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Aims The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation
(AF) and possible mechanisms of termination.

Methods
and results

A three-dimensional human biatrial finite element model based on patient-derived computed tomography and
arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity
and effective refractory periods (ERPs), wave break failed to sustain reentrant activityorelectrical rotors. Withdepressed
excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily
maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right
atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias.
Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to
macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation,
widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source.

Conclusion These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis
may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap
reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the
excitable gap.
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Introduction
The mechanisms by which atrial fibrillation (AF) initiates, sustains,
and can be eliminated have been the subject of extensive investiga-
tion.1 – 3 The local source hypothesis attributes persistent and per-
manent AF to a small number of sources including reentrant rotors
or focal beats.4,5 Recent computational mapping studies have
revealed rotors or focal drivers in nearly all patients with wide pre-
sentations of AF,6,7 in multicentre studies of Focal Impulse and
Rotor Mapping (FIRM).8,9 Although such AF rotors precess in
limited spatial areas for prolonged periods of time,10,11 the condi-
tions that permit such precession (minimal meander) are unclear.
Clinical observations suggest that rotors may preferentially locate
to discontinuities in the fibre architecture, particularly in the right

atrium,12,13 and recent clinical studies show that human atria
exhibit considerable fibrosis and scar outside the pulmonary
veins that may contribute to the mechanisms for AF in many
patients.14

Here we use a computational model to examine rotor behaviour
in a realistic human atrial geometry. We demonstrate that meander-
ing rotors can become transiently or permanently trapped by abrupt
discontinuities in the fibre architecture. Furthermore, modelling
of progressively larger regions of inexcitable tissue near the rotor
core at the fibre discontinuity to simulate fibrosis or scar can
anchor a meandering rotor, converting fibrillation to excitable
gap reentry (macro-reentry). Macro-reentry may then terminate
via established approaches including invasion of the excitable gap
by external waves.
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Methods
A male patient with a history of persistent AF was referred to the VA San
Diego Healthcare System. He gave informed consent to participate in an
Institutional Review Board-approved research study. He underwent a
computed tomography (CT) study to evaluate atrial structure. At elec-
trophysiology study, he underwent FIRM mapping, which uses phase-
based algorithms to identify sources during AF (Topera, Inc.).6 Focal
Impulse and Rotor Mapping maps indicated a rotor in the lateral right
atrial wall and a concurrent left atrial focal source (Figure 1), as previously
reported.15

The CT images, combined with consensus literature fibre orientations
and regional wall thicknesses, were used to construct a one element thick
tricubic Hermite finite element model as described previously.16 This
three-dimensional biatrial model was used for Galerkin finite element
simulations of the monodomain equation using high-order cubic
Hermite basis functions for the geometric and dependent variables.
The electrophysiology model had 19 359 nodes, 154 872 degrees of
freedom, and a mean element edge length of 1.9 mm. Operator splitting
was used to simplify calculations, and a time step of 0.1 ms was used to
solve the partial differential equation while the ordinary differential equa-
tions corresponding to the cellular ionic model were solved with a time
step of 0.01 ms. Conductivities spanning two orders of magnitudes have
been used to simulate electrical propagation in the atria; in the present
work, the specific conductivity tensor was transversely isotropic with
components: Dfibre ¼ 0.9 mm2/ms, and Dcross-fibre ¼ 0.1 mm2/ms for
normal atrial propagation and Dfibre ¼ 0.4 mm2/ms, and Dcross-fibre ¼

0.1 mm2/ms to account for decreased anisotropy of conduction seen
with pathological remodelling during AF.17 Point stimulus in the region
of the sinoatrial node with these diffusivities gave rise to a total biatrial
activation time of �130 ms with the Fenton–Karma ionic model
(typical p-wave durations are 80 ms, and customarily are longer in
patients with atrial enlargement, as is the case here). The total activation
time differed by ,5% from the total activation time computed using a
more refined model (114 670 nodes, 919 760 degrees of freedom). In a
simple cuboid mesh with the same ionic model and conductivity
parameters as the atrial electrophysiology simulations, the conduction
velocity measured when the mesh was discretized to the same mean
element edge length as the atrial model were within 0.5% of the con-
verged conduction velocity measured using a 0.1-mm element edge
length. The base parameter set used for the Fenton–Karma model was
parameter set 1 in Fenton et al.18 The excitability value of the model
could be adjusted by the parameter gf i—increasing (decreasing) excit-
ability also caused the action potential duration to increase (decrease)
by increasing (decreasing) magnitude of the fast inward current. The
value used for gf i was 2.95, except as noted because this gave rise to

reentrant rotors with frequency approximately equal to that observed
of the reentrant rotors in the patient (5 Hz). Action potential morph-
ology (Figure 5C) was dependent both on the ionic model parameters
(e.g. gf i) and the source-sink relationship along the rotor. In the simula-
tions below, rotors were initialized with broken waves by depolarizing
a line of tissue andaltering the initial conditionson one sideof the stimulus
to make that region refractory.19 Structural remodelling (fibrosis and
scarring) was simulated by decreasing the excitability in the scar region
to zero and setting the diffusivities to one-tenth of their original value.
Finally, it should also be noted that the atrial model is static—i.e. its
mechanics are not being considered.

Results
The computational model of action potential propagation on a real-
istic human atrial geometry was first used to investigate how normal
physiology in the atria (vs. pathologic remodelling) might prevent a
broken wave from stabilizing as a rotor. With normal cellular excit-
ability, action potential duration (APD), conduction velocity and con-
duction anisotropy, a broken wave on the lateral wall of the right
atrium was unable to sustain a rotor. Images from a representative
simulation are presented in Figure 2A. Owing to the extended wave
‘tail’ of the physiological action potential, the wavefront collided
with the refractory wavetail causing it to extinguish. Even with an
inexcitable region about which to rotate (data not shown), normal
myocyte properties prevented a localized source from forming. An
anisotropy ratio of nine still prevented the broken wave from sustain-
ing a rotor (Figure 2B) despite shortening the APD and effective re-
fractory period (ERP) to broadly simulate the cellular remodelling
seen in AF. Subsequent simulations all used an anisotropy ratio
of four and reduced gf i to emulate AF remodelling as these para-
meters consistently maintained rotors (Figure 2C). Importantly, the

What’s new?
† Clinical data from a Focal Impulse and Rotor Mapping (FIRM)

electrophysiologystudywasused toguidefiniteelement simu-
lations of cardiac electrophysiology simulations on a patient-
specific atrial geometry.

† Computational results demonstrate that abrupt fibre discon-
tinuities and inexcitable regions can transiently or permanently
trap meandering rotors.

† Increasing the size of an inexcitable scar decreases the rota-
tional frequency of a macro-reentrant circuit. This increases
the spatially excitable gap and suggests one potential mechan-
ism for rotor termination.
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Figure 1 Focal impulse and rotormapping reveals two independ-
ent sources: an AF rotor in an unconventional lateral RA location
and a concurrent left atrial focal source. Orientation right atrium:
top, superior vena cava; left, lateral tricuspid. Left atrium: top, super-
ior mitral annulus. The right atrial AF rotor was the basis for subse-
quent modelling. Modified from Narayan et al.7
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conduction velocity in the primary fibre direction was reduced by
47% with these modified parameters.

In Figure 2C, a rotor initiated with a broken wave drifted towards
the tricuspid valve orifice. The circumferential fibres about the
orifice did not allow the spiral to continue rightward and annihilate
at the valve orifice but instead ‘pulled’ the spiral away from
theboundaryand allowed it topivotback towards thefibrediscontinu-
ity and become transiently attached at the interface between the adja-
cent fibre regions (continued in Figure 3A). The rotor continued to
meander in the superior–inferior direction for the remainder of the
5 s simulation (Figure 3B), similar to the behaviour observed clinically
in this patient (Figure 1). In simulations lacking this fibre discontinuity
(not shown), the rotor did not become transiently fixed to this
region, and instead meandered to the posterior right atrium.

Rotors that meandered to the posterior right atrium were often
trapped near the crista terminalis. Figure 4 depicts two rotors that

meandered across the posterior right atrium and became trapped
by the abrupt change in the fibre architecture and wall thickness at
the crista terminalis. The counter-clockwise rotor in Figure 4A was
confined to the discontinuity near the superior vena cava for
2000 ms before precessing inferiorly along the crista terminalis
(Figure 4C). A rotor with the opposite chirality (Figure 4B) became per-
manently affixed to this region. Interestingly, the counter-clockwise
rotor had a smaller precession area than the trapped clockwise rotor.

The impact of structural remodelling was now simulated by placing
inexcitable scar near the rotor core at the fibre discontinuity. After
adding a scar near the tricuspid valve annulus, the rotor meandered
about the scar initially before converting to stable macro-reentry
about the inexcitable region (Figure 5). Broadly, the AF remodelling
parameters allowed afibrillatory rotor to readilyattach to inexcitable
regions, causing conversion to stable excitable gap reentry or macro-
reentry. Increasing the size of the scar increased the path length for

A

B

C

Figure 2 Action potential duration, ERP, and conduction anisotropy all protect normal atrial tissue from sustaining a rotor from a broken wave on
the lateral wall of the right atrium. (A) With healthy atrial parameters the broken wave runs into its wave tail. The normal atrial action potential has an
extended repolarization phase (Phase 3), which prohibits formation of reentry, especially at resting activation rates. (B) Despite decreased APD, an
anisotropy ratio of nine still prevents the broken wave sustaining a rotor. (C) Decreasing cellular APD together with a decreased anisotropy ratio of
four readily permits rotor maintenance. Red and yellow regions are depolarized cardiac tissue while blue regions are quiescent. Orientation: lateral
right atrial view; top, superior vena cava; right, lateral tricuspid.
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A

B

Figure 3 Fibre discontinuities help to stabilize a meandering rotor. (A) A broken wave on the lateral wall of the right atrium sustains a rotor. After
briefly meandering towards the posterior RA, the rotor was ‘pulled’ to the fibre discontinuity surrounding the tricuspid valve annulus. (B) The rotor
precessed inferiorly along thefibrediscontinuity andanchoring transiently to it repeatedly for the remainderof the5 s simulation. Orientation: lateral
right atrial view; top, superior vena cava; right, lateral tricuspid.

A

B

Figure4 Fibre discontinuities can trap a meandering rotor. Rotors drifting across the posterior right atrium were ‘pulled’ to the fibre discontinuity
at the crista terminalis. (A) A couter-clockwise rotor became trapped by the fibre discontinuity for �2000 ms before precessing inferiorly along the
crista terminalis. (B)Aclockwise rotorbecame trappedby thefibrediscontinuity and remained there for the remainderof the five-second simulation.
Orientation: posterior right atrial view; top, superior vena cava; right, lateral right atrium.
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reentry and decreased its rotational frequency (Figure 5B). Similarly,
the AF rotor near the crista terminalis became fixed to simulated
dense scar (Figure 6), again converting it to excitable gap reentry.
Again, increasing the size of the scar decreased the rotational fre-
quency of the rotor. Decreasing the frequency of the rotor increased
its spatially excitable gap. In Figure 6, an external wave invaded the ex-
citable gap and displaced reentry away from its fixed location.

Discussion
This study provides insights into the relatively stable, precessing
rotors recently described during human AF in multicentre clinical
studies. Our observations emphasize the potential importance of
structural features of the myocardium in rotor dynamics, by
showing that discontinuities in the fibre architecture and inexcitable
regions can constrain rotors transiently or persistently. Moreover,
structural remodelling in the form of scar or fibrosis near the

centre of the rotor core can convert fibrillation to excitable-gap
reentry, which can be terminated.

The normal atria may be protected from AF by all of the follow-
ing: the absence of triggers, although recently challenged by data
suggesting that triggers may exist for decades in patients without
clinical AF,20 the unlikelihood of wavebreak due to ‘protective’ con-
duction or repolarization dynamics,21 – 23 and the absence of sub-
strates for rotor maintenance or attachment. Our modelling
results support two protective mechanisms in the normal atria.
First, the prolonged spatial wavetail of an action potential in a
normal atrial myocyte may prevent reentrant rotor formation by
causing conduction block and propagation failure when a broken
wave is pivoting (Figure 2A) or in the process of anchoring about
an inexcitable region.

It is well known that ionic current remodelling promotes AF. Ionic
currents such as IK1

24 and ICaL
25 change in magnitude in AF, shortening

the ERP and APD. Specific ionic effects were not considered in the

1.0C

B

A

0.8

0.6

0.4

0.2

0.0
0 500

V
ol

ta
ge

 (
no

rm
al

iz
ed

)

1000
Time (ms)

1500 2000

Figure 5 Structural remodelling (fibrosis, scar) simulated by placing an inexcitable region near the rotor core trapped the meandering rotor from
Figure 3 and converted it to stable macro-reentry. In (A) the rotor initially meanders around the inexcitable region and eventually becomes trapped
indefinitely. This small scar area increased the rotational frequency of the rotor to �8.5 Hz. Increasing scar area (B) decreased its rotational fre-
quency to �5.5 Hz. Decreasing the frequency also increased the spatially excitable gap. Panel (C) demonstrates the action potential morphology
for a location between the inexcitable region and the tricuspid valve annulus in (B). Orientation: lateral right atrial view; top, superior vena cava; right,
lateral tricuspid.
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present study, but others have demonstrated the importance of
these changes in atrial myoyte ionic current magnitudes on rotor
dynamics in AF. Atienza et al.26 demonstrated that upregulated IK1

promotes AF stability by increasing rotor frequency in human studies
and simulations. Sarmast et al.27 showed that rotor frequencies in-
crease and AF stabilizes by increased IK,Ach in a cholinergic model of
AF owing to the shorter ERP and APD. It is well known that short
ERP and APD, dynamic oscillations in APD22,28 and potentially steep
rate response in APD21 can facilitate AF. It remains unclear under
what conditions such AF can terminate in healthy control subjects.

The above results also support a protective role for normal con-
duction anisotropy and conduction velocity in preventing sustained
rotor activity. The idea that normal uniform anisotropy of conduc-
tivity could be anti-arrhythmic was first proposed by Spach and
Starmer.29 In Figure 2B, an anisotropy ratio of nine again causes
the wavefront to extinguish at the tricuspid valve orifice after
running into its tail. The large electrotonic loads near the rotor

core present with increased anisotropy may also prevent sustained
rotors and the attachment of scroll waves to inexcitable regions.
Whether anisotropy ratio increases or decreases in AF is somewhat
controversial, but here we modelled the anisotropy ratio as de-
creased in AF. The rationale for this is the report of lateralization of
connexin 43 in AF and a concomitant decrease in the anisotropy of
apparent conduction velocity in intact tissue preparations in AF.30

Others have argued that anisotropy might increase, since it is
known that there is increased fibrotic septation between juxtaposed
sheets of cells.31 These findings could be reconciled by the depend-
ence of conduction anisotropy not only on gap junction connections
but also on the magnitude of the fast inward sodium current, which
may bedepressed inAF,32 disproportionately decreasing theconduc-
tion velocity along the fibre axis. Recent clinical studies demonstrate
conduction slowing (restitution)with markedly anisotropic dynamics
(i.e. an abrupt shift in the vector of conduction slowing) immediately
prior to AF onset.23,33,34 Further studies are required to elucidate
the tissue properties that underlie these mechanisms.

Clinical studies of FIRM demonstrate that rotors typically precess
in areas of 2 to 3 cm2.11 The numerical simulations presented in
Figures 3 and 4 suggest that discontinuities in the fibre architecture
could play a role in such precession. Indeed, ongoing studies are
exploring the relationship between rotor precession mapped by
FIRM and areas of well-known fibre discontinuities. The ease with
which rotors became trapped and converted into macro-reentry
at sites of abrupt discontinuity in fibre orientation, particularly at
the crista terminalis, is also consistent with previous clinical data. In
23 patients with suspected right atrial tachycardia, Kalman et al.12

identified 18 focal arrhythmias originating from the crista terminalis
witheightof these located in thehigh lateral regionas in Figure4. Inter-
estingly, three focal right atrial tachycardias were localized to the
lateral side of the triscuspid valve annulus as in this patient and
Figure 3. Computationally, a recently published model of arrhythmias
in a three-dimensional geometric model of normal human atria in-
corporating fibre orientations and wall thicknesses derived from
the literature developed atrial flutter and a reentrant rotor in the
high lateral crista terminalis region after nearby burst pacing.35

Locally increased wall thickness at the crista terminalis was visible
in the CT imaging data of our patient, and included in the geometric
model.16 Electrotonic effects due to this thickening may theoretically
aid in the permanent attachment of the rotor to this region. Both the
fibre discontinuity and wall thickening in the crista terminalis region
are supported by anatomical and histological measurements in
cadaver hearts.13

Of note, while the patient in Figure 1 had an AF rotor in lateral right
atrium, several other right (and left) atrial locations have been noted
for human AF rotors.15 Moreover, AF rotor locations often do not
demonstrate signal characteristics consistent with dense scar or
borderzone, in that voltages may be preserved and signals may lack
fractionation.11 Detailed studies are thus required to define a struc-
ture–function relationship for AF rotor and focal impulse locations.

The importance of abrupt changes in the fibre architecture
on rotor dynamics demonstrated here builds on previous experi-
mental, computational, and analytical analyses. Indeed, much of our
understanding of rotor behavior comes from simple two-
dimensional computational models or chemical systems.5 Early ex-
perimental findings in excitable chemical media showed that spatial

A

B

Figure 6 Structural remodelling (fibrosis) near the crista termi-
nalis altered reentry dynamics and resulted in the rotor being dis-
placed. (A) The rotor displaced from the fibre discontinuity and
attached to the scar, with decreasing rotational frequency as in
Figure 5. (B) The increased spatially excitable gap permits a wave
(driven by more rapid activity originating in the left atrium) to
impinge on the rotor core. Eventually the rotor is displaced by
the invading wavefront suggesting that regions of fibrosis may
enable the localized source to convert to macro-reentry with an
excitable gap. Orientation: posterior right atrial view; top, superior
vena cava; right, lateral right atrium.
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inhomogeneities are not required to sustain a rotor and that stable
meander could result from the interaction between a spiral wave
and its refractory tail.36 Early numerical studies demonstrated that
smooth gradients in fibre orientation,19 refractory period37 or excit-
ability38 can lead to spiral wave drift. More recently, Kuklik et al. identi-
fied inhomogeneity of conduction anisotropy as one functional
mechanism that can permanently trap rotors but stable meandering
was not observed.39 A limitation for these investigations was the use
of a simple two-dimensional geometry as surface curvature is an
important determinant of rotor behaviour.37,40,41 The complex three-
dimensionalatrial geometrymayrequireadditional stabilizing influences
to trapor confine rotors. A more recent simulation study using an atrial
myocyte ionic model showed that functional heterogeneities alone are
capable of constraining rotors to small regions of space, at least for the
time course of seconds;42 whether or not functional heterogeneities or
fibre discontinuities are able to spatially constrain rotors for longer
periods of time (hours to days) is unclear.

Thesedataalsodemonstratehowstructural remodellingcanconvert
a fibrillatory rotor to excitable gap reentry. In Figure 5 the precessing AF
rotor anchored to inexcitable scar, with development of an excitable
gap. Similarly, the rotor in Figure 6 released from the fibre discontinuity
at the crista terminalis and anchored to the scar. Increasing the size of
this scar altered the dynamics of re-entry as anticipated, decreasing
the rotational frequency and widening the spatially excitable gap. A de-
polarization wave was then able to invade the rotor core and displace
reentry away from its original location (Figure 6B). These data support
a mechanism, previously suggested by Kawase et al.,43 by which increas-
ing the excitable gap of a rotor can result in its termination.

Limitations
One limitation of the present study is that the model uses a phenom-
enological ionic model (Fenton–Karma) rather than a biophysi-
cal ionic model such as Courtemanche–Ramirez–Nattel44 or
Maleckar–Giles–Trayanova.45 This limitation means that the present
work can only suggest phenomenological mechanisms, not more
meaningful biophysical mechanisms. For example, the Fenton–
Karma model can be used to examine the effect of depressed excit-
ability and of spatial variations in excitability, but cannot distinguish
between changes in the biophysical constituents of excitability such
as sodium channel remodelling, increased cardiomyocyte-fibroblast
coupling, or resting membrane potential elevation. Moreover, the
parameter governing excitability in the Fenton–Karma model (gf i)
is not based on an actual biophysical measurement; in contrast, excit-
ability in biophysical models is based on measurements of the fast
inward sodium current. Additionally, inhibiting the fast inward
current by modifying gf i decreases both excitability and APD in the
Fenton–Karma model, whereas in biophysical models of the action
potential, decreasing the conductance of the fast sodium channel
may increase APD (e.g. class 1a antiarrhythmic drugs). The extent
to which these differences lead to different conditions for wavebreak
and wave fractionation is unknown.

On the other hand, several insights gained into rotor dynamics and
specifically into AF by computational models are completely attribut-
able to the shape of the action potential waveform and its effect on
spiral tip meander, dominant frequency, and fractionation.26,46 Con-
sequently, results depending principally on the wave shape, such as

the number of wavelets that can be supported in a normal vs. an
enlarged atrium, should be unchanged if the Fenton–Karma model
can recapitulate the action potential shape of a more detailed
model. A principal reason that we used the Fenton–Karma model
in the present study is that in a recent computational study47 both
‘normal’ and ‘AF’ parameter values in five recent human atrial
myocyte models failed to capture clinically measured APD and CV
restitution behaviours observed by groups including our own.21 Spe-
cifically, the restitution curves for ‘normal’ and ‘AF’ parameters were
far more flat than has been observed experimentally, and the dis-
agreement was worst at the fast rates (.4 Hz) of sources typical
for rotors mapped by FIRM. In the future, the current study should
be completed with more biophysically detailed models if parameter
values can be found that agree with experimental APD and CV resti-
tution curves.

Our model incorporated patient-specific CT anatomy, electro-
physiological mapping of rotors and ablation results, although a limi-
tation is that patient-specific APD and CV restitution curveswere not
incorporated. Unfortunately, with current technology such data
cannot be obtained at high resolution in vivo. In explanted hearts,
however, APD and CV restitution curves could be used to modify
the parameters of the ionic model (whether phenomenological or
biophysical) to make it subject specific although at the expense of
an altered metabolic, haemodynamic, and autonomic milieu. Accord-
ingly, while no model based on human measurements is currently
available, Cherry et al. have published a similar model based on
canine measurements.48 Like many of the biophysically detailed
models, the restitution behavior of this model at fast rates is not as
steep as clinical measurements.

Finally, this study is limited because it considers only the geometry
of one patient. Future studies should test if these results can provide
patient-specific information on rotor stability; these simulations
might differ from the results presented here due to differences in
the distance of a focal source from a boundary, the location of
sources relative to high-curvature regions (e.g. the pulmonary vein
ostia), or the location of sources relative to well-known locations
of fibre discontinuity.

Conclusion
Results fromthe computational model suggestedmechanisms for the
maintenance of rotors for human AF. Our data are consistent with
the concept that discontinuities in the fibre architecture and inexci-
table regions are important structural features that can trap rotors
transiently or permanently. The addition of structural remodelling
(inexcitable scars) can convert precessing AF rotors to macro-
reentry, whose spatially excitable gap can be a target for extermin-
ation by external stimuli.
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