots (C) where cortical cells are densely packed (Conaty et al. 2008).

Figure 3. Development of hypertrophic lenticels at the base of cotton stems under long-term waterlogging. (A) Stem of waterlogged cotton;
(B) magnified view of waterlogged cotton stem; (C) cotton stem under non-waterlogged conditions.
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new set of challenges for roots as reactive oxygen species
impair metabolic processes (Blokhina et al. 2001; Shabala
et al. 2014).

Because hypoxia impedes root ATP synthesis, it alters
the activity of plasma membrane H+-ATPases (Jackson
et al. 2003). Since uptake of mineral nutrients such as N,
P, K, Mg and Ca is generally energy-dependent (Marschner
and Marschner 2011), partial membrane depolarization
and reduced ATP availability for pumps suppress their
uptake (Steffens et al. 2005). Colmer and Greenway
(2011) proposed that as roots become reliant on O2 supply
from shoots, nutrient uptake from soils may continue into
root hypoxic epidermal and cortical cells. However, devel-
opment of an anoxic stele inhibits energy-dependent ion
transport into the xylem. In such cases, small quantities
of ions could still pass to the xylem tissues via plasmodes-
mata and non-selective outward-rectifying channels
(Pang and Shabala 2010).

In cotton, inhibition of nutrient uptake has been strongly
correlated with the length of inundation period (Fig. 4),
plant growth stage and soil fertility level (Hocking et al.
1985; Milroy et al. 2009). Waterlogging-induced inhibition
of uptake and translocation of macro-nutrients (N, P and K)
were pronounced during the period of high nutrient
demand i.e. peak flowering (McLeod 2001). Hocking
et al. (1987) also reported similar results after exposing
cotton to 8 days of waterlogging during flowering. Likewise,
in a comprehensive study on leaf nutrient dynamics of
waterlogged cotton, Milroy et al. (2009) reported significant
reduction in concentrations of most essential nutrients.
They observed that nutrient concentrations in cotton
leaves were relatively more sensitive to waterlogging dur-
ing peak flowering compared with late reproductive stages.

Nutrient deficiency in leaves during reproductive growth
could be ascribed to their role as a net nutrient exporter to
fruits, especially from the late flowering growth phase

(Rochester et al. 2012). Transport of nutrients towards
developing fruits depletes the fixed pool of each nutrient
element unless uptake rates through the roots can be sus-
tained during an energy crisis. While inorganic nutrients
are delivered to leaves through the xylem, redistribution
to developing sinks such as fruits with low transpiration
rates and high nutrient demand (Marschner and Marschner
2011) are achieved through the phloem. McLeod (2001)
observed that waterlogging at peak flowering of cotton
(96 DAS) reduced P and K, both mobile nutrients, in cotton
tops (upper shoots) by 32 and 19 %, respectively. Consist-
ent with the claim that nutrient redistribution is import-
ant during flooding events, nutrient deficits were more
pronounced in leaves and stems compared with fruits.

In contrast to the essential mineral elements, soil
waterlogging increases Na+ accumulation in sensitive
plant species (Barrett-Lennard 2003). McLeod (2001)
observed a significant increase in shoot Na concentration
in waterlogged cotton leaves, where increased leaf Na
concentrations were the result of higher Na translocation
from roots to shoots rather than increased whole-plant
uptake. Depolarization of hypoxic root plasma mem-
branes does not diminish uptake of Na+ ions; indeed
more Na+ ions enter via non-selective cation channels,
while limited H+-ATPase activity impairs active Na+ exclu-
sion across the plasma membrane and results in Na build
up in root cells. Loading of anions and cations into the
xylem requires various transporter channels (reviewed
by Shabala and Mackay 2011). Although hypoxia blocks
outwardly rectifying channels, Na+ enters the xylem via
the non-selective outward-rectifying channels; hence
the loss of selectivity for K+ over Na+ lies in contrasting
uptake systems (Barrett-Lennard and Shabala 2013).
Reduced retrieval of Na+ from the anoxic stele to the aer-
obic cortex might also be responsible for the relatively
higher Na+ transport towards the shoot (Colmer and
Greenway 2011).

Yield

The effect of waterlogging on vegetative growth and yield
of cotton depends on the cumulative time for which the
root system remains under low soil O2 concentrations
(O2 , 10 %), soil type and developmental stage (Milroy
et al. 2009). Earlier studies showed that an inundation per-
iod of 4–32 h significantly limited cotton lint yield (Hodgson
1982). However, Bange et al. (2004) observed no significant
impact on cotton yield after 72 h of waterlogging, suggest-
ing that plant responses to waterlogging vary widely with
experimental conditions. Improved performance during
the recent years among waterlogged cotton crops has
been attributed to better agronomic practices, reduction
in soil compaction (a by-product of sustained waterlog-
ging), use of modern technology for land levelling and the

Figure 4. Changes in nutrient N (Hocking et al. 1985) and P (Hocking
et al. 1987) status of cotton leaves under increasing inundation
period (days) of water-table depth 40 cm.
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development of relatively waterlogging-tolerant cotton cul-
tivars. Field studies have also confirmed that yield penalties
in waterlogged cotton are strongly linked with ridge height;
removing ridges exacerbated waterlogging damage while
enhancing yield in aerobic conditions.

Waterlogging sensitivity in cotton is strongly associated
with growth stage (McLeod 2001) but there is no a priori
basis for temporal changes in tolerance. In a series of
test-pit experiments, Wu et al. (2012) observed 27–30 %
yield reduction after 4–9 days of waterlogging, respect-
ively, during early reproductive stage in cotton. A 10-day
exposure significantly increased young boll and square
abscission in cotton, leading to a 42 % yield reduction
(Jiang et al. 2013). Likewise, Bange et al. (2004) reported
larger yield losses in cotton waterlogged at early squar-
ing stage (65 DAS) compared with a later growth stage
(112 DAS).

Higher waterlogging sensitivity during early repro-
ductive growth in cotton has been notionally linked to
the hormone-dependent shedding of young squares
observed during abiotic stress (de Brito et al. 2013).
Once established, the cotton bolls become less sensitive
to stress-induced abscission. As the reduction in yield in
waterlogged cotton crops is a function of lower fruiting
number, fruit abscission after waterlogging has been dir-
ectly implicated in yield losses (Bange et al. 2004). Water-
logging significantly suppressed plant growth and
reproductive node development, reducing the total num-
ber of fruiting sites. Waterlogging-induced damage to cot-
ton during later growth, as observed by McLeod (2001) in
glasshouse experiments, was associated with inhibited
nutrient uptake. However, with limited space for root
growth and potential exhaustion of nutrients, nutrient
deficiency was accentuated during peak boll develop-
ment. Since the final yield was not recorded, it is not certain
whether foliar nutrient deficiency translated into significant
yield losses. Once formed, the cotton bolls become less sen-
sitive to stress-induced abscission and may continue to be a
nutrient sink by re-translocating nutrients from leaves.

Physiological Processes and their
Contribution to Waterlogging Damage

Photosynthesis

Flooding and subsequent soil waterlogging usually causes
a rapid decline in photosynthetic rate, ranging from 10 to
90 % in different species (Kozlowski and Pallardy 1984).
Various reasons for hypoxia-induced photosynthetic im-
pairment are reported in the literature (Fig. 5). Waterlog-
ging sensitivity of cotton has been strongly associated
with photosynthetic inhibition (Najeeb et al. 2015a). In cot-
ton, Milroy and Bange (2013) observed a significant drop in
the rate of photosynthesis under sustained waterlogging

treatments for 72 h, while rates recovered to normal as
the soil O2 status improved. They showed that the rate of
photosynthesis exhibited a degree of acclimation, becom-
ing less responsive to soil O2 status during the later growth
stages. Nutrient deficiency in cotton leaves has been con-
sidered the main reason for the fall in leaf photosynthetic
rates. However, there was a lack of improvement in
photosynthesis of waterlogged cotton under foliar and
soil fertilizer (N, P and K) application (Meyer et al. 1987;
Hodgson and MacLeod 1988; Ashraf et al. 2011; Zhou
and Oosterhuis 2012) suggesting that long-distance sig-
nalling from roots might explain impaired leaf function;
possibilities include hydraulics (e.g. stomatal closure)
and hormones (e.g. changes in expression of critical
photosynthetic genes, chlorophyll degradation).

Ahmed et al. (2006) suggested that early reduction
in photosynthesis of waterlogged plants is regulated
by internal damage to photosystem II (PSII) associated
with photoinhibition, independent of stomatal closure.
These non-stomatal/metabolic factors include intercellu-
lar gas diffusion, biochemical reactions, reduction in CO2

assimilation rates and quantum yield of PSII. Similarly,
modification in synthesis, regulation and transport of
endogenous hormones in cotton leaves influences photo-
synthetic CO2 fixation (Pandey et al. 2001). Down-
regulation of sulfite reductase activity (a key enzyme of
sulfate assimilation) could cause thylakoid damage and
subsequent reduction in photosynthetic activity in water-
logged cotton leaves (Christianson et al. 2010b).

Transpiration, stomatal behaviour and hormone
physiology

At the inception of waterlogging, plant roots rapidly trans-
mit xylem-borne signals to leaves in the form of hormones,
most notably abscisic acid (ABA), slowing transpiration via
stomatal closure (Jackson et al. 2003). Numerous studies
reported stomatal closure and low transpiration rates in a
range of plant species within hours up to days of waterlog-
ging being imposed (Barrett-Lennard 2003; Mollard et al.
2008), although stomatal closure is not consistently
reported for cotton. For example, some reports suggested
that waterlogging reduces stomatal conductance and leaf
water potential in cotton (Meyer et al. 1987; Christianson
et al. 2010a), while Hocking et al. (1985) and McLeod
(2001) observed no significant change in transpiration
rate and stomatal conductance of waterlogged cotton.
Likewise, Ashraf et al. (2011) found a significant reduction
in leaf water potential without any significant change in
leaf stomatal conductance, presumably due to impaired
root hydraulics that occurs when roots are O2 deficient
(Gibbs et al. 1998). Therefore, it is difficult to correlate
growth inhibition in waterlogged cotton with perturbations
to leaf water status. Effects on transpiration and stomatal
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conductance might be dependent on soil type, duration of
waterlogging and plant growth stage, whereas photosyn-
thesis responds more rapidly to O2 deficiency in root tissues.
This uncoupling of water and carbon economies suggests
that they are under independent controls when roots of
cotton are waterlogged.

In sensitive plant species such as tomato and cotton,
hypoxia-induced cytosolic acidosis causes conformational
changes in root aquaporins, inhibiting water transport to
leaves, thereby reducing turgor pressure in guard cells
and closing stomata (Else et al. 2001; Hebbar and Mayee
2011). The similarity of the effects of waterlogging, exog-
enous ABA application (Else et al. 2009) and high external
CO2 concentrations (Bradford 1983) on stomatal behaviour
in tomato suggest a common mechanism, possibly with
ABA as the key factor. The precise nature of root-derived
‘waterlogging’ signals remains unresolved (Else et al.
2009) and it is likely that specific signals operate in differ-
ent time frames; short-term signalling could be achieved
by loss of root hydraulic conductivity (Else et al. 2001) or
increased 1-aminocyclopropane-1-carboxylic acid (ACC)
transport (Bradford and Hsiao 1982), while ABA accumula-
tion in leaves (Ahmed et al. 2006) might ensue more
slowly, thus regulating stomatal conductance and photo-
synthesis and transpiration.

Hypoxic tomato roots release a large amount of
ACC (the precursor to ethylene) into the transpiration
stream due to inhibition of the oxidation of ACC and/or
up-regulation of genes governing ACC synthesis (Bradford
and Hsiao 1982). This ACC is converted into ethylene in
the presence of O2 and ACC oxidase in the leaves. Ele-
vated ethylene accumulation accelerates activity of an
abscission layer in the peduncle, causing square and
boll abscission and overall lint yield reduction in cotton
(Lipe and Morgan 1973). Investigating responses of cot-
ton to hypoxia, Christianson et al. (2010b) found increased
expression of genes regulating ACC synthesis, pointing to
the role of ethylene as a key signal in mediating responses
to waterlogging. Higher ethylene accumulation acceler-
ates generation of reactive oxygen species (ROS), which
damage macromolecules and suppress photochemical
efficiency (Ahmed et al. 2006), compromising organelles
and ultimately causing cell death.

Radiation-use efficiency

Crop growth rate depends on the amount of inter-
cepted radiation and its concomitant conversion into bio-
mass, which is termed radiation-use efficiency (RUE)
(Monteith and Moss 1977). Leaf size and canopy architec-
ture are major determinants of absorption of incoming

Figure 5. Changes in cotton growth and yield in response to soil waterlogging. Flows are represented in four categories: green (biochemical
pathway); red (hormonal/signalling pathway); light blue (physiological pathways); dark blue (morphological changes). (1) Lower ATP synthesis
under O2 deficiency inhibits root growth (Armstrong and Drew 2002). (2) Reduced plasma membrane H+-ATPase activity impairs nutrient uptake
and interception (Jackson et al. 2003). (3) Limited nutrient transport to leaf tissues damage chlorophyll and photosynthesis (Meyer et al. 1987).
(4) Inhibited root growth acts as a negative feedback to photosynthesis by reducing the root carbohydrate demand (Benjamin and Greenway
1979). (5) Higher ACC concentration in root tissues could inhibit root growth (Leblanc et al. 2008). (6) Ethylene can influence ABA-induced sto-
matal dynamic and photosynthesis (Else et al. 2009). (7) Inhibited leaf photosynthesis in turn influence biomass accumulation, leaf size, canopy
development and overall radiation-use efficiency (Guang et al. 2012).
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photosynthetic active radiation, while conversion of inter-
cepted radiation into new biomass mainly depends on
the rate of net photosynthesis. However, the effect of
other factors such as reproductive partitioning, growth
conditions and plant developmental stage on RUE
and crop growth rate cannot be overlooked (Passioura
1977). Therefore, integration of different physiological
and growth processes is essential for estimating RUE or
crop potential productivity.

Waterlogging suppresses leaf growth, canopy develop-
ment and ultimately limits light interception in cotton
(Guang et al. 2012). The growth reduction in waterlogged
cotton was more strongly associated with low RUE than
with the interception of light alone (Bange et al. 2004).
There have been a number of reports illustrating negative
impacts of waterlogging on RUE and lint yield of cotton
through limiting dry matter production (Bange et al.
2004; Guang et al. 2012). Although a limited role of short-
term shade incurs yield losses in severely waterlogged
cotton, long-term shading can significantly increase
damage (Najeeb et al. 2015b). Impaired nutrient uptake
and translocation, especially N from waterlogged soils,
seems responsible for impaired leaf growth (Milroy et al.
2009) and inhibition of photosynthesis. However, Milroy
and Bange (2013) observed a weak association between
photosynthetic rates and N contents of the youngest fully
developed leaves of waterlogged cotton, and suggested
uneven light distribution within the canopy might be
responsible for low RUE of the whole plant. Since the
value of RUE depends on the sum of photosynthetic per-
formance through the whole canopy, collection of data
(leaf N and photosynthesis) from the topmost leaves
may not be adequate for estimating RUE under stressful
environments. Exploring the effect of soil waterlogging
on various canopy layers of cotton, Kuai et al. (2014)
established that waterlogging more severely impaired
chlorophyll pigments and consequently photosynthesis
in the lower canopy leaves, while leaves at the top of can-
opy showed delayed damage by translocating nutrients
from lower leaves. Thus variation in light penetration
and nutrient distribution through the canopy should be
considered when collecting data for leaf photosynthesis
or nutrients.

Metabolic Responses to Waterlogging
in Crop Species
Rapid depletion of oxygen from the rhizosphere unba-
lances soil chemistry and disturbs energy and hormone
metabolism, triggering the downstream physiological
and biochemical events described in the previous section.
Adaptive responses to these events are natural targets for
improved waterlogging tolerance of cotton at the cell

level. The known metabolic responses to oxygen deficit
can be broadly divided into four groups:

(i) Induction of anaerobic polypeptides (ANPs), enabling
carbohydrate mobilization and subsequent fermen-
tation (Subbaiah and Sachs 2003);

(ii) Regulation of intracellular pH and thereby, mem-
brane charge, via changes in transporter activity.
Acidosis determines activity of some key enzymes
(e.g. pyruvate decarboxylase (PDC), nitrate reductase
and nicotinamide adenine dinucleotide (NADH)-
dependent glutamate synthase (Steffen et al. 2001))
and defines a new ‘set point’ for low-oxygen metabol-
ism (Felle 2005);

(iii) Alteration in expression pattern of genes controlling
O2 sensing (Gibbs et al. 2011; Licausi et al. 2011).
A recent publication by Mendiondo et al. (2015)
illustrated that O2 sensing in barley is mediated by
the N-end rule pathway. Sensing was achieved via
an amino terminal cysteine residue in vivo, causing
increased expression of hypoxia-associated genes
and improved tolerance to waterlogging. Thus hom-
ologous components of the N-end rule pathway iden-
tified in barley are potential targets for engineering
waterlogging tolerance in cotton. Similarly, activation
of proteins regulating ROS signalling are potential tar-
gets for improved tolerance (Baxter-Burrell et al. 2002).

(iv) Synthesis of non-symbiotic haemoglobin (nsHbs)
proteins (Igamberdiev and Hill 2004; Sairam et al.
2009).

Signalling pathways and gene regulation

Despite the improved understanding of responses to oxy-
gen deficits brought about by proteomic and genomic
approaches (Table 1), the full array of responses that can
confer waterlogging tolerance remain elusive (Narsai
et al. 2011). Microarray studies have consistently shown
that hypoxia affects expression of genes coding for signal
transduction (Baxter-Burrell et al. 2002), with sugar signal-
ling in rice coleoptiles under anoxia (Lasanthi-Kudahettige
et al. 2007) particularly likely to be relevant to diverse
species during O2 deficits. Other examples of commonly
observed gene expression responses in hypoxia involve
ethylene biosynthesis, nitrogen metabolism and cell wall
degeneration (Table 1). Up-regulation of common genes
has been reported in O2 deficits across a wide range of
plant taxa covering a spectrum of flood tolerance. These
consistent changes suggest that evolutionary ‘solutions’
to surviving this most challenging of environmental stres-
ses have their origins in ancient progenitors, often prokary-
otic (Müller et al. 2001).

While transcriptomic responses to hypoxia and anoxia
have common features across species (e.g. increased
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Table 1. Some commonly up and down-regulated processes, as identified by gene expression studies, when a range of higher plant species were exposed to low O2 conditions.

Species Treatment Genes up-regulated Genes down-regulated Reference

Cotton (Gossypium

hirsutum L.)

Soil waterlogging Glycolysis, fermentation and mitochondrial

electron transport pathways, ethylene

synthesis, alanine synthesis

Cell wall synthesis, flavonoid production and

synthesis of amino acids

Christianson et al. (2010b)

Arabidopsis Hypoxia (3 % oxygen) Glycolysis, fermentation amino acid metabolism,

ethylene synthesis, protein kinase activity, and

auxin responses

Cell wall synthesis, nucleosome structures,

water channels and ion transporters

Liu et al. (2005)

Poplar Soil waterlogging Glycolysis, fermentation, trehalose synthesis,

proline synthesis

Signalling, phenylalanine synthesis Christianson et al. (2010a)

Rice Anoxia Glycolysis, ethylene response factors, ethanolic

fermentation, pyruvate metabolism, heat

shock proteins, starch synthesis

PEP carboxylase, sugar transporters,

catalase, signal transduction

Lasanthi-Kudahettige et al. (2007)

Sugar beet Waterlogging Glycolysis/pentose phosphate cycle,

carbohydrate metabolism, seed specific

proteins, transport, transcription, signal

transduction, lipid metabolism, protein

biosynthesis, protein folding, metabolism and

cell division cycle

Cytoplasmic ribosomal proteins, translation

initiation factors, seed storage proteins,

late embryogenesis, seed maturation and

dehydration proteins

Pestsova et al. (2008)

Maize Submergence Glycolysis, and ethanolic fermentation, auxin

response factor, carbohydrate and energy

metabolism

Starch synthase aminotransferase,

homeostasis and signal cascades of

hormone

Zhang et al. (2008)

Soybean Submergence Photosynthesis, glycolysis, Ser-Gly-Cys group

amino acid synthesis, regulation of

transcription, ubiquitin-mediated protein

degradation and cell death

Synthesis of phosphofructokinase glucosyl

and glucuronyl transferase, secondary

metabolism, transport, cell wall synthesis,

amino acid metabolism

Nanjo et al. (2011)
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expression of genes for fermentative enzymes, sugar
mobilization), transcriptomic profiles also bear character-
istics of individual plant species (Christianson et al. 2010a;
Narsai et al. 2011). Root tissues are the major target of
hypoxic stress and could potentially regulate shoot
responses (induction of hypoxia-responsive genes) via
transport of metabolites such as g-aminobutylate and
alanine towards shoot (Mustroph et al. 2014). Analysis
of carefully defined tissues from different organs (e.g.
root apices, leaves) across a broad range of taxa is still
called for, with datasets from these independent ana-
lyses of both transcriptomes and proteomes providing
targets for identification of markers for hypoxia tolerance.
Early transcriptomic contrasts in hypoxia-treated roots
from cotton, Arabidopsis and grey poplar indicated that
4–10 % of all known genes were differentially expressed
in response to hypoxia (Christianson et al. 2010a). In a
microarray study of waterlogged cotton roots and leaves,
Christianson et al. (2010b) observed up-regulation of
genes controlling biochemical processes such as glycoly-
sis, fermentation and mitochondrial electron transport
pathways, again underlining the role of ethanolic fermen-
tation and residual respiratory activity in plant survival
under hypoxia. Down-regulation of genes could be an
equally helpful insight into mechanisms of flood toler-
ance; examples include reduced expression of genes
associated with the synthesis of cell walls, flavonoids
and amino acids. We consider it important to distinguish
those genes that are down-regulated as an inevitable
result of lower growth rates (e.g. inhibited protein synthe-
sis) from those that perform subtler regulatory roles such
as in energy conservation (Atwell et al. 2015). Such dis-
tinctions can best be deduced in datasets from cereals
where responses to flooding have been relatively well
studied. Systematic analyses in cotton and particularly
between wild and domestic cultivars would be invaluable
in identifying scope for breeding programs.

Metabolic adaptation

Waterlogging-tolerant plants may avoid O2 deficits
through multifaceted cellular and organ level structural
modifications. These processes are driven by phytohor-
mones, with ethylene, gibberellins and abscisic acid having
well-substantiated roles in cell-level responses to low O2.
The past decade has seen a wider recognition for quies-
cence as a strategy for survival during submergence, con-
serving energy (Bailey-Serres and Voesenek 2008) during
restricted O2 supply. This is the most likely route to
improved waterlogging tolerance in field-grown cotton.

Alcoholic fermentation is the most important fermen-
tative pathway in plants (Rees et al. 1987), during which
pyruvate is first converted into acetaldehyde by PDC, and
then into ethanol by alcohol dehydrogenase (ADH). Lehle

et al. (1991) confirmed that ethanolic fermentation is the
major metabolic pathway for energy generation in hyp-
oxic cotton seeds. They exposed germinating seeds to
moderate hypoxia (6–9 mmol O2 mol21) and observed
production rates of 439 and 10 nmol seed21 h21 ethanol
and acetaldehyde, respectively. However, radicle growth
was significantly reduced at these relatively low fermen-
tation rates compared with tolerant plants (Table 2), indi-
cating that cotton seeds generate insufficient energy
from fermentation under waterlogging or that acetalde-
hyde toxicity impedes growth. This does not preclude
engineering a higher level of fermentation in root apices
or other tissues during waterlogging events. In an
attempt to increase ethanolic fermentation and subse-
quent tolerance to O2 deficiency, Ellis et al. (2000) used
transgenic cotton lines over-expressing ADH and PDC
genes. Despite a significant increase (up to 80 %) in etha-
nol production in transgenic line, there was no significant
increase in hypoxia or anoxia tolerance in terms of growth
or plant survival, indicating that increased ethanol syn-
thesis (and thus ATP synthesis) alone was not sufficient
to confer tolerance. During the field studies, the same
transgenic lines did not exhibit any improvement in
yield of waterlogged or non-waterlogged cotton com-
pared with their respective controls (Bange et al. 2010).
Therefore, further biochemical and physiological studies
are needed to determine the relationship between anaer-
obic fermentation and the capacity of cotton roots to sur-
vive under waterlogging in the field. It is likely that more
components are involved in plant anoxia tolerance than
just the few genes regulating fermentation rate. There
are many possible candidates for proteins (e.g. pumps
and enzymes in primary metabolism) that could be crit-
ical for survival of cotton tissues in anoxia; carbohydrate-
mobilizing enzymes, ion transporters and ROS scavengers
(Gill and Tuteja 2010) are some potential targets. Toler-
ance to toxic molecules such as acetaldehyde and
metal ions also deserves attention.

Anaerobic polypeptides—old and new candidates

Oxygen deficiency up-regulates the expression of a select
group of genes that encode for stress tolerance pathways
in plants (Baxter-Burrell et al. 2002). This set of proteins
has been termed ANPs, although it should be emphasized
that the exact composition of this group remains open to
debate. Enzymes such as PDC, ADH and sucrose synthase
(SuSy) are all critical for the breakdown of sucrose in gly-
colysis and subsequent fermentation (Subbaiah and
Sachs 2003) and are undoubtedly ANPs. Variable numbers
of what we define as ANPs are nominated for different
plant species (Millar and Dennis 1996). The advent of
modern technologies and informatics (e.g. sophisticated
proteomics and RNA sequencing) will doubtless reveal
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new candidates for tolerance, including transcription fac-
tors (e.g. ethylene-responsive factors) and other regula-
tory molecules. Proteomic studies should be conducted
in diverse cotton germplasm and waterlogging intensities
in order to define the ANPs that characterize waterlogged
root tissues.

Other genetic improvement or selecting
natural mutants

While ADH and PDC are essential fermentative enzymes
that enable breakdown of sugars for energy production
(Fig. 5), the supply of substrates is critical. Generation
of phosphorylated sugars from sucrose via SuSy is an
energetically favourable means of sustaining glycolysis
(Huang et al. 2008) and supporting sucrose metabolism
during post-stress recovery (Santaniello et al. 2014).
Increased activity of SuSy is reported in root tissues of
relatively anoxia-tolerant plant species such as rice and
maize during anoxia, whereas lower tolerance to anoxia
in SuSy knockout mutants of maize suggested a critical
role of SuSy in energy conservation during O2 deficiency
(Ricard et al. 1998). Invertases provide an alternative
means of sucrose hydrolysis, releasing free monosacchar-
ides at the cost of additional ATP for subsequent sugar
phosphorylation. The relative contribution of these two
mechanisms to sucrose breakdown deserves closer atten-
tion in waterlogging-intolerant species such as cotton.

Challenging a commonly held view that SuSy is the
preferred pathway of sucrose breakdown to sustain

glycolysis in low O2 conditions (Huang et al. 2008),
Santaniello et al. (2014) suggested that both sucrose syn-
thase and invertase play an important role in sucrose
metabolism under O2 deficiency. No variation in ethanol
production, energy status or waterlogging tolerance was
observed between wild-type and SuSy knockout mutants.
Sucrose metabolism is particularly important during per-
iods of high-energy demand such as follows a flooding
event, when anoxia-tolerant plants can augment ATP
yield through a ‘Pasteur Effect’ by accelerating glycolysis
(Gibbs and Greenway 2003). The capacity of roots to sus-
tain substrate supply for a Pasteur Effect could be a goal
for improved anoxia tolerance in cotton. An alarmingly
rapid decline in expression of SuSy and ADH genes that
regulate key catabolic and fermentative processes was
observed in cotton roots within a short time after water-
logging (48–96 h), reflecting the poor tolerance of com-
mercial G. hirsutum genotypes to hypoxia (Christianson
et al. 2010b).

Pyrophosphate

A possible role of pyrophosphate (PPi) as high-energy
donor molecule that can substitute for some of the
roles of ATP has been suggested in plants that survive
O2 deficits (Carystinos et al. 1995; Atwell et al. 2015). Tran-
scriptomic and proteomic studies indicated that anoxia
activates a PPi-dependent step during energy metabol-
ism, which directs scarce energy supplies to essential
PPi-dependent reactions such SuSy, PPi-PFK, PPDK and a
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Table 2. Variation in ethanol synthesis in different plant organs under oxygen deficit.

Species Plant organ Oxygen concentration Ethanol synthesis rate Reference

Cotton Seeds 9+4 mmol O2 mol21 0.44 mmol h21 seed21 Lehle et al. (1991)

Roots Hypoxia (5 % O2) 0.05 mmol g21 FW h21 Ellis et al. (2000)

Transgenic roots 0.06–0.1 mmol g21 FW h21

Rice Whole plant (14 days) Anoxia (N2) 20 h 28 mmol g21 FW h21 Mustroph et al. (2006)

Shoots (14 days) Anoxia (N2) 4 h 50 mmol g21 FW h21

Roots (14 days) Hypoxia (3 % O2) 2.5 mmol g21 FW h21

Coleoptiles Anoxia (N2) 5.2–8.3 mmol g21 FW h21 Edwards et al. (2012)

6.8–9.7 mmol g21 FW h21

Maize Root tips (3 days pre-hypoxic) Anoxia (N2) 8 h 15.7 mmol g21 FW h21 Xia and Saglio (1992)

Lettuce Roots (5 days) Anoxia (N2) 6 h 1.8 mmol g21 FW h21 Kato-Noguchi (2000)

Wheat Shoot (9 days) Anoxia (N2) 4 h 1.1 mmol g21 FW h21 Mustroph et al. (2006)

Roots (9 days) 1.3 mmol g21 FW h21

Arabidopsis Shoots Hypoxia (5 % O2) 0.23 mmol g21 FW h21 Ismond et al. (2003)

Roots (4 weeks) 0.04 mmol g21 FW h21 Tadege et al. (1998)

Tobacco Root apex Anoxia 4 h 0.04 mmol g21 FW h21

Root tissues (5–7 weeks) 4.5 mmol g21 FW h21

{

⎧⎪⎨
⎪⎩

⎧⎪⎨
⎪⎩
{
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proton transporting vacuolar PPiase in anoxia-tolerant
species (Pestsova et al. 2008; Howell et al. 2009). A shift
in the energy source from ATP to PPi helps plants to
meet their energy requirements and stabilizes membrane
charge via solute transport and H+ pumping (Atwell et al.
2015). With relatively few genes involved in engineering
improved anoxia tolerance via PPi metabolism, and a pre-
cedent in rice where vacuolar PPiase contributes to toler-
ance (Liu et al. 2010), this is an avenue that should be
considered in cotton.

Non-symbiotic haemoglobins (nsHbs)

Nitric oxide has been identified as a signalling molecule
synthesized in plant and animal tissues in response to
O2 deficiency (Igamberdiev and Hill 2004). If unregulated,
NO and its precursor, nitrite, would cause functional dam-
age to plants (Hill 2012). However, the realization that NO
is part of an important signalling system and potentially
energy transduction in plants has cast a new light on the
importance of this molecule. In hypoxia-tolerant plants,
cellular O2 deficiency up-regulates expression of the Hb
genes glb1 or glb2 which leads to synthesis of nsHbs
and scavenging of NO, ethylene and ROS (Zhao et al.
2008). Because nsHbs have such a high affinity for O2, in
its oxidized form it can convert NO to nitrate and thereby
drive a cycle that ultimately oxidizes NADH to NAD+ and
supports ATP regeneration (Sairam et al. 2009). Increased
expression of the nsHbs gene, GhHb1, is reported in cot-
ton as a response to fungal attack (Qu et al. 2005),
encouraging its application as a stress tolerance mechan-
ism by detoxifying highly toxic NO and regulating cellular
energy status.

Strategies to Overcome Waterlogging
Stress
Cotton cultivated on clay-rich, fine-textured soils often
experiences poor drainage during flood or furrow irriga-
tion and the situation becomes worse in poorly levelled
fields and after rain events that cause soil waterlogging
and O2 deficiency within hours to days under warm grow-
ing conditions. Recent advances in production systems
have substantially improved productivity in cotton crops
through appropriate field practices such as proper layout
design, land levelling, increasing slope, scheduling irrigation
and foliar fertilizers (Bange et al. 2004). Yield gains in com-
mercial cotton crops in waterlogging-prone conditions rely
upon these management practices although significant
improvements in waterlogging tolerance could be made
by exploiting genotype × management × environment in-
teractions. Optimally, crop management practices should
inform breeding for improved stress tolerance, drawing on

new insights into mechanisms and increasing availability
of genome sequences (Wang et al. 2012).

Fertilizer application

Hypoxia-induced cotton growth and yield reduction could
be the result of: (i) nutrient deficiency (Bange et al. 2004);
(ii) increased ethylene accumulation (Christianson et al.
2010b) and/or (iii) impaired photosynthesis and net car-
bon fixation per unit of leaf area (RUE). Once the molecu-
lar O2 level in soil declines, depending on the intensity and
duration of waterlogging, a series of chemical reactions
takes place altering pH as well as nutrient status and
availability in the soil (Kozlowski and Pallardy 1984;
Rochester 2001).

If waterlogging depletes nutrient supply to plants,
exogenous application of fertilizers could logically help the
plants to recover from injury if nutrient ions can be made
to enter a compromised root system. Therefore, nutrient
species, application method, rate and timing should be
considered to avoid the negative impact of nutrient imbal-
ance on soil ecology and tissue toxicities (e.g. manganese).
Incremental supplies of N to waterlogged cotton plants im-
proved stomatal resistance, photosynthetic rate and growth
(Goswami 1990). Guo et al. (2010) suggested that post-
waterlogging N fertilization (240 kg ha21) could contribute
to waterlogging tolerance by improving root growth, vigour
and photosynthesis in cotton.

Post-waterlogging fertilizer application has been sug-
gested for ameliorating detrimental effects of hypoxia
on growth and yield (Guo et al. 2010; Ashraf et al.
2011). Application of fertilizer during or just after water-
logging was less effective due to inefficient nutrient
absorption capacity of impaired roots. Additionally, the
applied N may become unavailable for plant uptake due
to high leaching risks in the wet soils. Similarly, additional
N applied at the late growth phase of cotton could cause
excessive vegetative growth and harvesting problems. In
essence, the response has to be aligned with the growth
and yield that can be expected with the season remain-
ing. Application of fertilizers 8 days after termination of
waterlogging increased the recovery of cotton compared
with the immediate post-waterlogging application (Li
et al. 2013). Similarly, 5 days post-waterlogging applica-
tion of additional 20–30 % fertilizer (above the normal
rate) significantly increased the growth and yield of
waterlogged cotton compared with unfertilized control
plants (Wu et al. 2012). Hypoxia-induced damage to
roots limits nutrient uptake from soil even if excessive
nutrients are available, therefore, foliar fertilizer applica-
tion is recommended for waterlogged plants. Effective-
ness of foliar N has been established by Hodgson and
MacLeod (1988), who found that pre-waterlogging foliar
N application significantly ameliorated deleterious effects
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of waterlogging on cotton lint yield. A foliar spray of iron
sulfate (FeSO4) prior to waterlogging ameliorated the
negative effects of iron chlorosis, returning cotton foliage
to its normal colour (Rochester 2001).

Role of anti-ethylene agents. Waterlogging-induced
ethylene accumulation in cotton is associated with a wide
range of injuries and stresses, and is responsible for young
fruit abscission (Guinn 1982). Agents that inhibit the synthe-
sis or perception of ethylene (e.g. aminoethoxyvinylglycine
(AVG), aminoethoxycetic acid (AOA), 1-methylcyclopropene
(1-MCP) and cobalt and silver ions) have been shown to con-
trol ethylene accumulation by blocking the biosynthetic
pathway (Yang and Hoffman 1984) or ethylene action
(McDaniel and Binder 2012).

Application of AVG and 1-MCP has been suggested to
limit ethylene-induced damage in many crops (Hall and
Smith 1995; Kawakami et al. 2010). Since early fruit
shedding in stressed cotton is linked with higher ethylene
accumulation, application of AVG is proposed to have
potential for improving yield by limiting fruit abscission.
Spraying variable doses of AVG (62.5, 125 g and 250 g
[active ingredient] ha21) just prior to waterlogging,
Bange et al. (2010) showed improved boll number and
seed cotton yield of waterlogged cotton. Similarly, positive
role of 1-MCP has been investigated on water-stressed
cotton plants, where it inhibited ethylene action and
improved physiological processes such as stomatal resist-
ance, water potential and antioxidant enzyme activity
(Kawakami et al. 2010). In a 2-year field study, de Brito
et al. (2013) recorded a positive effect of AVG and 1-MCP
on cotton seed and lint yield. They suggested that AVG
application during the initial reproductive phase is the
best time for improving cotton yield both under stressed
and unstressed conditions. In a recent study, Najeeb
et al. (2015a) observed a negative correlation between
ethylene production and cotton yield during waterlogging,
suggesting that regulating ethylene production by AVG
application can increase both photosynthesis and
fruit retention of waterlogged cotton. In addition, we
observed that eliminating ethylene sensitivity (via ethyl-
ene-insensitive cotton mutant) can significantly improve
cotton performance under waterlogged as well as under
non-waterlogged environments (U. Najeeb et al. Sydney
University, unpubl. res.). As ethylene regulates lint produc-
tion in cotton, engineering ethylene-insensitive plants
could result in lower lint yield. Thus production of trans-
genic cotton plants with organ-specific ethylene sensitivity
(in vegetative organs) may offer solution to this problem.
This approach might have a broader application, with
transgenic (ethylene-insensitive) plants enhancing abiotic
stress tolerance in other plants (Grichko and Glick 2001;
Sergeeva et al. 2006).

Combined application of fertilizer and growth regulators
could be a better option for ameliorating waterlogged
crops, as the fertilizers ensure nutrient supply, while growth
regulators restrain physiological damage. However, only a
few reports are available on application of plant growth
regulators for inducing waterlogging tolerance in cotton,
and further studies are needed to explore role of growth
regulators for growth and yield improvement in water-
logged cotton. Post-waterlogging spray of urea (1 %) +
potassium chloride (0.5 %) in combination with plant
growth regulators [brassin (0.02 mg L21) + diethyl ami-
noethyl hexanoate (10 mg L21)] significantly increased
growth and yield of waterlogged cotton (Li et al. 2013). Pre-
waterlogging foliar ABA application increased tolerance
to subsequent waterlogging-induced injury in cotton
through improving leaf photosynthesis (Pandey et al.
2001). Improvements in weather forecasting signalling
major rainfall events would assist in identifying the
need to apply foliar fertilizers and hormones.

Conclusions and Future Prospects
This review draws on our knowledge of the physiological
and biochemical responses of plants to O2 limitation in
order to understand how these processes affect growth
and yield in cotton (Fig. 5). Waterlogging reduces nutrient
availability, O2 diffusion and cellular respiration, which
influence plant water relations and impair biomass gain.
Yield losses are greatly exacerbated by developmental
effects of waterlogging, including ethylene-induced ab-
scission of flowers. The few field and glasshouse experi-
ments conducted on waterlogged cotton plants reveal
no singular explanation for growth and yield reduction,
implying a need for deeper analysis of gene expression
patterns and hormonal physiology. In particular, there is
a still knowledge gap in our understanding of the genetic
basis of adaptation to hypoxia in waterlogged soils, made
more challenging by the narrow range of tolerance
observed among cultivated cotton genotypes. The expres-
sion patterns of genes during short-term hypoxia may
provide a clue to critical energy-transducing pathways
that confer tolerance to transient floods. To improve
waterlogging tolerance in the full lifecycle of a cotton
crop, it will be necessary to identify the connection
between environmental cues such as soil O2, light levels
and temperature and gene expression (e.g. by promoter
analysis), thereby identifying specific physiological and
biochemical mechanisms that enable survival. Such infor-
mation on the response of cotton plants to hypoxia and
the post-stress recovery period will assist with conven-
tional and transgenic breeding approaches to enhance
waterlogging tolerance during both vegetative and repro-
ductive development.
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Earlier studies focussed on inducing waterlogging tol-
erance in cotton through fertilizer application, with less
attention paid to manipulating hormone physiology.
However, our data suggest that increased ethylene syn-
thesis is responsible for fruit abscission and yield losses
in waterlogged cotton and thus there is a need to explore
the role of anti-ethylene agents to enhance waterlogging
tolerance in cotton. Bioengineering could help to reduce
ethylene accumulation by modifying the genes that regu-
late ACC biosynthesis or perception. These approaches
could be highly effective in conjunction with sound crop
management practices.
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