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Abstract

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important 
molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the 
mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming 
growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals 
on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer 
hallmarks.

Introduction
The normal cell cycle contains multiple checkpoints and molec-
ular pathways that suppress cellular proliferation and growth in 
response to DNA-damaging agents or harmful stimuli. A hall-
mark of cancer is the ability to evade these growth-inhibitory 
signals. This loss of response to growth inhibition can occur as 
a result of sustained exposure to specific environmental chemi-
cals. In this review, we will examine key molecular and cellular 
mechanisms through which cancers evade growth suppression. 
Specifically, we will examine the mechanisms by which cancer 
cells evade the growth-inhibitory signals of p53, the retino-
blastoma protein, transforming growth factor-beta (TGF-β), gap 
junctions and contact inhibition.

We have organized the review article to discuss each mecha-
nism of growth inhibition individually. At the end of each sec-
tion, we discuss selected environmental chemicals that have 
been reported to disrupt that specific mechanism of growth 
inhibition. Thus, our manuscript contains ‘mini-reviews’ of spe-
cific mechanisms of growth suppression and the influence of 
selected environmental chemicals on these mechanisms. We 
then examine if the selected environmental chemicals affect 
multiple mechanisms within the hallmark of escaping growth 
inhibition. Finally, we review whether these chemicals affect 
other classical hallmarks of cancer. The overall goal is to under-
stand the molecular mechanisms through which cancer cells 
evade growth inhibition in response to specific environmental 
chemicals.

P53

The p53 tumor suppressor is a tetrameric nuclear transcription 
factor (1,2). Almost 50% of all cancers harbor p53 mutations, 
although the frequency varies with tumor type. For example, 
although p53 is mutated in up to 70% of lung cancers, the fre-
quency drops to around 10% for leukemias (http://p53.free.fr/
Database/p53_cancer_db.html). Ninety percent of somatic p53 
mutations occur in the DNA-binding domain (http://p53.iarc.
fr/TP53SomaticMutations.aspx). This prevents p53-dependent 
transactivation, as the mutant can act in a dominant-negative 
manner by oligomerization with wild-type p53 (3). Genetic evi-
dence shows that p53 activity is controlled by two homologous 
negative regulators, MDM2 and MDM4 (also known as MDMX). 
Both MDM proteins have amino-terminal hydrophobic pockets 
that bind to an alpha-helical region of p53, leading to inhibition 
of p53 transcription factor functions (4,5). MDM2 also has a car-
boxy-terminal RING domain that recruits E2 ubiquitin-conjugat-
ing enzymes. Thus, MDM2 has intrinsic ubiquitin-ligase activity 
that leads to the degradation of p53. Although MDMX also has 
the C-terminal RING domain, it cannot promote ubiquitina-
tion or degradation of p53 on its own. However, there is genetic 
evidence that the RING domains of both MDMX and MDM2 are 
required for the in vivo suppression of p53 activity (6,7). In addi-
tion, MDMX can stimulate the ubiquitin-ligase activity of MDM2 
through RING-RING-mediated MDM2/MDMX hetero-oligomeri-
zation (8). Thus, a model has been proposed in which the MDM2/
MDMX complex serves as an ‘optimal’ p53 inhibitor in certain 
contexts. Importantly, both MDM2 and MDMX are bonafide 
oncogenes, and clinical trials are testing small molecule antago-
nists of their interaction with p53 (9).

Acquisition of p53 mutations (somatic or inherited) and over-
expression of MDM2/MDMX are the most direct mechanisms 
by which the p53 pathway is disabled in cancers (10). However, 
other mechanisms that limit p53 activity have been described. 
For example, p53 protein stability is regulated by specific kinase 
pathways, including the Ataxia-Telangiectasia-mutated (ATM)-
checkpoint kinase 2 (Chk2) pathway. This pathway and the 
Ataxia-Telangiectasia-related (ATR)-Checkpoint kinase 1 (Chk1) 
pathway are essential for repairing DNA double-strand breaks 
(11). In normal cells, the presence of double-strand breaks 
induces phosphorylation of ATM (12,13), which then activates 
the downstream effector Chk2. Activated Chk2 regulates the 
S/M checkpoint by phosphorylating and activating multiple sub-
strates, including p53 (11,14). ATM is recognized as an impor-
tant regulator of p53 checkpoint function, as ATM-deficient 
cells fail to induce or stabilize p53 protein levels in response 
to some types of DNA damage, such as ionizing radiation. This 
may be particularly relevant to environmental carcinogens, as 
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ATM-deficient lymphoblasts exposed to the chemical diepoxyb-
utane are unable to stabilize p53 protein levels to the same 
extent as cells with wild-type ATM (15). Thus, although many 
p53-independent functions exist for ATM, disruption of p53 
growth-inhibitory checkpoint function is a major mechanism 
by which ATM-deficient cancer cells fail to respond to DNA-
damaging agents, including specific environmental pollutants.

Similar to ATM-Chk2, the liver kinase B1 (LKB1, STK11) gene 
encodes a 48-kDa kinase that phosphorylates multiple sub-
strates, including p53. A  first-hit germ-line mutation in LKB1 
occurs in patients born with Peutz–Jeghers Syndrome, which 
is an autosomal-dominant disorder that confers a 93% risk of 
developing cancers (16). LKB1 is considered a haploinsufficient 
tumor suppressor gene, such that additional oncogenic events 
(e.g., loss of Pten or p53 or activation of K-ras) cooperate with LKB1 
loss to promote cancer; biallelic inactivation of LKB1 has also 
been reported in sporadic cancers (17–19). Similar to ATM-Chk2, 
LKB1 can promote cell cycle arrest through p53-dependent and 
independent mechanisms. In particular, LKB1 has been shown 
to interact with, phosphorylate, and stabilize nuclear p53 (20). 
P53 phosphorylation by LKB1 occurs on serine 15, which may be 
mediated by the LKB1 substrate 5′ adenosine monophosphate-
activated protein kinase (AMPK), and on C-terminal serine 392 
(20). The importance of LKB1-mediated p53 phosphorylation to 
growth suppression is supported by the finding that an LKB1 
kinase-dead mutant no longer phosphorylates p53 and is unable 
to promote G1 arrest in contrast to wild-type LKB1. In addition, 
mutant p53 constructs lacking either one of the LKB1 phospho-
rylation sites are unable to cooperate with wild-type LKB1 to 
induce G1 arrest (20). P53-dependent growth arrest by LKB1 may 
be mediated in part by recruitment of the LKB1-p53 complex to 
the p21 promoter and increased expression of the p21 cdk inhib-
itor (20). Intriguingly, LKB1 catalytically deficient mutants are 
not only unable to mediate growth inhibition, but they actually 
display gain-of-function oncogenic properties. LKB1 mutants 
are recruited to the CCND1 promoter, resulting in increased cyc-
lin D1 expression and cell cycle progression (21). LKB1 oncogenic 
mutants are also recruited to the c-myc promoter, increasing 
expression of this oncogene (22). The oncogenic roles of LKB1 
mutants may be particularly relevant in lung cancer cells of 
patients who are exposed to tobacco smoke, as LKB1 mutations 
increase susceptibility to carcinogen-induced lung tumors (23). 
In addition, exposure to cigarette smoke can downregulate lev-
els of LKB1 in lung cancer cells and normal human bronchiolar 
epithelial cells (24). Thus, environmental pollutants may indi-
rectly alter p53 phosphorylation, stabilization and function by 
deregulating upstream kinases, such as Chk2 and LKB1.

In addition to effects on upstream regulators of p53, cigarette 
smoke can directly affect p53. The incidence of p53 mutations in 
lung cancers of smokers is increased compared to those in non-
smokers (25). There are many carcinogens present in cigarette 
smoke. One such carcinogen is benzo(a)pyrene, which is specifi-
cally implicated in the mutation of p53 (26) (Table 1). Interestingly, 
benzo(a)pyrene affects multiple levels of checkpoint regulation, 
not exclusively p53 function. For example, the ATM checkpoint 
kinase is activated by benzo(a)pyrene in premalignant or malig-
nant esophageal cancers (27). Thus, it is feasible that ATM defi-
ciency may block critical checkpoint activation in response to 
environmental contaminants, such as tobacco smoke, further 
increasing the risk of carcinogenesis. Another carcinogen that 
is associated with p53 mutation is the food contaminant afla-
toxin B1, which promotes hepatocellular carcinogenesis (28,29). 
Because of the clinical and preclinical studies that link benzo(a)
pyrene and aflatoxin B1 with p53 mutations, regulatory agencies 

now recognize these compounds as human carcinogens and 
ensure that people are protected from or made aware of the 
risks associated with these environmental chemicals.

There are also numerous environmental chemicals that are 
suspected of promoting cancer but have not yet been validated 
as human carcinogens; many of these have been shown to affect 
p53 function, either on their own or in combination with other 
environmental chemicals. For example, the estrogenic com-
pound bisphenol A, which is a common component of every-
day plastics, has been reported to downregulate p53 expression 
and the expression of specific p53 targets, including p21 and Bax 
(30). This downregulation of p53 expression is associated with 
increased proliferation, which persists even when bisphenol 
A is removed from cell culture media (30). The pesticide compo-
nent folpet, which induces gastrointestinal tumors in mice (31), 
has also been shown to disrupt the G1/S checkpoint (32) through 
multiple mechanisms. Folpet downregulates expression of 
the p53 target p21 and disrupts the functions of the ATM/ATR 
checkpoint kinases (32). Another pesticide, dichlorodiphenyl-
trichloroethane (DDT), induces MDM2 expression and reduces 
the expression and transcriptional activity of p53 (33). Other 
xenobiotics, such as the pesticides chlorothalonil and manco-
zeb, have been reported to downregulate p53 mRNA levels and 
to upregulate a ubiquitin ligase that triggers p53 degradation 
(34,35). Thus, it is important for future studies to determine if 
combinations of environmental pesticides and/or estrogenic 
compounds negatively affect p53 gene status, expression and/
or checkpoint function.

Finding suitable experimental models to study the molecular 
effects of environmental chemicals is a challenge but is neces-
sary for truly understanding the effects on cancer checkpoint 
proteins, such as p53. Intriguingly, the soft-shell clam may be 
a novel and relevant model system for studying the effects of 
environmental xenobiotics on the p53 pathway. This is because 
the p53 gene is highly conserved in the soft-shell clam. Mutation 
of p53 in the leukocytes of these clams leads to leukemia-like 
cancers. In particular, exposure of soft-shell clams to well-
characterized carcinogens, such as benzo(a)pyrene, results in 
mutation of  p53 (36). Thus, the use of this innovative model, and 
identification of additional nontransformed models will allow 
us to determine the potential carcinogenic and mechanistic 
effects of mixtures of specific environmental chemicals.

Retinoblastoma protein (pRb)

Retinoblastoma protein (pRb) is a nuclear protein encoded by 
the retinoblastoma susceptibility gene, RB1, which was the first 
tumor suppressor gene to be identified (37). Loss of RB1 induces 
genomic instability and the accumulation of chromosomal aber-
rations. Similar to p53, pRb is a critical gatekeeper of the G1/S 
transition, although it operates by a distinct mechanism from 
that of p53 (38). In addition, pRb has key roles in DNA replication, 
cellular senescence, differentiation and apoptosis (39). Thus, 
disruption of the pRb pathway affects many critical cellular pro-
cesses, leading to the loss of cell cycle control and promoting 
cellular immortalization and transformation.

pRb blocks cell cycle progression by interacting with the 
E2F family of transcription factors (40). The pRb pathway 
includes D-type cyclins, cyclin-dependent kinases (CDKs) CDK4 
and CDK6 and the CDK inhibitor 2a (p16/INK4a). When pRb is 
hypophosphorylated, it is active and restricts cell cycle progres-
sion by binding and repressing the E2F transcription factors. pRb 
must be inactivated by phosphorylation in order for the cell to 
progress from G1 to S phase. In response to mitogenic stimuli, 
CDK4/6-cyclin D and CDK2-cyclin E relieve inhibition of the 
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pRb-E2F-containing transcription complex. pRb phosphoryla-
tion allows the E2F factors to dissociate, permitting transcrip-
tion of genes that are required for DNA replication (41).

The D-type cyclins activate the G1 kinases CDK4/6 and target 
pRb for phosphorylation and inactivation. Cyclin D1 is a critical 
regulator of cellular proliferation that links extracellular sign-
aling with cell cycle progression. In fact, the cyclin D-CDK4/6/
INK4/pRb/E2F pathway integrates multiple mitogenic and anti-
mitogenic signals, including from growth factor receptors, Ras, 
downstream effectors and p53. Deregulation of cyclin D1 is 
an important biomarker of the cancer phenotype and disease 
progression, and has been implicated in the development and 
progression of many forms of breast, esophageal, bladder and 
lung cancers (41). In addition to cyclin D1 deregulation, CDK4/6 
overexpression is also involved in tumorigenesis. For exam-
ple, overexpression of CDK4 induces uncontrolled cell growth 
and malignant transformation, whereas suppression of CDK4 
causes terminal differentiation of erythroleukemia cells (42). 
Further, amplification and overexpression of CDK4 is found in 
multiple cancers, including sarcomas and glioblastomas (43). 
A somatic point mutation in CDK4 has also been identified in 
human cancers (44). CDK4 is inhibited by a series of inhibitory 
proteins (INKs). Among these, the INK4 proteins are frequently 
lost or inactivated by mutations in cancer and represent tumor 
suppressor genes; mutations in INK4-encoding genes contrib-
ute directly to the evasion of growth suppression. Loss of p16/
INK4a function by gene deletion, promoter methylation and/or 
mutation within the reading frame leads to functional inactiva-
tion of pRb and is found in multiple types of cancers (45). Thus, 
although a tumor cell may not have a mutation in RB1, constitu-
tive pRb hyperphosphorylation may represent a major mecha-
nism of carcinogenesis through aberrant regulation of other key 
molecules, such as p16/INK4a, cyclin D1 and CDK4/6.

The mechanisms of pRb inactivation are often tissue-spe-
cific. For example, pRb is inactivated by loss of p16/INK4a in 

melanomas, whereas retinoblastomas, prostate cancers and 
osteosarcomas show inactivation of pRb through direct muta-
tion or loss of the RB1 locus (46). A majority of lung cancers dem-
onstrate pRb inactivation through functional loss of the p16/
INK4A–cyclin D–CDK4/6–Rb pathway. Non-small cell lung can-
cers display multiple mechanisms of pRb inactivation, including 
mutation, excessive CDK activation, deregulated CDK4-cyclin D1 
expression and loss of p16/INK4a activity by aberrant promoter 
methylation, homozygous deletions or point mutation (47). In 
addition, loss of pRb function by loss of heterozygosity has been 
reported in glioblastomas, breast cancer, gastric carcinoma, 
renal carcinoma and laryngeal cancer (48).

There is significant evidence to suggest that environmental 
chemicals affect the function or expression of the retinoblastoma 
protein (Table 1). Perhaps one of the best examples is a study dem-
onstrating that prenatal exposure to benzene and other gasoline 
and diesel combustion products was significantly associated with 
the development of retinoblastoma (49). The major gasoline and 
combustion products that were associated with increased risk 
of retinoblastoma were toluene, 1,3-butadiene, ethyl benzene, 
orthoxylene and meta/paraxylene. Prenatal exposure to chloro-
form, chromium, paradichlorobenzene and nickel and exposure 
to acetaldehyde during the first year of life, were also associated 
with increased risk of developing retinoblastoma. In addition, 
butadiene, which is an industrial chemical used in the synthe-
sis of rubber, has been shown to induce loss of heterozygosity of 
RB1 in mice and to promote the development of murine lung and 
breast tumors (50). These results implicate mixtures of gasoline 
combustion products or individual chemicals as potential muta-
gens of RB1. These reports also provide rationale for performing 
studies to understand if gasoline byproducts and butadiene, or 
mixtures of these chemicals, directly inactivate RB1.

As discussed above, a major mechanism by which the growth-
inhibitory function of pRb is inactivated is via increased cyclin 
D1-CDK4/6 activity. Environmental contaminants, including 

Table 1.  Key molecular and cellular mediators of growth suppression and selected environmental chemicals that potentially disrupt the func-
tions of these growth inhibitors

Molecular/cellular target Potential environmental chemical disruptors
Effects that chemicals may have on the mo-
lecular targeta

p53 Benzo(a)pyrene, bisphenol A, DDT, folpet, afla-
toxin, chlorothalonil, mancozeb

Downregulate p53 expression, induce MDM2 
expression and p53 degradation, direct 
mutation of p53

Retinoblastoma Benzo(a)pyrene, bisphenol A, arsenic [As(III)], 
DDT, radon, butadiene

Loss of heterozygosity of RB1,  
hyperphosphorylation of Rb via increased 
cdk activity, increased cyclin D1 expression 
or loss of INK4a

Transforming growth factor-beta (TGF-β) Arsenic [sodium arsenite; NaAsO2, As(III)] Activation of upstream growth factor signals 
that block TGFβ signaling

LKB1 Cigarette smoke LKB1 mutation, reduced LKB1 expression
Gap junctions (connexins) Bisphenol A, DDT, polychlorinated biphenyls/ 

aryl hydrocarbon receptor ligands (e.g. 
TCDD), cigarette smoke, polycyclic aromatic 
hydrocarbons

Down-regulate expression of specific or  
multiple connexins, reduce GJIC

Contact inhibition Polychlorinated biphenyls/aryl hydrocarbon 
receptor ligands (e.g. TCDD), DDT

Disrupt contact inhibition, prevent contact 
normalization

We searched PubMed to identify potential environmental chemicals that disrupt specific growth-inhibitory mechanisms. We combined the name of the target listed 

in the far-left column with the term ‘environmental carcinogen’ to develop a list of proposed chemical disruptors. The specific effects of the chemicals on the mo-

lecular or cellular targets and the corresponding references are cited within the text. Chemical disruptors that appear in bold-type below were found to affect more 

than one molecular/cellular target in the cancer hallmark of evading growth suppression.

DDT, dichlorodiphenyltrichloroethane (organochlorine pesticide); TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin (aryl hydrocarbon receptor ligand).
aThese are potential mechanisms of evasion of growth inhibition utilized by environmental chemicals reported in the literature. The order of chemicals in the list 

does not necessarily align with the order of the mechanisms listed.
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benzo(a)pyrene (51) and radon (52), can stimulate pRb phospho-
rylation via cdk activation or loss of INK4a function. Benzo(a)
pyrene is found in coal tar and cigarette smoke and is an estab-
lished human carcinogen. Radon is a suspected carcinogen, as 
its inhalation is implicated in lung cancer development and sus-
pected as the leading cause of lung cancer in nonsmokers (53). 
Inorganic arsenic is also routinely detected in the environment 
and is classified as a human carcinogen. Human embryonic lung 
fibroblasts are transformed by exposure to low levels of arsenite 
(NaAsO2) (54). One of the molecular events stimulated by low 
levels of arsenite is the upregulation of cyclin D1 expression 
with subsequent activation of CDK4/6 function and pRb hyper-
phosphorylation. This pRb inactivation can be rescued by block-
ing JNK1/c-Jun signaling, which also restores growth inhibition 
and suppresses transformation.

These studies collectively support additional detailed analy-
ses and laboratory-based investigations to determine how envi-
ronmental agents, including industrial pollutants, alter pRb 
function. In the previous section, we discussed agents, includ-
ing bisphenol A and pesticides, that alter p53 expression, and 
discussed other agents here that disrupt pRb function. Real-life 
situations may involve simultaneous exposures to dozens of 
environmental chemicals. Thus, it will be important for future 
laboratory studies to model the effects of mixtures of environ-
mental chemicals at environmentally relevant concentrations 
to determine the collective molecular effects of common eve-
ryday exposures.

TGF-β

Another key mediator of growth inhibition is the TGF-β signal-
ing pathway. Escape from TGF-β-mediated growth inhibition is 
a critical step in tumorigenesis, because it is often coupled with 
the ability of cancer cells to utilize TGF-β as a pro-oncogenic 
factor via autocrine and paracrine mechanisms (55). Studies 
suggest that, in normal cells, sustained low-dose exposure to 
chemical mixtures in the environment may directly disrupt (i) 
the downstream effectors of TGF-β, transcription factors Smad2 
and Smad3 (56), or their interacting partners and (ii) other sign-
aling pathways that cross-talk with the TGF-β pathway. These 
two mechanisms of disruption can coexist in normal cells and 
favor resistance to TGF-β tumor-suppressive activities.

One major upstream regulator of TGF-β signaling is the epi-
dermal growth factor receptor (EGFR) (Figure 1), which activates 
MAPK/ERK, JNK, p38, CDKs and glycogen synthase kinase 3β 
(GSK3β), inducing phosphorylation of critical linker regions in 
the TGF-β effectors Smad2 and Smad3 (reviewed in [57]). Smad2 
and Smad3 linker phosphorylation directly inhibits the tran-
scription factor functions of these Smad proteins, resulting 
in reduced transcription of TGF-β-target genes, including the 
p15INK4B and p21WAF1/CIP1 growth inhibitors (57,58). In addition, sig-
nals that activate EGFR-RAS-MEK-ERK increase the stability and 
levels of the Smad2 competitor, TGF beta-induced factor home-
obox 1 (TGIF), which inhibits TGF-β (59,60). Similarly, hepatocyte 
growth factor stabilizes TGIF (61) and upregulates the TGF-β 
negative regulators c-Ski and SnoN (62). Inhibition of TGF-β sign-
aling can also occur by overexpression of the TGF-β negative reg-
ulator, Smad7, which has been shown to induce premalignant 
pancreatic ductal lesions in mice (63). One mechanism by which 
Smad7 levels are upregulated is by activation of EGFR and down-
stream STAT3 signaling, which induces expression of Smad7 
and causes loss of TGF-β-mediated growth inhibition (64). 

Another regulator of TGF-β-mediated growth inhibition is 
the tumor suppressor RUNX3. RUNX3 promotes growth arrest 
and apoptosis in stomach epithelial cells by cooperating with 

Smads to induce TGF-β-dependent p21WAF1/CIP1 expression (65) 
and to transcriptionally upregulate Bim (66). The gastric epi-
thelia of Runx3−/− adult mice are hyperplastic. In contrast to 
wild-type animals, these mice develop adenocarcinomas in 
response to the alkylating agent N-methyl-N-nitrosourea. These 
data suggest that loss of RUNX3 promotes the development of 
chemically induced cancer in gastric epithelial cells (67). One 
mechanism through which RUNX3 cytoplasmic mislocaliza-
tion/inactivation occurs is by direct tyrosine phosphorylation 
of RUNX3 by Src (68). Thus, similar to the other mechanisms of 
TGFβ regulation discussed above, chemical stimulation of recep-
tor tyrosine kinases may also lead to RUNX3 phosphorylation 
and inactivation, resulting in the inhibition of TGFβ tumor sup-
pressive activities.

TGFβ signaling mediates growth inhibition in part by stimu-
lating the Smad transcription factors to complex with FoxO fac-
tors, which then bind and activate transcription of p21 (69) and 
p15 (70). This process is negatively regulated by AKT, which phos-
phorylates FoxO factors, leading to their cytoplasmic retention 
(71). A hyperactive PI3K/AKT pathway excludes FoxO factors from 
the nucleus, preventing p21 expression and conferring resist-
ance to TGF-β-induced cytostasis (69). Hyperactive AKT may also 
prevent BIM-mediated apoptosis induced by TGF-β in cell types 
where FoxO-induced Bim plays a role in that process (reviewed 
in [57]). The antiproliferative effects of TGF-β also require expres-
sion of the PI3K/AKT/mammalian target of rapamycin (mTOR) 
downstream target 4E-BP1 (72). TGF-β activates 4E-BP1 promoter 
activity through Smad4; silencing 4E-BP1 in normal and pancre-
atic cancer cells prevents the growth-inhibitory effects of TGF-β. 
Thus, sustained growth factor stimulation or direct activation 
of PI3K/AKT/mTORC1 by chronic exposure to environmental 
chemicals would favor 4E-BP1 phosphorylation/inactivation and 
resistance to TGF-β-mediated growth inhibition.

As described above, the antiproliferative and proapoptotic 
activities of TGF-β are tightly controlled by Smads, Smad cofac-
tors (FoxO, RUNX3), TGF-β negative regulators (Smad linker phos-
phorylation, c-ski, SnoN, TGIF, Smad7) and 4E-BP1. Importantly, 
stimulation of one receptor tyrosine kinase, the epidermal 
growth factor receptor (EGFR), simultaneously activates AKT and 
MAPK, increases Smad7 expression, stabilizes TGIF, excludes 
FoxO factors and RUNX3 from the nucleus, and/or frees eIF4E 
from 4E-BP1; all of these events block TGF-β-stimulated growth 
inhibition. Therefore, TGF-β growth-inhibitory signaling could 
be disrupted in normal cells through chronic, sustained expo-
sures to chemicals that stimulate a major upstream regulator 
of TGF-β, such as EGFR, or chemical mixtures that directly acti-
vate multiple downstream signals, such as MAPK and STAT3. 
An example of one such environmental contaminant is arsenic 
[sodium arsenite; NaAsO2, As(III)] (Table 1), which contaminates 
many drinking water reservoirs (73). Arsenic and its metabolites 
activate MAPK signaling (73) and increase expression of EGFR 
ligands (74). In addition, As(III) has been shown to abrogate 
TGFβ signaling and reduce phosphorylation of Smads (75); these 
effects were observed with low, environmentally relevant lev-
els of arsenic. As discussed above, a loss of TGFβ-Smad function 
prevents expression of cell cycle arrest mediators, such as p21 
and p15. Thus, sustained exposures to chemicals or mixtures of 
chemicals that increase cell surface or cytoplasmic growth fac-
tor signaling may ultimately increase the risk of carcinogenesis 
in part by disrupting TGFβ-mediated growth inhibition.

Gap junctions

Gap junctions are clusters of tightly packed intercellular chan-
nels assembled from connexin (Cx) family members. These 
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junctions are important for the intercellular exchange of metab-
olites, ions and small molecules (e.g. cAMP, IP3, ATP, Ca2+) through 
a process known as gap junctional intercellular communication 
(GJIC) (76). The connexin family includes 21 members. Cells can 
simultaneously express different connexins. These connexin 

molecules selectively intermix to form homomeric or het-
eromeric channels (Figure  2). Thus, there are many different 
subtypes of gap junctions that can form. After cotranslational 
insertion into the endoplasmic reticulum, connexins oligomer-
ize to form ‘connexons’, which traffic to the plasma membrane. 

Figure 1.  Targets for disruption of TGFβ tumor suppression (dark blue background), initiated by TGFβ binding and TβR-I receptor-mediated C-terminal phosphorylation 

of Smad2/3 (yellow ovals) and followed by translocation and transcriptional activation/repression.

Figure 2.  Schematic diagram depicting connexins, connexons (hemichannels) and gap junction (GJ) intercellular channels. PM1 and PM2 represent plasma membranes 

from two adjacent cells. Blue and green represent two different connexin family members. 
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At the cell surface, connexons become functional ‘hemichannels’ 
and allow molecular exchanges to occur between the cytoplasm 
and extracellular environment. However, these hemichannels 
appear to quickly seek out and dock with other hemichannels 
on a contacting cell to form a gap junction intercellular channel; 
the other hemichannel may be of the same (homotypic) or dif-
ferent (heterotypic) type. Individual gap junction channels form 
tight arrays called gap junction plaques (77).

Early studies indicate that gap junctions are impacted by a 
variety of chemical carcinogens and oncogenes, with reduced 
numbers or function of gap junction channels being associated 
with tumor formation (78,79). Loewenstein suggested that GJIC 
plays a role in the dispersion and dilution of growth-promoting 
signals, suppressing cell proliferation (80). The loss of gap junc-
tions was predicted to increase intracellular signaling, enhanc-
ing proliferation and tumor formation (81). Although this model 
remains viable, the significance of gap junctions in tumor biology 
has expanded to also include nonchannel functions. Connexins 
are now recognized as tumor suppressors that reduce tumor 
cell growth in vitro and in vivo and partially redifferentiate trans-
formed cells (79,82–86). Genetically modified mice that lack a con-
nexin family member (e.g., Cx32) have increased susceptibility 
for chemical- or radiation-induced liver and lung tumors (87–89). 
Similarly, genetically modified mice with a Cx43 mutation have 
increased numbers of lung metastases (90). There is ample evi-
dence to suggest that the tumor-suppressive role of gap junctions 
is mediated in part by the molecules that pass through these 
channels (78,79,87–89,91). However, GJIC-independent mecha-
nisms may also mediate tumor suppression in some contexts, 
including molecular exchanges between the extracellular envi-
ronment and cytoplasm via hemichannels (92–95) and Cx-binding 
partners that may mediate tumor-suppressive activities.

The tumor suppressor classification of connexins has been 
challenging to validate, as large-scale, retrospective studies 
examining cancer susceptibility in patients with loss-of-func-
tion connexin mutations are difficult to perform due to the small 
cohort of patients with connexin-linked diseases. However, 
some studies support roles for connexins in late-stage disease 
progression, metastasis and development of life-threatening 
secondary tumors in a variety of tumor types (96,97). Thus, con-
nexins are viewed as ‘conditional tumor suppressors’ (79), con-
sistent with the biphasic functions of connexins depending on 
the stage of disease progression.

Paradoxically, connexins demonstrate cancer-promoting 
effects, such as invasion and metastasis, in the advanced stages 
of some tumor types (79,97,98). This may be a reflection of the 
inter-dependence of connexins and other types of junctions, i.e. 
tight and adherent junctions (77,99). Cell adhesion mediated by 
cadherin family members is necessary for gap junction forma-
tion and maintenance (77). Thus, reduced expression of cadher-
ins can lead to the subsequent destabilization and loss of gap 
junctions. Interestingly, however, the down-regulation of gap 
junctions can also lead to reduced cell adhesion (100,101) and 
cell migration (102). This bidirectional crosstalk could partially 
explain how gap junctions serve as tumor suppressors in early-
onset disease but serve to promote extravasation in late-stage 
disease.

Down-regulation of GJIC by tumor-promoting compounds is 
a proposed mechanism by which cancer cells evade growth sup-
pressive signals (103,104). Further, GJIC inhibition is a proposed 
mechanism for the cancer-promoting activities of chemical com-
pounds (105). Indeed, numerous carcinogenic or tumor-promot-
ing chemicals downregulate GJIC and/or connexin expression in 
vitro or in vivo in various experimental models. Polychlorinated 

biphenyls (PCBs) downregulate GJIC and/or Cx expression in 
a wide range of tissue and cellular models, including rodent 
hepatocytes, rodent liver epithelial cells, human keratinocytes 
and human breast epithelial cells (106–110). A  thorough over-
view of chemical compounds that affect liver gap junctions has 
been provided in a recent review by Vinken et  al. (111). Toxic 
compounds that have been proposed to negatively affect GJIC 
include: (i) incomplete combustion products and industrial con-
taminants, such as polycyclic aromatic hydrocarbons (PAHs), 
halogenated aromatic hydrocarbons, including PCBs and poly-
chlorinated dibenzo-p-dioxins (e.g. 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD)), organic solvents (such as carbon tetrachloride 
and trichloroethylene), or phthalates; (ii) organochlorine pesti-
cides and herbicides (DDT, endosulfane, chlordane, heptachlor, 
dieldrin, lindane, hexachlorobenzene or pentachlorophenol); 
(iii) heavy metals, such as mercury and cadmium; and (iv) 
some biological toxins, such as lipopolysaccharide, mycotoxins, 
cyanotoxins and especially phorbol esters, which are prototypi-
cal tumor promoters (reviewed in [111]). Downregulation of GJIC 
has been observed also for some complex mixtures of chemical 
compounds, such as cigarette smoke, cigarette smoke conden-
sates, extracts of airborne particulate matter or commercial PCB 
mixtures (112–115).

A wide range of mechanisms contributing to downregulation 
of specific Cx species and/or GJIC by xenobiotics have been pro-
posed. Most chemical contaminants that inhibit Cx32- and/or 
Cx26-mediated GJIC in liver tissue do so through downregulation 
of the Cx mRNA and/or protein. TCDD and closely related ligands 
of the aryl hydrocarbon receptor (AhR), such as dioxin-like PCBs, 
have been reported to decrease hepatic Cx32 protein and/or 
mRNA levels in association with reduced levels of gap junction 
plaques (106,116–118). Similar effects have been reported for 
a wider spectrum of chemical contaminants, including heavy 
metals, lipopolysaccharide, carbon tetrachloride and hexachlo-
robenzene (119–122). Some compounds, such as ochratoxin A, 
have more prominent effects, such as simultaneously down-
regulating Cx26, Cx32 and Cx43 in rat liver (123). Nevertheless, it 
should be mentioned that downregulation of Cx32 is not always 
accompanied with reduced GJIC (121). Transient or permanent 
inhibition of Cx43-mediated GJIC has been observed for many 
contaminants, such as low-molecular weight PAHs (including 
parent PAH compounds, their metabolites, ozonation products 
or methylated PAH derivatives), perfluorinated fatty acids, non-
dioxin-like PCBs (or their metabolites), mycotoxins and pesti-
cides (111). Most of these compounds induce rapid closure of 
gap junctions formed by Cx43. The mechanisms responsible for 
such effects are compound- and cell-specific and are associated 
with Cx43 phosphorylation through activated extracellular sig-
nal-regulated kinases 1/2 (ERK1/2), phosphatidylcholine-specific 
phospholipase C-dependent pathway, p38 MAP kinase or other 
signaling pathways (124–128). Phorbol esters employ ERK1/2 
and protein kinase C (PKC) to induce Cx43 hyperphosphoryla-
tion, ubiquitination, internalization and degradation (129–131). 
Chemical contaminants may also reduce Cx43 levels through 
enhanced endocytosis and degradation via lysosomal or protea-
somal pathways, leading to long-term GJIC inhibition (132–134). 
Several compounds, such as pentachlorophenol or ochratoxin A, 
have been found to downregulate Cx43 mRNA levels (123,135).

Contact inhibition

Nontransformed adherent cells generally undergo a density-
dependent decrease in cell division and/or G1 arrest when they 
become confluent (136). In contrast, many tumor cells do not 
undergo contact growth inhibition and continue to proliferate 
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at confluence. Thus, tumor cells often display higher cell-satu-
ration densities in culture than their nontransformed precur-
sors. Thus, loss of contact inhibition is recognized as a hallmark 
of tumor cell growth (137). Contact growth inhibition results 
from signal transduction events initiated by intercellular junc-
tions, in which cadherins play important roles (Figure 3) (138). 
Cadherins are type 1 transmembrane proteins that mediate 
calcium-dependent adhesive interactions between adjacent 
cells. Although there are at least 80 members in the cadherin 
family, ‘classical’ cadherins share properties that underlie their 
effects on cell adhesion and growth control. These include an 
extracellular region of several modular domains that associate 
in a zipper-like fashion with corresponding domains presented 
by neighboring cells, followed by a transmembrane domain, and 
ending in a carboxyl-terminal region that interacts with the 
actin cytoskeleton via associations with β-catenin (139).

E-cadherin is commonly expressed by non-transformed epi-
thelial cells and maintains intercellular contact between cells 
to form ‘epithelial sheets’ that are essentially contact-inhibited 
monolayers in cell culture. This process involves active recruit-
ment of cdk inhibitors, including p16, p21 and p27, which block 
cdk4-cyclin D and cdk2-cyclin E catalytic activities to arrest cells 
at the G1 phase of the cell cycle (136,140–142). Contact growth 
inhibition also induces expression of tumor suppressors, includ-
ing pRb, p53 and p27. These tumor suppressors are frequently 
mutated in cancers, allowing escape from contact inhibition and 
cell cycle progression (143–145).

The intracellular domain of cadherins interacts with cyto-
plasmic proteins, such as β-catenin and p120. These molecules 
act as a nexus between cadherins and the actin cytoskeleton 

to control cell growth and motility. For example, vascular 
endothelial cadherin (VE-cadherin) can prevent VEGF signaling 
in contact-inhibited endothelial cells (146). In addition, altera-
tions in cadherin junctions that reduce E-cadherin expression 
and increase N-cadherin promote epithelial-mesenchymal 
transition and are strongly correlated with increased invasion 
and metastasis in a variety of cancer cells (137). In addition to 
changes in cadherin expression, oncogenes and tumor pro-
moters can disrupt cadherin junctions to allow tumor cells to 
escape contact growth inhibition. For example, the Src tyrosine 
kinase can phosphorylate connexins and cadherins to disrupt 
junctional communication between tumor cells. Other agents, 
including phorbol esters, can also disrupt intercellular junctions 
and enable cells to overcome contact growth inhibition (147,148).

In addition to homotypic interactions between transformed 
cells, heterotypic communication between transformed cells 
and their nontransformed neighbors can inhibit tumor cell 
growth and migration. This ‘contact normalization’ can control 
the morphology and phenotype of transformed cells within the 
tumor microenvironment (149–152). Importantly, cells that are 
transformed by chemicals (153) can be normalized by commu-
nication with adjacent normal cells. As shown in Figure 3, eluci-
dating the effectors and pathways that regulate contact growth 
inhibition and contact normalization will provide key informa-
tion regarding potential mechanisms by which environmental 
chemicals promote cancer. For example, specific tumor sup-
pressor genes that are induced in transformed cells undergo-
ing contact normalization (154) include miR126 (which targets 
the Crk oncogene), Fhl1 (four and a half LIM domains) and Sdpr 
(serum deprivation response protein). FHL1 and miR126 inhibit 

Figure 3.  Contact growth inhibition and the control of cell proliferation and motility. Cadherins interact with other cadherins on adjacent cells and intracellular pro-

teins including p120 and β-catenin (β), which associates with α-catenin (α) to control the actin cytoskeleton and inhibit cell motility and proliferation. Normally, free 

β-catenin is phosphorylated by GSKβ and associates with the Axin-APC complex to undergo ubiquitin-mediated proteasomal degradation. However, Wnt signaling 

can prevent β-catenin degradation and allow it to augment transcription of genes that promote cell migration and proliferation (TF). Contact growth inhibition also 

promotes the expression of tumor suppressors including Rb to prevent cell cycle progression. Transforming agents exemplified by the Src tyrosine kinase can disrupt 

intercellular junctions and augment the activity of tumor promoters such as VEGFR2, Crk, Cas and PDPN to promote cancer invasion and metastasis. For example, 

PDPN associates with ezrin proteins (ERM) to modify the actin cytoskeleton and promote cell migration. Receptors that allow tumor cells to overcome contact growth 

inhibition may serve as cancer biomarkers and chemotherapeutic targets. For example, bevacizumab inhibits VEGF signaling, whereas monoclonal antibodies (NZ1) 

or lectins (MASL) target PDPN on malignant cells. 
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anchorage independence and motility, and SDPR plays a role in 
serum independence. In addition to inducing tumor suppres-
sors, contact normalization inhibits the expression of powerful 
tumor promoters (154). These proteins tend to promote migra-
tion of malignant cells out of their microenvironment to become 
invasive and metastatic. These findings are particularly excit-
ing, because they may identify functionally relevant targets that 
may be compromised by environmental chemicals. For exam-
ple, Tmem163 (transmembrane protein 163), Vegfr2 (vascular 
endothelial growth factor receptor 2) and Pdpn (podoplanin) are 
all extracellular receptors that promote the motility of tumor 
cells that escape contact normalization.

In contrast to GJIC, contact inhibition has not been exten-
sively studied in the context of environmental carcinogenesis. 
Early work showed that phorbol esters may induce loss of con-
tact inhibition in human fibroblasts (155), and there has been 
recent interest in the effects of environmental contaminants on 
the deregulation of cell-to-cell communication. Particular atten-
tion has been paid to compounds that activate the aryl hydro-
carbon receptor. Deregulated AhR activity contributes to altered 
cell-to-cell communication, including at adherens junctions, 
and also affects cell adhesion (156–158). Activation of AhR by 
various ligands disrupts contact inhibition and induces cell pro-
liferation in some cell types (156,159,160). In some cases, there 
is a link between disruption of growth suppression via deregula-
tion of contact inhibition and loss of response to GJIC-mediated 
growth-inhibitory signals from neighboring cells. Recently, 
TCDD and other AhR ligands were shown to simultaneously 
alter cell proliferation, leading to the disruption of contact 
inhibition and downregulation of GJIC via enhanced Cx43 deg-
radation in rat liver epithelial cells (161). Thus, environmental 
chemicals that affect connexins and gap junctions may nega-
tively impact contact inhibition and further promote evasion of 
growth suppression.

Expert perspective

Many of the environmental chemicals that we have discussed 
in the individual sections above affect multiple growth-inhibi-
tory mediators, as shown in Table 1. Thus, sustained exposure 
to one environmental chemical can result in major effects on a 
single cancer hallmark. Two examples of such chemicals are bis-
phenol A and DDT. Bisphenol A promotes cell cycle progression 
by disrupting multiple targets that have been discussed here. 
In addition to reducing functional p53, low nanomolar concen-
trations of bisphenol A reduce expression of Cx43, compromis-
ing gap junction communication (162). Bisphenol A-mediated 
effects on GJIC are connexin-selective, as reduced expression of 
Cx43 has been observed after bisphenol A exposure, but Cx26 
is unaffected (163). DDT also disrupts GJIC in a dose-dependent 
manner (164,165) and increases expression of the p53-degrading 
protein Mdm2 (33). In addition, DDT increases transcription of 
Ccnd1 (cyclin D1) and E2f1 and induces phosphorylation of pRb 
(33). Thus, bisphenol A and DDT represent examples of environ-
mental chemicals that affect multiple targets within the hall-
mark of evading growth suppression.

In addition to evading growth suppression, cancer cells coor-
dinate deregulation of multiple mechanisms that constitute 
other hallmarks of tumorigenesis. Each of these mechanisms 
is a potential target for therapeutic intervention; similarly, each 
mechanism can be targeted or activated by environmental 
chemicals. In fact, it is likely that the carcinogenic effects of an 
environmental chemical depend on the simultaneous activation 
of multiple cancer hallmark mechanisms. Thus, we performed 
literature searches to determine the roles of the molecular 

targets discussed in this manuscript in the context of other can-
cer hallmarks, as defined by Hanahan and Weinberg (137) (Tables 
2 and 3). We found that individual growth-inhibitory mediators 
discussed in this review have variable roles in other cancer hall-
marks. Based on our search results presented in Tables 2 and 3, 
it is likely that a chemical or chemical mixture that disrupts any 
one of the selected molecular targets will disrupt multiple cel-
lular functions, promoting the establishment of multiple cancer 
hallmarks. For example, our literature search indicated that p53 
has roles in each of the cellular processes involved in the vari-
ous cancer hallmarks. Thus, a chemical that disrupts p53 func-
tion is likely to promote each of the established or suspected 
hallmarks of cancer, which may explain why p53 loss or muta-
tion on its own is considered a major procarcinogenic event.

In addition to the fact that one molecular target affects mul-
tiple hallmarks, our literature search also indicated that each 
single hallmark is regulated by most of the molecular targets 
that we reviewed. For example, the newly proposed cancer hall-
mark of cellular metabolism is regulated by LKB1, p53 and pRb, 
among other molecular mediators. One of the central regulators 
of cellular metabolism is the LKB1 substrate AMPK. LKB1-AMPK 
signaling tightly controls signaling from mTOR, such that loss 
of LKB1 activates mTOR, promoting extensive protein synthesis 
and expression of glycolytic enzymes. Thus, LKB1 loss induces 
glycolysis and metabolic changes through the so-called Warburg 
effect (183). This describes the process by which highly prolifer-
ating cells rely on glycolysis to convert glucose to lactic acid in 
order to generate ATP (226). Tumors lacking LKB1 have underly-
ing mechanisms that drive the Warburg effect. These changes 
are evident from the high levels of metabolites and the expres-
sion of glycolytic enzymes (227,228). Wild-type p53 also inhibits 
mTOR signaling by activating AMPK-mediated phosphorylation 
of TSC2 and increasing expression of PTEN (229). Importantly, 
glycolysis in the absence of wild-type p53 is not only due to 
loss of mTOR regulation, but can also be caused by a gain-of-
function mutant p53 that causes translocation of the glucose 
transporter 1 (Glut 1) to the cell membrane and stimulation of 
the Warburg effect (230). AMPK also phosphorylates pRb on ser-
ine 804, which is important for maintaining brain development 
and neural stem and progenitor cell growth (231). However, 
hypophosphorylation of pRb has also been documented in the 
context of increased AMPK signaling secondary to inhibition 
of Glut 1, which is important for mediating glycolysis and the 
Warburg effect (232). Thus, pRb appears to have a complex role 
in the AMPK-mediated signaling cascade that regulates cellu-
lar metabolism. These examples demonstrate that the major 
growth-inhibitory molecules reviewed here also play roles 
in other cancer hallmarks. Thus, loss of function of any one 
molecular target can establish multiple cancer hallmarks, not 
just evasion of growth suppression. This is important from the 
perspective of understanding that a complex mixture of envi-
ronmental chemicals should be studied for effects on multiple 
molecular targets and multiple cancer hallmarks to truly under-
stand the mechanisms by which any given mixture promotes 
carcinogenesis.

Similar to the fact that most of the proposed molecules 
affect multiple hallmarks, many of the chemicals that we 
selected affect not only the hallmark of evading growth sup-
pression, but also other cancer hallmarks (Tables 4 and 5). The 
majority of data regarding the effects of these compounds on 
cancer hallmarks has been collected in animal models; thus, 
the effects on human carcinogenesis remain extremely contro-
versial. However, the animal data provide substantial rationale 
for performing rigorous investigations to understand if single 
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environmental chemicals or mixtures of chemicals simultane-
ously promote the development of numerous cancer hallmarks. 
One of the best examples of a potential environmental agent 
that affects almost all of the established cancer hallmarks is bis-
phenol A. Bisphenol A may be a prevalent disruptor of multiple 
hallmarks due to its abilities to inactivate p53, activate mTOR 
and promote estrogenic effects. The presence of a p53 mutation, 
particularly in combination with high TERT activity [319], pro-
motes sustained proliferative signaling, resistance to cell death, 
angiogenesis, tissue invasion and metastasis and a proinflam-
matory environment. Similarly, mTOR activation promotes 
multiple cellular processes, such as sustained proliferation, cell 
survival, glycolysis and motility and invasion (233). Increased 
proliferation has been documented in various cancer models of 
bisphenol A exposure. For example, staining for the proliferation 
marker Ki-67 was increased in DMBA-induced breast tumor tis-
sues collected from 50-day-old female rats exposed to bisphenol 
A-contaminated breast milk (234). In addition, prenatal expo-
sure to bisphenol A promoted the development of preneoplastic 
lesions in the mammary glands of rats (234). Further, bisphenol 
A altered the expression levels of multiple proteins involved in 
angiogenesis, including VEGF and annexin A2, and proliferation 
and cell survival, such as PI3K and MAPK signaling (162,234–237). 
Activation of mTOR and activated estrogen receptor function by 
bisphenol A also increased proliferation and blocked apoptosis 
in animal models of mammary cancer (238). Cellular metabo-
lism may also be affected by bisphenol A due to mTOR activa-
tion. Additional mechanisms by which bisphenol A can promote 
the development or progression of cancer include inhibition of 
DNA repair (239,240), increased replicative immortality due to 
the estrogenic effect of inducing expression of the telomerase 
catalytic subunit hTERT (241), increased expression of factors, 

such as matrix metalloproteases, which drive motility and inva-
sion (242), and potential activation of inflammatory processes 
due to the accumulation of reactive oxygen species (243).

Similar to bisphenol A, the organochlorine pesticide com-
ponent DDT appears to promote multiple cancer-related pro-
cesses or hallmarks, including sustained proliferation through 
pathways, such as Wnt/beta-catenin (252) and MAPK (244), 
and increased cell survival (33,244). In addition, DDT increases 
expression levels of VEGF (244), cyclooxygenase-2 (253) and reac-
tive oxygen species (252), thus potentially promoting the cancer 
hallmarks of angiogenesis and inflammation. In vitro data also 
suggest that DDT causes DNA damage and genetic instability 
(245) and may cause telomere shortening (251). Interestingly, 
DDT also suppresses the function of immune natural killer cells 
in part by blocking interactions between natural killer cells and 
target proteins on cancer cells (246). The immune effects of most 
environmental chemicals remain poorly understood. However, 
the reported effects of DDT on immune cell function warrant 
further investigations into the immune-suppressive abilities 
of environmental chemicals or mixtures of chemicals. Because 
we are most likely exposed to numerous chemicals simultane-
ously, either through polluted air or drinking water reservoirs, 
improved attempts should be made to model and study chemi-
cal mixtures, rather than individual chemicals, at environmen-
tally relevant concentrations. Ultimately, our analysis indicates 
that a greater level of research is required to not only look at the 
disruptive effects of environmental chemicals in the evasion of 
growth arrest, but also synergy between mixtures of chemicals 
that simultaneously enable multiple hallmarks. Current research 
should thus be aimed at understanding the molecular and cellu-
lar mechanisms through which environmentally relevant doses 
of chemical mixtures disrupt multiple cancer hallmarks.

Table 2.  Roles of selected mediators of growth suppression in the cancer hallmarks of metabolism, angiogenesis, genetic instability, immune 
evasion and cell death

Target Metabolism Angiogenesis Genetic instability Immune evasion Cell death

p53 p53 inactivation is  
associated with  
increased cancer cell 
metabolism (166)

p53 inactivation is 
associated with 
angiogenesis (167)

P53 inactivation is  
associated with  
genetic instability 
(168)

Wild-type p53 activates 
immune function; 
mutant p53 may pro-
mote immune evasion 
(169–171)

p53 inactivation pro-
motes resistance to 
cell death (172)

pRB Inactivation of pRb is as-
sociated with increased 
cancer cell metabolism 
(173)

Inactivation of pRb  
is associated  
with angiogenesis 
(174)

Inactivation of pRb is 
associated with  
genetic instability 
(175)

Unestablisheda pRb induces cell death 
(176)

TGF-beta TGF-beta signaling 
promotes cancer cell 
metabolism (177)

TGF-beta promotes 
angiogenesis (178)

TGF-beta suppresses 
genetic instability 
(179,180)

TGF-beta promotes 
cancer cell immune 
evasion (181)

TGF-beta induces cell 
death (182)

LKB1 Loss of LKB1 promotes  
cancer cell metabolism 
(183).

LKB1 promotes an-
giogenesis (184)

LKB1 suppresses  
genetic instability 
(185)

Unestablished LKB1 can inhibit or 
activate cell death 
(186,187)

Connexins Loss of gap junctions may 
promote cancer cell  
metabolism (188)

Unestablished Connexins suppress  
genetic instability 
(189)

Unestablished Unestablished

Contact inhi-
bition

Contact inhibition can 
inhibit or activate  
cancer cell metabolism 
(190,191)

Unestablished Contact inhibition 
suppresses genetic 
instability (165)

Contact inhibition 
promotes cancer cell 
immune evasion (192)

Unestablished

We searched PubMed to determine if the listed growth-inhibitory molecular target had roles in other cancer hallmarks. We combined the name of the target listed in 

the far-left column with the word ‘cancer’ and the name of each of the specific cancer hallmarks that appear in the top row (e.g. ‘p53 cancer metabolism’, ‘p53 cancer 

angiogenesis’, etc.).
aIf no literature support was found to document the role of a specific molecular target in a particular hallmark, we stated that the target has an ‘unestablished’ role 

in that hallmark.
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Table 3.  Roles of selected mediators of growth suppression in the cancer hallmarks of replicative immortality, sustained proliferation, invasion 
and metastasis, inflammation and tumor microenvironment

Target Replicative immortality Sustained proliferation Invasion and metastasis Inflammation Microenvironment

p53 p53 inhibits replicative 
immortality (193–195)

p53 inactivation is  
associated with  
sustained  
proliferative signaling 
(196)

p53 inactivation is  
associated with  
invasion and  
metastasis (197)

p53 promotes  
inflammatory  
processes (198)

p53 maintains the 
tumor  
microenvironment 
(199)

pRB pRb inhibits replicative 
immortality (200,201)

pRb inhibits sustained 
proliferation (202)

Inactivation of pRb is 
associated with  
invasion and  
metastasis (203)

pRb promotes  
inflammatory  
processes (204)

pRb maintains the 
tumor  
microenvironment 
(205).

TGF beta TGF-beta inhibits  
replicative  
immortality (206)

TGF-beta promotes 
sustained  
proliferation (202)

TGF-beta promotes 
invasion and  
metastasis (207,208)

TGF-beta promotes 
inflammatory  
processes (209)

TGF-beta maintains the 
tumor  
microenvironment 
(210)

LKB1 Unestablisheda LKB1 promotes sus-
tained proliferation 
(211,212)

LKB1 inhibits  
invasion and  
metastasis (213,214)

LKB1 promotes  
inflammatory  
processes (215)

LKB1 maintains the 
tumor microenviron-
ment (216)

Connexins Unestablished Connexins inhibit  
sustained  
proliferation (217)

Connexins have been 
shown to inhibit and 
activate invasion 
and metastasis 
depending on the cell 
model (218–220)

Connexins promote 
inflammatory  
processes (221)

Connexins maintain the 
tumor microenviron-
ment (222)

Contact  
inhibition

Unestablished Contact inhibition 
suppresses sustained 
proliferation (223)

Contact inhibition 
inhibits invasion and 
metastasis (224)

Contact inhibition  
promotes  
inflammatory  
processes (225)

Contact inhibition has 
an inhibitory role in 
maintenance of the 
tumor microenviron-
ment (222)

We searched PubMed to determine if the listed growth-inhibitory molecular target had roles in other cancer hallmarks. We combined the name of the target listed in 

the far-left column with the word ‘cancer’ and the name of each of the specific cancer hallmarks that appear in the top row (e.g. ‘p53 cancer replicative immortality’, 

‘p53 cancer sustained proliferation’, etc.).
aIf no literature support was found to document the role of a specific molecular target in a particular hallmark, we stated that the target has an ‘unestablished’ role 

in that hallmark.

Table 4.  Roles of selected chemicals on the cancer hallmarks of metabolism, angiogenesis, genetic instability, immune evasion and cell death

Chemical Metabolism Angiogenesis Genetic instability Immune evasion Cell death

Bisphenol A Bisphenol A promotes 
cancer metabolism 
(233,234,238)

Bisphenol A pro-
motes angiogenesis 
(162,234,235)

Bisphenol A promotes 
genetic instability 
(239,240)

Unestablisheda Bisphenol A can pro-
mote or block cell 
death (30,238)

DDT Unestablished DDT may promote 
angiogenesis (244)

DDT promotes genetic 
instability (245)

DDT can block the 
function of natural 
killer cells, causing 
immune evasion 
(246)

DDT inhibits cell death 
(33)

Folpet Unestablished Unestablished Folpet may promote 
genetic instability 
(31,247)

Unestablished Folpet shows toxic 
effects inititally, but 
prolonged exposure 
may block apoptotic 
signals (31,247,248)

Triazine herbicides 
(atrazine)

Unestablished Unestablished Triazine herbicides  
promote genetic  
instability (249)

Atrazine promotes  
immune system  
evasion (250)

Unestablished

We searched PubMed to determine if the selected chemicals had roles in other cancer hallmarks. We combined the name of the chemical listed 
in the far-left column with the name of the specific cancer hallmark that appears in the top row (e.g. ‘bisphenol metabolism’, ‘bisphenol angio-
genesis’, etc.). DDT, Dichlorodiphenyltrichloroethane (organophosphate pesticide).
aIf no literature support was found to document the role of a specific molecular target in a particular hallmark, we stated that the target has an ‘unestablished’ role 

in that hallmark.
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