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Abstract

Significant progress has been made in understanding the neurobiological mechanisms through 

which exercise protects and restores the brain. In this feature review, we integrate animal and 

human research, examining physical activity effects across multiple levels of description (neurons 

up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure 

and function, addressing common themes such as spatial memory and pattern separation, brain 

structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more 

within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the 

protective role of physical activity. Overall, converging evidence suggests exercise benefits brain 

function and cognition across the mammalian lifespan, which may translate into reduced risk for 

Alzheimer’s disease (AD) in humans.

Animal and human perspectives on physical activity and brain function

Abundant data suggests that physical activity reduces the risk of various diseases, including 

those associated with compromised cognition and brain function (e.g., heart disease, stroke, 

obesity) and, in turn, independence and quality of life [1]. Exercise protects the brain from 

the adverse effects of aging (Box 1) [2,3]. Our ability to capitalize on physical activity as a 

lifestyle change for improved brain health critically depends on a better understanding of 

neurobiological mechanisms through which physical activity protects and restores the brain.

This problem has been approached from two perspectives: animal and human neuroscience. 

Animal research enables a reductionist mechanistic understanding of how exercise can 

induce changes at the molecular, cellular, and neural circuit levels and how these may 

impact cognitive function. However, whereas understanding microscale molecular and 
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cellular changes is relatively limited in humans, higher-level cognition, as well as macro and 

systems-level changes in the central nervous system (CNS), can be evaluated. New 

neuroimaging technologies have enabled the field of Cognitive Neuroscience to begin to 

bridge the gap between animal and human studies. In particular, changes in brain structure 

and function as a result of exercise and other types of interventions such as cognitive 

training, nutrition, and social interaction can now be addressed (for a review, see [4]).

In this feature review, we identify areas of overlap between studies with different species 

and suggest how cross-species, multi-method research might further address important 

issues in the study of neural and cognitive plasticity, with a focus on exercise and the 

broader domain of physical activity. We start by examining evidence that exercise rather 

than other environmental factors (cognitive stimulation, enrichment, social interaction) has 

profound effects on brain function. Next, the types of cognition influenced by physical 

activity in animals and humans are explored with a focus on the hippocampus, a brain area 

important for learning and memory. Thereafter, mechanistic aspects are discussed in both 

species including neurotrophins, synaptic plasticity, adult neurogenesis, angiogenesis, and 

functional imaging, as well as further modulation of physical activity outcomes by 

(epi)genetic factors. Overall, exercise is a simple, low-cost lifestyle intervention that can be 

quantified in a straightforward manner in both animals and humans.

Exercise and environmental enrichment

Extensive animal research has shown that the CNS responds to external stimuli, producing 

molecular, cellular, and structural modifications responsible for functional plasticity. An 

enriched environment (EE) is a complex combination of social, cognitive, and physical 

stimulation. In a classic study, it was shown that housing rodents in an EE comprising a 

large cage with varying sets of toys such as balls, tunnels, and ladders improved learning 

and memory [5]. Beneficial effects of EE on behavior and brain function have since been 

reported in a multitude of studies using rodent spatial memory, neuroanatomical, cellular, 

and molecular assays [6,7]. In particular, changes such as increased brain weight, 

neurotransmitter content, gliogenesis, synaptic plasticity, and dendritic spine growth as well 

as upregulation of neuronal signaling molecules, neurotrophin levels, and adult hippocampal 

neurogenesis have been reported and associated with cognitive enhancement (for reviews, 

see [8,9]). A major theoretical formulation of EEs applicable to humans has been the 

intellectual engagement hypothesis [4,10]. This hypothesis proposes that greater complexity 

of the environment as characterized by diverse stimuli, demand for complex decisions, and 

social and physical stimulation is related to enhanced cognitive development across the 

lifespan. Studies have addressed this hypothesis by examining the contribution of 

environmental complexity, or ‘enrichment’, to brain development and healthy aging [4,11–

15]. A common theme from these studies is that engaging in a variety of activities that are 

novel, cognitively challenging, and multimodal (e.g., combine physical and mental 

stimulation) may be associated with more protection against age-related cognitive decline 

and dementia than focusing on any one type of activity [13–16].

Interestingly, in animal studies, evaluation of the different aspects of EE revealed that 

exercise alone can elicit many of the observed changes. Running (RUN) increases the birth 
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of new neurons in the hippocampus, neuronal spine density, synaptic plasticity, neurotrophin 

levels, and spatial memory function in mice (for a review, see [17]) compared with 

sedentary controls. Furthermore, housing rodents in identical-sized caging in either social or 

isolated conditions indicates that an EE without a running wheel does not enhance 

neurogenesis, neurotrophin levels [18], or Morris water maze learning [19], whereas 

conditions that included exercise (RUN and EER) increased these parameters (Figure 1). Of 

course, it is far more difficult to examine the individual components of enrichment, such as 

physical activity, with humans. A recent attempt to do so was a study that approached this 

question with an experimental design that compares exercise combined with cognitive 

engagement with exercise alone. Ander-son-Hanley et al. [16] compared the effects of 3 

months of stationary cycling with stationary cycling during engagement in a virtual bicycle 

ride (cybercycle) and found evidence suggesting that the cybercycle may have been more 

beneficial for executive function. Unfortunately, a group exposed only to cognitive 

enrichment (i.e., the virtual environment) was not included in this study. Nevertheless, the 

experimental comparison of exercise only, with activity plus cognitive challenge is similar 

to the manipulations that have been used in animal models of environmental enrichment and 

offers a needed complementary approach to correlational studies. Overall, the findings in 

human studies are consistent with rodent research suggesting that physical activity may 

provide lasting benefits for brain structure and function [4,16,20–23]. Moreover, exercise is 

a simple intervention that can be quantified by standard scientific measurements such as 

distance, intensity, and maximal oxygen consumption (VO2max) in a similar manner for 

animals and humans.

Spatial learning and relational memory

Physical activity elicits functional and structural changes throughout the brain. However, its 

effects on the hippocampus are of particular interest because this is a brain area essential for 

memory formation [24] and spatial navigation [25]. Although this structure is especially 

susceptible to aging and neurodegenerative disease-related atrophy and dysfunction [26], it 

is also highly plastic and responsive to exercise [27,28]. In particular, exercise has been 

shown to enhance hippocampus-dependent spatial memory in rodents in paradigms 

including the Morris water maze, the Y-maze, and the radial arm maze [17,29] (Table 1). 

Running also improved performance in tasks with low motor demand, such as contextual 

fear conditioning, passive avoidance learning, spatial pattern separation, and novel object 

recognition [30–34]. In addition, a recent study showed that subthreshold learning of object 

location using a very brief acquisition trial is enhanced by exercise [35]. This non-reinforced 

form of learning may be similar to human learning during daily activities without explicit 

immediate reward.

Data from human studies support the observation that fitness and exercise training is 

beneficial for relational mnemonic functions that critically depend on the hippocampus 

compared with other types of memory such as item memory. For example, a series of studies 

found an association between cardiovascular fitness and performance on relational binding 

(e.g., remembering both the name of a person you recently met and where you met them), 

but not on item recognition performance, in preadolescent children [36,37]. Another study, 

with 15–18 year olds, found a positive association between fitness and spatial learning 
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performance on a Virtual Morris Water Maze task but no correlation with verbal list 

learning [38]. Two of these studies found a positive association between associative memory 

and hippocampal volume [36,38]. Indeed, aerobic training is associated with improvements 

in memory tasks that are theorized to require the hippocampus, such as those that require 

relational binding [39] and visuospatial memory for relationships between landmarks on a 

map [40].

It should be noted that the hippocampus comprises three main subfields: the dentate gyrus 

(DG), area CA3, and area CA1. Each of these regions has specific cell types and plasticity 

contributing to learning and memory processes [41–44] and may respond and contribute in 

different ways to the effects of exercise on hippocampal memory function. The DG is 

unique in its ability to generate new neurons [45] in mammals, including humans [46,47], 

which can be doubled or tripled by exercise in rodents [17,48]. The neurogenic DG and to 

some extent area CA3 are deemed important for pattern separation, or the differential 

storage of highly similar stimuli and experiences [49,50]. In a recent study, sedentary and 

running mice were tested on a spatial discrimination task where identically shaped stimuli 

were presented in close or distal proximity on a touch screen [51]. There was no difference 

between the groups when the separation between stimuli was large; however, runners 

outperformed sedentary mice when the difference between stimuli was small [34]. The 

observed improvement in making fine spatial distinctions may be due, at least in part, to the 

exercise-induced increase in adult neurogenesis. Indeed, in a transgenic mouse with 

enhanced adult hippocampal neurogenesis, there is improved differentiation between 

overlapping contextual representations, indicative of enhanced pattern separation [52], and 

removal of important cortical inputs to new neurons, such as the lateral and perirhinal 

cortex, is detrimental to task performance [53].

Similar tasks evaluating the ability to distinguish between highly similar stimuli have been 

used to test memory function in humans. In combination with imaging studies, it was shown 

that functional MRI (fMRI) activity in area CA3 and the DG coincided with pattern 

separation performance [54]. In a recent study, young adults who participated in a long-term 

aerobic exercise regime demonstrated enhanced performance on a visual pattern separation 

task, especially in those individuals who experienced a proportionally large change in fitness 

[55]. Conversely, subjects that scored high on the Beck Depression Index performed poorly 

[55], consistent with the hypothesis that stress and depression reduce adult neurogenesis 

[56]. In another study, using MRI in humans (21–45 years old), increased DG blood volume 

correlated with improved cognitive function, proposing an indirect measurement of 

neurogenesis in humans [57,58]. It should be noted, however, that direct in vivo imaging of 

newly born neurons in the DG in humans has not yet been established. There are many 

technical difficulties associated with the resolution needed to image a small set of cells that 

are evolving over a relatively prolonged time (weeks and months) into neurons [59].

Results from older adults are similar but have not yet utilized multiple measures to 

demonstrate specificity within the domain of memory. For example, Erickson and 

colleagues demonstrated that cardiovascular fitness was associated with faster and more 

accurate spatial short-term memory performance in 165 healthy older adults. Left 

hippocampal volume accounted for a statistically significant portion of variance in the 
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accuracy rates of the most difficult task condition [60]. In a follow-up longitudinal analysis, 

improvements in fitness were not correlated with improvements in task performance for 

either training group; however, changes in hippocampal volume were associated with 

improved accuracy for the aerobic walking group only [28]. By contrast, caudate and 

thalamus volume change was not positively correlated with spatial memory improvement, 

demonstrating some selectivity to the hippocampus among subcortical structures. 

Importantly, the walking group showed a 1–2% increase in hippocampal volume, whereas 

the stretching group showed a 1–2% decrease in hippocampal volume over the 1-year 

intervention. However, this follow-up study does not imply that the hippocampus is the sole 

causal agent influencing changes in spatial memory performance. If this were true, the 

stretching group should have shown decrements in performance. Indeed, it is likely that 

other cortical regions and systems played a role in changes in spatial memory performance 

for both groups. Thus, although studies with human populations have shown that fitness and 

exercise training seems to benefit pattern separation, spatial, and relational memory 

performance (Table 1), which critically involve the hippocampus, it is likely that other brain 

regions play important roles (Box 2) [61–63]. Clarifying the distributed nature of brain 

region-specific changes that mediate performance improvements across species will be an 

important avenue for future research.

The literature described above suggests that physical activity affects hippocampal structure 

and function and that this can be measured at both cellular and macroscopic levels. 

Measures of cardiovascular fitness, brain blood flow, and analog paradigms for assessing 

hippocampal function such as virtual navigation and pattern separation tasks have enabled 

researchers to begin to bridge between animal and human research (e.g., Figure 2). Future 

studies will be needed to further examine how the brain circuits that support perceptual and 

memory processes are impacted by exercise across the lifespan of different species.

Growth factors in exercise-induced changes in brain and cognition

To begin to understand the cellular and molecular mechanisms underlying the benefits of 

exercise for the brain, animal models are used. Important candidates in this regard are the 

neurotrophins (see Glossary). Brain-derived neurotrophic factor (BDNF) is of particular 

interest because it supports neural survival, growth, and synaptic plasticity [64,65]. Neeper 

and colleagues [27] were the first to show a positive correlation between physical activity 

and BDNF mRNA levels. Specifically, using a voluntary wheel-running paradigm, which 

allows rats to determine running time, speed, and distance, mimicking, to some extent, 

human choices, they showed increased BDNF mRNA levels in the cerebellum, caudal 

cortex (analogous to the entorhinal and visual cortex in humans), and hippocampus [27,66]. 

Both BDNF gene and protein expression are increased in the hippocampus after short (2–7 

days) [27,66–72] or long (1–8 months) periods of exercise with either continuous or 

alternating running days [18,67–70,73–77] and can remain elevated at least 2 weeks after 

exercise has ended [74]. Analysis of the hippocampal sub-fields showed that changes in 

BDNF mRNA levels were localized to the neurogenic DG rather than area CA1 [78]. Forced 

animal exercise protocols (treadmill running), comparable to some human exercise regimes, 

also increased hippocampal BDNF gene expression after short [30,79] or long [77,80,81] 

periods of exercise. Additionally, animal studies have shown that physical activity elevates 
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BDNF gene expression in other parts of the nervous system such as the lumbar spinal cord 

[82], cerebellum [66], amygdala [77], caudal neocortex [27,66], and perirhinal cortex 

[75,83]; the latter is a brain area important for visual discrimination and novel object 

recognition [84].

Interestingly, many genes that are upregulated with exercise have a recognized interaction 

with BDNF, supporting a central role for this neurotrophin in brain plasticity [85,86]. BDNF 

utilizes the tropomyosin receptor kinase B (TrkB) receptor to activate signal transduction 

cascades [65]. Indeed, exercise increases both BDNF and TrkB receptor levels in the 

hippocampus [67,69,71, 77,78,80,81]. Concurrently, voluntary running elevates the 

expression of other genes involved in synaptic trafficking (synapsin I, synaptotagmin, 

syntaxin), signal transduction pathways (CaMKII, MAPK/ERK I and II, protein kinase C 

[PKC], PKC-δ), or transcription (CREB), as well as genes associated with the glutamatergic 

system (NMDA receptor [NMDAR]2A/B) [67,69,71,77]. In particular, in the DG, exercise 

elevates BDNF mRNA as well as expression of NMDAR2A/B, GluR5, and synapsin I, 

which may mediate enhanced synaptic plasticity and neurogenesis [30,73, 78,87].

Cognitive function has been observed to decline with age in both humans and rodents [88]. 

Although there are multiple pathways by which cognitive deterioration may occur late in 

life, decreased neurotrophin levels correlate with age-related hippocampal dysfunction and 

memory impairment [2,89] (for a review, see [90]). Exercise in aging animals is apparently 

less effective at increasing BDNF levels than in young rodents [91]. Although after 4 weeks 

of voluntary wheel running, no change occurred [92] (see, however, [93]), longer-term 

voluntary or forced treadmill running may reduce the age-related decline in BDNF and TrkB 

levels [76,80,81].

Given the multitude of animal studies that have demonstrated exercise-dependent changes in 

BDNF levels in the brain, BDNF has been of central interest to translational research. 

Similar to upregulation of central BDNF expression in rodents, physical activity increases 

circulating BDNF levels in healthy humans [94–96] (for a review, see [97,98]). It should be 

noted that measurement of BDNF in the periphery is an indirect means of inferring central 

expression. It has been estimated that the brain contributes 70–80% of circulating BDNF 

both at rest and during exercise, suggesting that the brain is the major but not the sole 

contributor to circulating BDNF [99]. In skeletal muscle, exercise elevates BDNF mRNA 

and protein levels [100,101]; however, muscles are not a source of circulating BDNF [100]. 

In blood, more than 90% of the BDNF is stored in platelets and is released during clotting 

processes [102]. Therefore, serum seems to reflect stored and freely circulating BDNF in the 

blood [102], whereas plasma seems to reflect only freely circulating BDNF [103]. Thus, 

peripherally generated BDNF and other factors that modulate platelet storage and release are 

challenging methodological considerations for making inferences between peripherally 

measured BDNF and central expression. In particular, these parameters may influence the 

temporal dynamics of changes in peripheral BDNF levels following single training bouts of 

aerobic exercise [98,104].

In rodents, in addition to BDNF, other trophic factors such as fibroblast growth factor 2 

(FGF-2) [105] and nerve growth factor (NGF) [66] are upregulated in the hippocampus as a 
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result of exercise, albeit less pronouncedly than BDNF. Exercise also increases insulin-like 

growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) levels. IGF-1 is 

elevated in several brain areas such as the hippocampus, striatum, septum, cortex, 

cerebellum, thalamus, red nucleus, hypothalamus, and brain stem nuclei, as well as the 

cerebrospinal fluid [106–108] and skeletal muscle [109], whereas VEGF is specifically 

increased in the hippocampus and peripheral areas such as skeletal muscle and lung [110]. 

Neurons accumulating IGF-1 increase spontaneous firing and are more sensitive to afferent 

stimulation [106]. Moreover, systemic injection of IGF-1 mimics the beneficial effects of 

exercise in sedentary rats, including enhanced DG adult neurogenesis [107,111]. However, 

the effects of IGF-1 may be mediated by BDNF, a potential downstream target [112]. 

VEGF, by contrast, is a hypoxia-inducible protein that promotes angiogenesis through 

receptor tyrosine kinases on endothelial cells [113]. Interestingly, exercise-induced changes 

in hippocampal vasculature are associated with adult neurogenesis [114–117] and may be 

mediated by VEGF and IGF-1 that are both produced in the periphery. IGF-1 is transported 

across the blood–brain barrier [118], whereas there is limited permeability to VEGF 

[115,119]. Moreover, blockade of peripheral IGF-1 and VEGF precludes the neurogenic 

effects of exercise [107,115]. IGF-1 is also produced locally in the brain, probably by 

microglia, as has been shown in aged rodents [120]. In addition, 6 weeks of wheel running 

elevated VEGF protein levels in the cortex and hippocampus of middle-aged female mice 

[121].

In humans, the impact of 1 year of moderate aerobic exercise on circulating BDNF, IGF-1, 

and VEGF in older adults who were healthy but had low activity levels has been researched 

[122]. Changes in basal circulating growth factor serum levels as well as in the functional 

coupling of brain regions previously shown to be responsive to aerobic training in older 

adults were evaluated[61]. Basal circulating BDNF, IGF-1, and VEGF did not change from 

before to after the 1-year walking intervention (see also [28]). However, there was a positive 

correlation between changein circulating BDNF, IGF-1, and VEGF, and fMRI measured 

change in functional coupling between the bilateral parahippocampal and bilateral middle 

temporal gyrus [122]. These results are consistent with findings from animal studies 

described above and suggest that these neurotrophins contribute to the positive effects of 

exercise on learning and memory in rodents [123]. In future studies, multiple measures over 

time, perhaps through burst measurement techniques, could generate a more refined 

assessment of the time course of circulating growth factor changes relative to alterations in 

human cognition, brain structure, and function. It will also be important to account for the 

contribution of structural changes [28,124,125].

Given the importance of BDNF, a factor that should be considered in human exercise studies 

is ValMet polymorphisms of the BDNF gene. This single-nucleotide polymorphism (SNP) 

in the BDNF gene occurs in approximately 20–30% of Caucasians [126] and leads to a 

valine-to-methionine change at position 66 (Val66Met) in the prodomain of BDNF. This 

SNP has been found to decrease activity-dependent BDNF secretion [127,128] and is 

associated with increased susceptibility to depression and anxiety-related disorders 

[129,130] and reduced memory function [131]. In addition, in mouse models of these 

polymorphisms, neural plasticity was impaired and refractory to treatment with 

antidepressants [132]. The interaction between this polymorphism and exercise in humans is 

Voss et al. Page 7

Trends Cogn Sci. Author manuscript; available in PMC 2015 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



further described in the epigenetics section. Overall upregulation of neurotrophins by 

exercise may facilitate other neural plasticity processes.

Synaptic plasticity

Improvements in learning and memory induced by exercise have been directly associated 

with activity-dependent synaptic plasticity, modifications in gene expression, and improved 

neurogenesis [48,73,87,133,134]. Many of these changes have been mainly observed in the 

hippocampus, which we know is important for memory and learning processes [24]. 

Induction of long-term potentiation (LTP), a physiological model of certain forms of 

learning and memory [135] in hippocampal slices or in vivo resulted in significant 

potentiation of the synaptic response in the DG of running young rodents [30,73,87,136] and 

reversed the age-related decline in DG LTP in aged rats [81]. Recordings from another 

hippocampal subregion, area CA1, showed no changes in LTP mediated by exercise, 

suggesting that the changes observed in the DG may result from increased neurogenesis 

[87]. Indeed, recordings from individual newborn dentate granule cells in hippocampal 

slices revealed a lower induction threshold and enhanced LTP induction compared with 

mature granule cells [137–139]. Consistent with the enhanced LTP, mRNA levels of 

NMDAR2B were increased specifically in the DG of runner rats [73]. Previous studies have 

shown that NMDAR2B alters the capacity to exhibit LTP and that its overexpression results 

in increased LTP induction [140,141]. Interestingly, enrichment including running wheels 

(EER) also increased NMDAR2B in the hippocampus [140]. Conversely, ablation of 

neurogenesis or deletion of NMDAR2B from newborn dentate granule cells prevented the 

induction of LTP in the DG, suggesting that this synaptic potentiation is preferentially 

mediated by newborn dentate granule cells [142–144]. In addition to changes in NMDAR2B 

mRNA levels, GluR5 mRNA levels were also significantly elevated in the DG of runner 

rats, but not in other areas of the hippocampus [73], suggesting a specific role in the synaptic 

plasticity of the DG. The significant enhancement in LTP following exercise is also 

consistent with an increase of BDNF in the hippocampus [18,27,66–77], which may mediate 

synaptic plasticity through the activation of signal transduction cascades [65] (Table 1).

Another type of synaptic plasticity, long-term depression (LTD), is considered to model 

forgetting by reducing the capacity of one set of synapses to elicit a synaptic response in 

another [145]. LTD, induced by low-frequency stimulation, is relatively unaffected by 

exercise [136]. However, the induction of LTD in running mice was found to depend on the 

activation of NR2A-containing NMDA receptors but not in sedentary mice [136], 

suggesting that exercise can alter the contribution of NMDA receptor subunits to LTD.

Modifications in synaptic plasticity have also been associated with morphological changes 

that can occur in response to neural activity [146]. Long-term exercise (2 months) has been 

shown to increase spine density in the entorhinal cortex and CA1 pyramidal cells [147]. Fine 

morphological alterations in the DG are consistently induced by exercise [147–150]. 

Analysis of individual dentate granule cells revealed that running increased the total length, 

complexity, and spine density of their dendrites, independent of their position in the granule 

cell layer [148,149], as well as the volume of the granule cell layer [151]. Use of retrovirus-

mediated labeling of newborn neurons has made it possible to examine and characterize 
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their morphological details throughout their development and integration into the granule 

cell layer [152]. Research has shown that exercise increases the motility of the dendritic 

spines of newborn neurons and accelerates their maturation without modifying dendritic 

complexity in young mice [150]. In young and aged running mice, there was no difference 

in spine density of new neurons [116], suggesting that, although fewer cells are generated in 

the aging brain, they may be functionally equivalent to those produced at earlier time points 

[153].

Non-invasive methods of human neuroscience cannot examine synaptic activity at the level 

of the synapse. Instead, indirect measures of acquisition or strengthening of activity between 

neuronal populations may be used as a biomarker of synaptic plasticity. A physiological 

approach for this is paired associative stimulation (PAS), which uses transcranial magnetic 

stimulation (TMS) to measure experimentally induced synaptic plasticity [154]. Synaptic 

plasticity is induced by pairing electrical stimulation of a hand muscle with electromagnetic 

stimulation of a corresponding region of motor cortex. The magnitude of plasticity in the 

circuit is measured by the increase in reactivity of the hand muscle to activation of the motor 

cortex following repeated paired stimulations. For example, older adults show less reactivity 

following paired-pulse training than young adults, consistent with much evidence that aging 

is associated with decreased synaptic plasticity [155]. Using this TMS method as an 

outcome measure, Cirillo and colleagues [154] showed that more active adults (age 18–38 

years) had greater synaptic plasticity in the left abductor pollicis brevis (APB) muscle motor 

circuit. Although this was a cross-sectional study that compared groups with extreme 

differences in exercise behavior, it presents complementary evidence for the link between 

exercise and aerobic fitness and enhanced synaptic plasticity that maybe a generalizable 

mechanism for the effect of physical activity on coordinated brain function and improved 

learning and performance. It may be fruitful for future studies to examine the replicability 

and generalizability of this measure in controlled experimental studies that are designed to 

examine the effect of exercise training on brain function and higher-level outcome measures 

thought to be associated with synaptic plasticity such as skill learning or pattern separation.

Neurogenesis and brain structure

It is well established that mammals, including humans, produce new DG neurons in the 

adult brain [45,46,156]. New hippocampal neurons may make specific contributions to 

learning and memory, in part as a result of their unique neural circuitry [157]. New neuron 

production can be regulated by both extrinsic and intrinsic factors. Enhanced neurogenesis is 

generally considered beneficial for cognition and a decrease is correlated with stress and 

aging [158,159]. Unfortunately, it is not possible (yet) to study neurogenesis noninvasively 

in humans. In rodents, however, exercise more than doubles the production of new neurons 

in the young and aged brain [48,87,116] (Figure 1). Running influences all aspects of new 

neuron maturation, including cell proliferation, survival, and neuronal differentiation in the 

DG [18,19,34,48,53,73,76,80,87,106,107,115–117,151,160–166]. The subventricular zone/

olfactory bulb, the other neurogenic area in the adult brain [167], does not appear to respond 

to exercise [163], although this issue remains unresolved [161]. Indeed, the number of 

neurospheres isolated from the subventricular zone is increased with running in aged 

animals [168]. Enhanced neurogenesis correlates with improved synaptic plasticity and 
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memory [19,34,73,76,87, 116,160,164,165]. Over the past decade, exercise-induced 

neurogenesis has been studied under normal, aging, and disease conditions (Figure 1 and 

Table 1).

The mechanisms underlying the effects of running on neurogenesis are unclear. 

Neurotrophins such as BDNF, the TrkB receptor, VEGF, and IGF-1 have been proposed to 

mediate the neurogenic effect of exercise [73,76,80,107, 169,170]. In addition, immune cells 

such as macrophage migration inhibitory factor [171] and microglia [165,172, 173] may 

play a role. Local ablation of microglia in the brain prevents the exercise-induced increase in 

new cell genesis [174]. In addition, the survival of progenitor cells induced by exercise may 

be mediated by Notch1 activity [175]. Running also increases induction of the expression of 

immediate early genes (c-Fos, Zif268, Arc) in new and preexisting dentate granule cells 

[151,160], suggesting increased synaptic activity by exercise. Neurotransmitter systems 

have also been examined. Blocking cannabinoid signaling precludes exercise-induced cell 

genesis [176]. Interestingly, tryptophan hydroxylase (TPH)2-deficient mice that lack brain 

serotonin show normal baseline hippocampal neurogenesis but impaired activity-induced 

proliferation [177]. In addition, serotonin reuptake inhibitors which are used as 

antidepressants, such as fluoxetine, have been suggested to increase neurogenesis [178] (see, 

however, [179,180]) but pale compared with running (Box 3).

Neurogenesis declines naturally with aging, as early as middle age [181], and may 

contribute to age-related decline in cognitive function [88]. Recent research suggests 

peripheral blood-borne cytokines may play an important role therein. Parabiosis studies of 

young and aged animals suggest that systemic chemokines may regulate the central 

production of new neurons [182]. Fortunately, the positive effects of exercise on 

neurogenesis are maintained throughout life in rodents [76,80,116,166], possibly via 

muscle-derived/blood-borne factors that are delivered from the periphery to the brain. In 

mice that had been sedentary until 18 months of age, running reversed new cell survival to 

that of sedentary young controls and increased the percentage of new cells that became 

neurons [116]. In mice that started running in middle age (9 months old), cells that were 

labeled with bromodeoxyuridine (BrdU) at the onset of the study as well as the endogenous 

marker for immature neurons, doublecortin (at the end of the study, 17 months old), were 

elevated, suggesting that the neurogenic effect of running is maintained over time in aging 

animals [76]. The benefits of exercise on neurogenesis extend to mouse models of 

degenerative diseases such as AD [183,184] and Down syndrome [185], consistent with 

studies that have shown that exercise can still benefit cognitive function in those with mild 

cognitive impairment or dementia [186–188] (Table 1).

In humans, hippocampal neurogenesis and changes in fine morphology (dendrites and 

spines) cannot be directly examined at the level of brain cells. However, noninvasive 

neuroimaging methods permit characterization of brain structure, including gray and white 

matter, at a more macroscopic level. Some studies have assessed changes in gray matter 

density across the brain using voxel-wise techniques, which consider 3D, arbitrarily sized 

cubes (‘voxels’) as the unit for summarizing anatomical patterns across the entire brain. One 

study using this method found that 6 months of aerobic training increased gray matter 

density in the midline areas of the anterior cingulate cortex and supplementary motor area, 

Voss et al. Page 10

Trends Cogn Sci. Author manuscript; available in PMC 2015 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the right inferior frontal gyrus, and the left superior temporal gyrus and increased white 

matter density in the anterior corpus callosum (genu) [189]. An advantage of voxel-wise 

techniques is their ability to examine the whole brain in an exploratory manner. However, a 

disadvantage is that a voxel is not defined with respect to brain anatomy. Measures of how 

much gray or white matter are in a voxel are statistically condensed to probability estimates 

of how likely a given voxel is to comprise of each tissue type. In addition, the method is 

typically conducted with T1-contrast MRI, which does not have good contrast for blood 

vessels that are interwoven through gray and white matter (and with greater density through 

gray matter, presenting a potential confound). In sum, the meaning of these probability 

estimates in relation to what is actually changing at the cellular and molecular level remains 

unclear [190–193].

Other studies have examined the effect of exercise on white matter tissue by examining 

microstructural properties with diffusion tensor imaging (DTI) or white matter lesions on 

T2-weighted MRI. A primary measure from DTI, fractional anisotropy (FA), measures the 

coherence of the orientation of water diffusion in a voxel independent of rate. Therefore, FA 

is considered a measure of axonal integrity, myelination, and axon diameter and density. 

Cross-sectional studies that have examined the association between fitness and white matter 

integrity with DTI have used relatively small sample sizes and have yielded mixed findings 

[194,195]. One study examined the relationship between change in regional diffusivity and 

change in fitness in a randomized controlled trial (RCT) [124]. There was a greater positive 

correlation between change in fitness and change in FA distributed throughout the frontal 

and temporal lobes compared with the covariance of fitness and FA changes for a non-

aerobic exercise control group. However, there was no mean-level change in FA in the 

frontal, temporal, parietal, or occipital lobar masks and there were no regionally local 

increases in FA within lobes for the walking group. The extant findings suggest the 

possibility that changes in the brain from exercise are not necessarily targeted locally in the 

way neurogenesis is and may sometimes manifest throughout a system in a more distributed 

manner.

A technique that could be promising for more direct measurement of neuronal integrity and 

viability with MRI is magnetic resonance spectroscopy (MRS). This imaging technique can 

be used to measure the biochemical profile of regions of interest in the brain. One metabolite 

that MRS can measure well is N-acetylaspartate (NAA), which is a nervous system-specific 

metabolite synthesized in the mitochondria of the cell bodies of neurons and distributed in 

cell bodies, dendrites, and axons. NAA levels should therefore not be sensitive to regional 

variation in vasculature. Using this method, Erickson et al. [196] measured NAA in an 18 × 
18-mm2 voxel in the right frontal cortex, including portions of the insula, surrounding white 

matter, caudate nucleus, and putamen. They found that fitter 66–80 year old adults had 

greater NAA levels than their less-fit peers (compared on VO2peak); however, 55–65-year-

olds of higher and lower fitness did not differ in NAA. These results suggest that aerobic 

fitness is protective for neuronal integrity or mitochondrial function to a greater extent as 

normal aging progresses. However, this age–fitness interaction may be regionally specific. 

Another research group found greater NAA in a similar sized anterior cingulate region of 

interest in fitter middle-aged adults (age 40–65 years) compared with their less-fit peers 
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[197]. A limitation of this method is evident in these two studies; it is currently not possible 

to perform a whole-brain MRS scan, which compromises comparability across studies and 

across participants in longitudinal assessment. Nevertheless, a productive future direction 

will be a greater understanding of the cellular and molecular basis of MRS signals in 

conjunction with using the method across species to test the translation of specific changes 

seen in exercising animals to exercising humans [e.g., 192].

Another common technique for measuring the effects of exercise on brain structure that has 

been used in human populations is calculating the volume of individual brain structures as 

defined by anatomy and not by tissue type per se. Using these methods, studies have focused 

on examining the anatomical specificity of positive associations between fitness and brain 

structure. For example, a well-controlled longitudinal study found that 1 year of moderate-

intensity aerobic training in healthy, less-active older adults increased hippocampal volume 

by 1–2% [28]. Cross-sectional studies have found that greater aerobic fitness is associated 

with greater hippocampal volume in elderly adults [60] and preadolescent children with an 

automated segmentation routine [36] and in 15–18-year-old males using a manual tracing 

procedure to define the hippocampus [38].

At present, animal and human research provide measures of brain structure at different 

levels of analysis. However, in the near future it should be possible to characterize the brain 

structure of animals with high levels of precision with high-field MRI systems. Changes in 

regional volume and integrity, particularly with regard to white matter tracts, as a function 

of exercise or other factors can then be associated with cellular and molecular changes 

through histological examination of brain tissue. Such animal–human bridging studies can, 

in turn, be useful in inferring the cellular and molecular changes that are engendered by 

exercise and physical activity in human study participants (Figure 2).

Angiogenesis

Vessel formation is completed during development, but brain angiogenesis is maintained 

mostly to respond to specific stimuli such as injury or physical exercise [116,162,198]. 

Physical activity increases the proliferation of brain endothelial cells [199] and angiogenesis 

[200,201] throughout the brain, including motor areas of the cerebral cortex, as a robust 

adaptation to prolonged exercise [201]. Some vasculature changes associated with exercise 

in the adult brain may be mediated byIGF-1 and VEGF [115,199]. It has been shown that 

running enhances IGF gene expression [202] and protein levels in the hippocampus [106]. 

Angiogenesis induced by exercise is also associated with an increase in the brain of VEGF 

mRNA and protein [203].

Several different methods have been applied to human populations for examining the 

regional distribution of differences or changes in cerebral vasculature as a function of 

exercise, including perfusion methods using the (invasive) injection of a tracer and 

(noninvasive) perfusion imaging based on a magnetization-induced tracer signal. Using 

arterial spin labeling (ASL) with MRI, the most noninvasive method, one study found 

greater cerebral blood flow (CBF) in the hippocampus in six healthy older adults who had 

participated in a 4-month aerobic exercise program compared with five demographically 
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matched participants in a health education control group [63]. This study did not compare 

post-training with a baseline session, which will be an important step for future research. 

Using a more invasive approach that relies on gadolinium contrast imaging, another study 

quantified hippocampal cerebral blood volume (CBV) in distinct subfields before and after a 

3-month aerobic training program in 11 participants ranging from 21 to 45 years of age [57]. 

Although there was no control group, the results showed that hippocampal CBV, especially 

in the DG, increased from before to after the exercise intervention. Moreover, elevated CBV 

was positively correlated with increases in aerobic fitness and cognitive function. The 

regional distribution of CBV increases paralleled patterns of CBV differences (also 

measured with gadolinium MRI contrast imaging) in exercised animals reported in the same 

paper. However, from these studies alone it cannot be concluded empirically that exercise 

induces angiogenesis in the human hippocampus, because both methods are sensitive to 

differences in blood flow.

Another method that has been applied to human populations in the context of exercise 

neuroscience research is magnetic resonance angiography (MRA). Using MRA without 

gadolinium injection, Bullitt and colleagues [204] segmented and traced blood vessels of the 

anterior cerebral circulation (ACA), the posterior circulation (PCA), and the left and right 

middle cerebral artery (MCA) circulation. They compared seven highly active older adults 

between 60 and 74 years old with demographically matched adults with low levels of 

activity. They found that greater fitness was associated specifically with a greater number of 

small-radius (<0.5 mm) vessels in all circulation systems but no difference in larger vessels. 

In addition, lower fitness was associated with greater vessel tortuosity (i.e., frequent changes 

in direction) in the left and right MCA circulation. Although MRA also cannot exclude 

blood flow from influencing measurements of vessel number and tortuosity, these results 

provide data to support the prediction that exercise will have a greater impact on small-

vessel number. This is important because greater microvascular density could increase 

protection against white matter hyperintensities, which would in turn protect against gray 

matter atrophy and cognitive impairment, and collectively represent one mechanistic 

pathway through which exercise benefits the aging mind and brain [205].

Overall, perfusion-based imaging and MRA offer complementary techniques for measuring 

the effects of physical activity on cerebral vasculature. Perfusion-based imaging offers better 

access to the capillary beds involved in neurovascular coupling that are likely to be sites of 

the interaction between neurogenesis and angiogenesis. MRA, however, offers more specific 

quantification of vessel number, radius, and tortuosity and may offer improved resolution 

for small vessels with future advances in magnetic field strength.

The cellular, molecular, and structural changes associated with exercise described in the 

preceding sections should also be considered against the (epi)genetic background of the 

organism as described below.

Genetics and epigenetics

(Neuro)epigenetic modifications are changes in gene expression that are not coded in the 

DNA sequence itself but result from changes in chromatin structure. In mammals, epigenetic 
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processes mainly include DNA methylation, histone modification, and noncoding RNA-

mediated processes that, in the brain, are associated with cognitive function. Histone 

acetylation is associated with promoting memory formation and histone deacetylase 

inhibitors have begun to be tested as therapeutic agents for cognitive impairment [206]. 

Recent studies in young and aged rats indicate that 2 weeks of treadmill exercise may 

increase hippocampal DNA methylation [207] and histone acetylation while also improving 

memory function and reducing proinflammatory markers [208]. Interestingly, recent 

research shows that the gene mutated in human CHARGE syndrome, the ATP-dependent 

chromatin-remodeling factor CHD7, functions as a regulator of neurogenesis. It binds to 

promoters of the Sox family of transcription factors, which are important for new neuron 

differentiation, to facilitate open chromatin structure. Exercise was shown to ameliorate the 

neurogenic defects, reversing both reductions in new cell number and deficits in fine 

dendritic morphology caused by CHD7 mutation [209] (Table 1).

The neurogenic response to running in rodents is also influenced by genetic background. For 

example, evaluating the neurogenic response to exercise in different mouse strains showed 

an increase in all strains examined in a recent study [151]. However, the magnitude of 

change differed between strains following 6 weeks of voluntary exercise. The most 

responsive strains increased neurogenesis by four- to fivefold and included AKR/J, 

B6129SF1/J,BALB/cByJ, CAST/EiJ, and SM/J, whereas C57Bl/6J, a strain often used in 

neurogenesis experiments, showed a 1.6 times increase.

In humans, one way to examine the contribution of genetic background to exercise effects 

on the brain is to examine whether individual differences in genes, such as SNPs, moderate 

the effects of physical activity on brain and cognition. Although other types of 

polymorphism exist (e.g., sequence repeats), there have been an increasing number of 

human studies of physical activity that examined specific gene SNPs that influence 

cognition or neural systems. Thus far, most of these analyses have been conducted in 

prospective observational studies in which physical activity is assessed at one point in time 

and cognition or the diagnosis of dementia several years later.

The great majority of these studies have also focused on a single gene, APOE. The APOE 

gene, which creates lipoprotein and has an important role in cholesterol transport, has three 

different alleles: e2, e3 (the most frequent), and e4. The e4 allele has been found in 

approximately 14% of the population and has been implicated in atherosclerosis and AD. 

Indeed, individuals with an e4 allele have approximately four times the probability of 

developing AD as non-e4 carriers [210]. Furthermore, even in the absence of AD, carriers of 

e4 alleles have been shown to display cognitive deficits as early as middle age [211,212].

An example of such a study is provided by Schuit et al. [213] in which the amount of 

physical activity of 347 elderly Dutch men was assessed via a self-report questionnaire. 

Three years later, a general measure of cognitive function, the Mini-Mental State Exam 

(MMSE), was administered to this cohort. As expected, the risk of cognitive decline was 

substantially higher for individuals who possessed an e4 allele than for those who did not, 

whereas more active older adults (i.e., more than 1 h of physical activity per day) with an e4 

allele were four times less likely to show cognitive decline than more sedentary e4 carriers. 
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Indeed, reduced cognition was found mostly in e4 carriers with low activity levels and to a 

much lesser extent in highly active e4 carriers and non-e4 carriers. A similar pattern of 

results was found in a Finnish study of 1449 older adults by Rovio et al. [214]. In this case, 

the main outcome measure was diagnosis of AD.

Interestingly, however, not all observational studies have found that e4 carriers show the 

largest benefit for physical activity with regard to cognitive decline or dementia. For 

example, studies have reported no difference in the effects of self-reported physical activity 

on cognitive impairment or age-associated neurodegenerative disease as a function of APOE 

e4 status [22,215–217], with a total of over 6000 participants. A large longitudinal study by 

Podewils et al. [218], with 3375 older men and women, over the course of 5.4 years found 

that physical activity effects on dementia risk were larger for non-carriers than for carriers of 

e4.

In addition to the longitudinal observational studies discussed above, there have been several 

cross-sectional studies that examined physical activity and APOE status effects on 

behavioral measures of cognition and brain function. Several of these studies have reported 

larger positive effects of physical activity for e4 carriers than for non-carriers. For example, 

Deeny et al. [219] found superior performance on a Sternberg memory search task and 

greater temporal lobe activation in magnetoencephalography (MEG) data for highly active 

compared with less-active e4 carriers (see also [220]). Smith et al. [221] reported differences 

in fMRI activation patterns in brain regions that distinguished between famous and 

unfamiliar names in a semantic memory task and these effects were larger for highly active 

e4 carriers. Head et al. [222] found that less-active e4 carriers showed higher Pittsburgh 

Compound B (PiB) binding than more physically active carriers. PiB is a marker of amyloid, 

a precursor of plaques associated with AD. Although these results appear promising, other 

cross-sectional studies have found either no relation between APOE e4 status and exercise 

for regional brain volumes [223] or more prominent associations between physical activity 

and PiB levels for e4 non-carriers than for carriers [224].

Clearly such a mixed bag of results is difficult to interpret. However, it must be kept in mind 

that there were numerous potentially important differences among these studies, including 

culture (e.g., Box 4), gender, methods of assessing physical activity (which were self-

reported) and cardiorespiratory fitness, sample size, the age range of the participants, and 

measures of dementia, cognition, and brain function and structure. Thus, although some of 

these results are intriguing we do not yet understand the boundary conditions on APOE e4–

physical activity/exercise interactions.

Animal studies provide experimental evidence to weigh in with the mixed results from 

human studies. Transgenic APOE4 mice, a mouse model for this risk gene associated with 

AD incidence, benefited from housing with a running wheel for 6 weeks, showing an 

improvement in spatial learning in a radial arm water maze, restoration of reduced TrkB 

receptor levels, and increased levels of synaptophysin. However, although the relative 

increase in TrkB receptor levels was greater in APOE4 than in APOE3 mice, the overall 

levels did not differ between the two strains after running [225]. Another transgenic animal, 

the 3×TG mouse model of AD, shows improved neurogenesis following exercise [184]. 
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Interestingly, exercise may not offer general benefits across neurodegenerative diseases. For 

example, in mouse models of Huntington’s disease (HD), the neurogenic response to 

exercise appears to have been abolished [226,227]. Whether cognitive, motor, and affective 

symptoms do benefit from physical activity remains unclear from both mouse [227–229] 

and human [230,231] studies.

Two additional genes have been studied as potential moderators of physical activity effects 

on cognition, psychosocial function, or brain function in human studies. One such gene (and 

its associated protein of the same name) is BDNF, discussed in detail above as a 

neurotrophin instrumental in cell survival and plasticity in, among other regions, the 

hippocampus and cortex. Variants of this gene, in particular the Val/Val genotype, have 

been associated with higher levels of learning and performance on several cognitive tasks 

[232] and the Met allele has been associated with higher risk of depression [233] (but see 

[234]). Mata et al. [235] examined whether BDNF genotype interacted with self-reported 

physical activity to predict depressive symptoms in 82 healthy adolescent girls. 

Interestingly, higher levels of physical activity were associated with fewer depressive 

symptoms for girls with a met allele, but not for girls with the val/val genotype. In another 

study [236], the BDNF gene moderated the effects of a 30-min acute exercise bout on the 

self-reported mood of a group of 64 18–36-year-olds. Finally, a functional polymorphism 

related to dopamine metabolism, catechol-O-methyltransferase (COMT), was observed to 

moderate the effects of 17 weeks of running training on response speed in a working 

memory and inhibition task. Participants with val/val alleles showed a larger improvement 

in performance than those with the met allele [301].

In summary, although genetic studies conducted with human participants provide some 

intriguing results, interpretation is complicated by several methodological concerns 

including the small effect sizes of individual genes and small samples of study participants. 

Some of these concerns may be addressed through animal studies, which can enforce more 

experimental control over the environment of animals with different genetic profiles. Future 

human studies will also benefit from increased knowledge, from animal models, concerning 

molecular pathways that link exercise and cognition, as well as larger samples that enable 

the study of multiple genes (and their associated proteins) as moderators of the effects of 

exercise on cognition and brain function. Epigenetic linkages in humans may also be 

possible by including a subset of twins in studies with large sample sizes that can be 

followed over time and perhaps post mortem to examine regional gene expression as a 

function of physical activity.

Concluding remarks

We have reviewed evidence from animal models and human studies that collectively 

characterize the effect of physical activity on the brain and cognition across the lifespan. 

Animal studies utilize well-controlled experimental paradigms and measure changes in the 

CNS at the level of molecules, neurons, and signaling pathways involved in neurotrophin 

levels, neurogenesis, synaptic plasticity, metabolism and behavior (Figure 2). Rodent 

models of normal and pathological aging enable insight as to whether exercise benefits are 

generalizable across different populations. These experiments provide the foundation for 
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predicting the mechanisms associated with observational studies and physical activity 

intervention outcomes across the lifespan in specific populations. Although animal studies 

can identify basic mechanisms and validate biomarkers for human CNS outcomes, such as 

circulating growth factors (Box 5 and Figure 2), they are not always directly translatable to 

human physiology, behavior, and outcomes. For instance, it is hard to directly translate 

exercise time and distance from rodents to humans. This makes it difficult to make specific 

public health recommendations without complementary human studies (Box 5). Moreover, 

real-world performance outcomes such as adherence and functional independence depend a 

great deal on higher-level cognitive abilities that critically involve the prefrontal cortices in 

addition to the hippocampus and are difficult to test in animals (Boxes 1, 2, and 4) (see, 

however [237]). Limitations of human studies include the significant cost and difficulty of 

designing experiments that can follow participants long enough to examine the outcomes of 

interventions that naturally develop over the lifespan [238]. Although there is a consensus 

from animal and human studies that physical activity benefits brain function, further 

research is needed to search for the neurobiological mechanisms mediating the benefits of 

physical activity on cognition, behavior, and neurodegenerative diseases.
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Glossary

Aerobic training exercise training that improves the efficiency of the aerobic energy-

producing systems and can improve maximal oxygen uptake and 

cardiorespiratory endurance

Angiogenesis blood vessel formation from the existing vasculature, a process that 

exists throughout the body and is regulated by metabolic demands 

from surrounding tissues

Blood–brain 
barrier

the interface that separates the brain from the circulatory system; it 

protects the CNS from potentially toxic substances and regulates 

transport across the barrier for molecules that are safe and essential 

for the CNS. Some molecules affected by exercise in periphery are 

known to cross the barrier (e.g., IGF-1)

Cytokines multifunctional proteins that mediate both the host response to 

infection and normal signaling between cells of non-immune tissues, 

including the nervous system. These proteins play roles in neuronal 

cell death, proliferation, migration, and differentiation

Enriched 
environment 
(EE)

a complex combination of social, cognitive and physical stimulation. 

Accomplished in rodents by housing in a large cage with several 

animals and varying sets of toys such as balls, tunnels, and ladders. 

Voss et al. Page 17

Trends Cogn Sci. Author manuscript; available in PMC 2015 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Accomplished in humans by exposure to diverse stimuli, demand for 

complex decisions, and social and physical stimulation

Executive 
function

a heterogeneous neuropsychological construct that includes the 

ability to form, maintain, inhibit, and shift between mental sets and 

corresponds to the abilities to reason, generate, and follow through 

with goals and to flexibly alter goals in response to changing rules or 

contingencies (adapted from [269])

Exercise in humans, defined as a subset of physical activity that is planned, 

structured, and repetitive and performed for the maintenance/

improvement of physical fitness [270]. In rodents, exercise is 

synonymous with physical activity and can be either voluntary 

(housing animals with a running wheel) or ‘forced’ by placing 

animals on a treadmill for a certain period of time

Functional 
connectivity or 
functional 
coupling

terms commonly used to describe the existence of a functional 

relationship between two regions in fMRI data. High functional 

connectivity means that two (or more) brain regions have neural 

activity that fluctuates similarly over time. Functional connectivity is 

quantified by measures of association such as correlation, so no 

causal relationship is implied. The extent to which functional 

connectivity is ‘good’ depends on whether the regions are typically 

functionally coupled in high-performing healthy adults or the extent 

to which more functional coupling between regions is predictive of 

less risk of cognitive decline or clinical pathology [271,272]

Functional MRI 
(fMRI)

commonly refers to an indirect measure of neuronal activity assessed 

over time. The most common type of fMRI measurement is sensitive 

to the amount of deoxygenated hemoglobin in the blood (T2*-

weighted contrast), which is known to peak around 6–8 s following 

the onset of neuronal activity, based on mechanisms of neurovascular 

coupling: this effect is known as the blood oxygenation level-

dependent (BOLD) contrast. Another common magnetic resonance 

technique for measuring brain function is arterial spin labeling 

(ASL).

Hippocampus a brain area in the medial temporal lobes that is essential for memory 

formation [24] and spatial navigation [25]. Comprises three main 

subfields: the DG, area CA3, and area CA1. Each of these regions has 

specific cell types and plasticity contributing to learning and memory 

processes. Only the DG subfield can generate new neurons in the 

adult brain, a process that is upregulated by exercise in rodents

Long-term 
depression 
(LTD)

a reduction in synaptic efficacy induced by low-frequency afferent 

stimulation. LTD is theorized to be a cellular model of forgetting
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Long-term 
potentiation 
(LTP)

a persistent increase in synaptic strength between two neurons, 

measured by an increase in the evoked post-synaptic electrical 

response following afferent stimulation; there are different 

mechanisms for inducing LTP (for a review in the context of 

exercise, see [273]). LTP is a cellular model of learning and memory

Micro- and 
macroscale 
measurements

microscale measurements are at the level of neurons and synapses, 

whereas macroscale measurements are at the level of anatomically 

distinct brain regions and inter-regional pathways [274]

Maximal oxygen 
uptake 
(VO2max)

the maximal capacity for oxygen consumption by the body during 

maximal exertion. It is also known as aerobic power, maximal 

oxygen intake, maximal oxygen consumption, and cardiorespiratory 

endurance capacity. The gold-standard measurement in humans is a 

graded exercise test (GXT) in which the rate of work is increased 

gradually until fatigue or exhaustion; a gas analysis will indicate 

maximal oxygen uptake. When a participant does not ‘max out’ 

physiologically, which is common with older adults, the 

measurement is called VO2peak

Neurogenesis the formation of new neurons from neural stem and progenitor cells, 

in the subgranular zone of the DG (in the hippocampus) and the 

subventricular zone of the lateral ventricles (which migrate through 

the rostral migratory stream to the olfactory bulb)

Neurotrophins type of growth factor constituting a family of proteins that induce the 

survival, development, and function of neurons

Physical activity any bodily movement produced by the skeletal muscles that increases 

energy expenditure; includes both exercise and non-exercise activity 

thermogenesis (NEAT) [270,275]
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Box 1

So how is the science relevant to me?

An often-asked question with regard to the physical activity and exercise literature is ‘so 

how does the science impact my life and that of my family?’ Of course, one can answer 

this question by stating that explicating the basic mechanisms underlying exercise effects 

on brain and behavior will enhance our understanding of cognitive plasticity over the 

lifespan and in the face of disease. However, although such an answer may be satisfying 

to a scientist, it is much less satisfying to a citizen who desires a more practical answer.

Although certainly much remains to be learned about the influence of exercise on body, 

brain, and cognition, we can, on the basis of the extant literature, provide at least some 

tentative answers. For example, there are epidemiological studies that have examined the 

relationship between reports of physical activity and exercise at one point in time and the 

diagnosis of AD and other forms of dementia years later. One such example is a study by 

Larson et al. [22], who asked 1740 men and women over the age of 65 years how many 

times per week, over the course of 1 year, they participated in various physical activities 

for at least 15 min. per episode. They then examined the relationship between the amount 

of physical activity and the diagnosis of AD an average of 6.2 years later. The incidence 

of AD was substantially greater in individuals who exercised less than three times per 

week than it was for those who exercised more frequently (see also [20,23,215,218,239]).

Indeed, a meta-analysis of prospective observational studies, which included 163,797 

non-demented participants at baseline and 3219 diagnosed cases at follow-up found that 

the relative risk of dementia in the highest physical activity category compared with the 

lowest was 0.55 for AD and 0.82 for Parkinson’s disease [240]. The studies described 

thus far suggest an important, practical physical activity-related benefit, albeit from 

correlational data, for older adults. However, the evidence is consistent with animal 

models of AD [225,241–249] and the concept that human exercise training benefits brain 

plasticity for those with mild cognitive impairment and patients with probable AD [186–

188] (see Table 1 in main text).

It is also important to consider whether exercise can provide practical benefits beginning 

in development. There are several studies that report a positive association between 

physical activity and exercise and academic achievement in adolescents [250,251]. In a 

2-year randomized controlled trial with 1490 preadolescent children, Donnelly et al. 

[252] found improvements in overall academic achievement for the physically active but 

not for the control group children. A recent study of street-crossing behavior in a virtual-

reality environment has also found a benefit for children with greater cardiovascular 

fitness, in terms of safer crossing behavior particularly under challenging conditions, 

compared with children of low fitness [253]. Interestingly, the fitter children were not 

quicker at crossing streets than the less-fit children, but instead made better decisions 

about when to cross.
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In summary, physical activity has benefits throughout the lifespan. It reduces the risk of 

dementia and is also associated with real-world, practical outcomes starting in 

development, such as better academic performance and decision making.
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Box 2

Effects of exercise on human cognitive abilities

Animal models cannot measure cognitive capacities that are uniquely (or largely) human, 

such as verbal learning and memory, and are limited in assessing abilities that heavily 

rely on the prefrontal cortices, such as fluid intelligence (e.g., inductive reasoning) and 

executive functions. These aspects of cognition are enhanced with exercise training 

[254,256,257,259] and are relevant for predicting functional independence in the elderly. 

Therefore, it is important to understand the mechanism through which exercise enhances 

these uniquely human abilities.

Several studies have examined verbal and visual memory using standardized 

neuropsychological tests such as word-list learning, story memory, and figural copy tests 

(see [257] for a review). However, the overall effects of aerobic exercise training on 

performance in the healthy elderly, as indexed by these tasks, have been somewhat weak, 

possibly because neuropsychological tests are less sensitive to individual differences in 

the range of normal functioning. Greater sensitivity to higher-level cognition may come 

from tasks designed to parametrically increase workload for a given cognitive ability. 

Several studies have shown greater performance for more highly fit participants on 

cognitive tasks that specifically contrast difficult and relatively easier conditions, 

particularly with regard to tasks that tap executive control processes such as multitask 

performance, inhibiting inappropriate responses, and attending selectively to task-

relevant information [62,256] (for reviews, see [254,255,258,260–262]). In particular, 

using fMRI to examine neural activity coupled with the task shows that greater fitness is 

associated with increases in prefrontal cortex activity during more difficult task 

conditions [62,260]. Overall, aerobic fitness and aerobic training are associated with 

better performance when prefrontal cortex involvement is critical for task success. 

Additionally, meta-analyses have clearly suggested that exercise and physical activity 

benefits various perceptual, cognitive, and motor skills [256]. Indeed, exercise has a 

much broader beneficial effect on cognition than does cognitive training. Thus, future 

research is needed for understanding of the mechanisms through which exercise affects 

prefrontal cortex function and associated cognitive abilities.

Another approach is to examine the functional coupling of the hemodynamic BOLD 

signal during either task states or what is known as the ‘resting state’ when participants 

lie quietly with no engagement in controlled task conditions. The neural basis of 

functional coupling has been widely studied and data suggest it reflects coupling of 

fluctuations in the power of high-frequency neuronal activity (e.g., [263]). The method 

has been applied to human populations to understand how fitness and exercise training 

are associated with individual differences in the functional coupling of macroscale brain 

systems relevant to cognition and clinical status [61,264,265]. Aerobic exercise may be 

beneficial for functional coupling of a network known as the Default Mode Network 

(DMN), a functional brain network that is highly metabolically active during mind 

wandering, which is significant because the DMN is regarded as a functional biomarker 

of cognitive aging and a host of clinical pathologies across the lifespan (for a review, see 

[266]). In addition, aerobic exercise training may increase the specificity of functional 
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networks that are vulnerable to dedifferentiation, or lack of specificity, with aging [61]. A 

similar concept has been shown with functional coupling during verbal associative 

encoding in postadolescent teenage males [265]. Importantly, although task-related 

neuroimaging of the whole brain is likely to remain a human neuroscience endeavor, 

there may be an opportunity for bridging across animal and human models with resting-

state neuroimaging [267,268] to understand the cellular and molecular basis of the 

mechanisms through which exercise affects functional coupling at the system level (see 

Figure 2 in main text).
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Box 3

Exercise mimetics: do they exist?

‘May I simulate exercise

By using the right drug supplies?

I’d like to improve

Every cortical groove,

But from my couch don’t make me rise!’

(Larry Eisenberg)

(In Well, by Gretchen Reynolds [300])

Exercise benefits mood and cognition in both young and old animals and humans. For 

example, the antidepressant effect of exercise for mild depression in humans [276] has a 

similar potency to that of serotonergic medications [277]. However, not everyone may be 

able to be active due to circumstances, disease, or frailty. Would it be possible to mimic 

some of the cognitive, emotional, and neurogenic benefits of exercise for the brain using 

pharmacological agents? An obvious mimetic candidate in this regard is the 

monoaminergic system. Interestingly, serotonergic agonists, including antidepressants 

such as fluoxetine [178,278], have been suggested to enhance cell genesis and reduce 

some forms of anxiety (see, however, [279]). Administration of the serotonin 5-

hydroxytryptamine (5-HT)1A receptor antagonists, by contrast, decreases cell 

proliferation in the DG [280]. Marlatt et al. [179] compared antidepressants with 

voluntary wheel running. Specifically, 2-month-old female C57Bl/6 mice were treated 

with fluoxetine, a selective serotonin reuptake inhibitor that is considered to enhance 

neurogenesis, or duloxetine, a dual serotoninergic–noradrenergic reuptake inhibitor, or 

housed with a running wheel for 1 month. Interestingly, only exercise enhanced new DG 

cell survival [179].

Another exercise mimetic may be so-called ‘endurance factors’. Research has focused on 

the cellular, structural, and biochemical changes resulting from physical activity in the 

brain without much consideration for the peripheral factors that may initiate and elicit 

these. Would it be possible to mimic the neurogenic and cognitive effects of aerobic 

exercise by pharmacological skeletal muscle activation? Recently, transcriptional factors 

regulating muscle fiber contractile and metabolic genes have been identified [281] and 

led to the identification of compounds that can increase the ability of cells to burn fat and 

enhance running endurance [282]. Peroxisome proliferator-activated receptor delta 

(PPARδ) is a transcription factor that regulates fast-twitch muscle fiber contraction and 

metabolism. Over-expression of this factor increases oxidative muscle fiber number 

[282]. In addition, administration of the selective agonist GW501516 increased exercise 

stamina when combined with training [282]. PPARδ is controlled by AMP-activated 

protein kinase (AMPK), a master metabolic regulator important for glucose homeostasis, 

appetite, and exercise physiology [283]. Treatment with the AMPK agonist AICAR 

enhanced running endurance by 45% in sedentary mice [282]. Kobilo et al. [284] 
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investigated the effects of AICAR, an activator of AMPK, on memory and neurogenesis. 

Specifically, mice were injected with AICAR for 7 days and concurrently with BrdU to 

label dividing cells. AICAR improved retention of spatial memory in the Morris water 

maze and modestly elevated DG neurogenesis. Thus, pharmacological activation of 

skeletal muscle may underlie the cognitive benefits of aerobic exercise [284] and provide 

a possible therapeutic approach for conditions in which exercise is limited. It should be 

noted that administration of these pharmacological agents is not identical to physical 

activity itself. Prolonged administration of AICAR (14 days) does not enhance brain 

function [284], suggesting that this compound may only partially and temporarily mimic 

the effects of exercise.

Furthermore, small molecules [285] such as those that mimic the effects of neurotrophins 

have been shown to benefit cognition and neural plasticity in mouse models of AD 

[286,287]. In addition, polyphenols, found in fruits and green tea, may have 

neuroprotective effects that synergize with those of exercise [162].
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Box 4

How well do we follow evidence-based advice?

Specific recommendations for physical activity and exercise for different portions of the 

population have been made. For example, the Physical Activity Guidelines for 

Americans published in 2008 [1] suggested that adults should undertake at least 150 min 

per week of moderate-intensity or 75 min per week of vigorous-intensity exercise to reap 

substantial health benefits. Recommendations for children and adolescents were 60 min 

or more of physical activity on a daily basis.

Do we follow such recommendations? Unfortunately, as a society we do not do a very 

good job of getting the minimum recommended physical activity. The State Indicator 

Report on Physical Activity, 2010 (http://www.cdc.gov/physicalactivity/downloads/

PA_State_Indicator_Report_2010.pdf) provides data both on a state-by-state basis and 

for the US population (see also [288]). Sixty-four percent of adults report getting the 

recommended minimal level of physical activity (with a range across states of 56–73%), 

while high-school students present an even more disturbing pattern, with only 17% 

reporting that they get the recommended weekly amount of physical activity (with a 

range of 16–27% across states).

Interestingly, there is a substantial and growing literature on both barriers to and 

facilitators of healthy lifestyle behaviors, including physical activity and exercise. 

Although a thorough review of this literature is beyond the scope of this section, we 

briefly discuss some of the relevant factors. The State Indicator Report on Physical 

Activity, 2010 made several evidence-based suggestions for how children and teens’ 

physical activity could be enhanced, including: providing increased access to places for 

physical activity; enhancing physical education/activity in schools and child-care 

settings; and supporting urban design, land use, and transportation policies to encourage 

energy exertion. These factors are consistent with numerous recent surveys conducted 

throughout the world that describe both individual and environmental influences [289] on 

physical-activity behavior.

It also appears important to consider the needs of specific populations when examining 

barriers and enablers of physical activity. For example, Hinkley and colleagues [290] 

report that different factors influence preschool boys’ and girls’ participation in physical 

activity. It also appears that parents often overestimate the amount of activity that their 

children get [291]. Therefore, objective assessment of physical activity in children is 

important. With individuals in nursing homes, and those with chronic diseases, there is 

also the need to provide additional professional and caregiver support to facilitate 

physical-activity programs and to tailor them to abilities and disabilities [292–294].

Self-efficacy, self-regulatory behaviors, and executive control processes are also 

important in beginning lifestyle change and maintaining physical-activity behaviors. Self-

efficacy reflects belief in the ability to perform behaviors such as walking and cycling. In 

a recent study, McAuley et al. [295] reported that measures of different aspects of 

executive function (e.g., the ability to multitask and ignore task-irrelevant information in 

the environment) had both direct and indirect (through self-efficacy, or the belief one has 
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in one’s capabilities to successfully conduct a course of action) effects on the extent to 

which older adults participated in a 12-month exercise program. Therefore, future 

development of strategies to improve both self-efficacy and executive functions could 

enhance physical activity participation [296].
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Box 5

Outstanding questions

• What are the relevant principles for the timing, duration, sequence, and type of 

cognitive engagement that interact positively with exercise on micro- and 

macroscale outcomes that are important for cognitive and brain health?

• Does physical activity have to increase your heart rate to be neuroprotective? 

Some studies suggest not (e.g., [61,92,297,23]), but other studies show a dose–

response relationship between increases in fitness and brain outcomes (e.g., 

[28,55,124]). The answer to this question is important for informing public 

health recommendations for improvement and maintenance of brain health 

throughout the lifespan.

• There is growing evidence that resistance exercise, which is targeted for 

improved muscle strength, is also beneficial for brain structure and function in 

older adults [298,299]. The neural mechanisms may be evaluated through the 

development of animal models of resistance training and then compared with 

aerobic training.

• What is the time course of exercise-induced changes in the human brain and 

how does it vary as a function of age, disease, and presence of brain injury? Can 

a reliable mapping between time course in animals and humans be established?

• Can small-animal imaging be used to examine the cellular and molecular basis 

of exercise-induced changes in brain structure and function (e.g., resting-state 

BOLD coupling) as measured via MRI methods comparable with human 

studies?

• What is the relationship between exercise-induced changes in peripheral growth 

factors and regional changes in central expression?
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Figure 1. 
Exercise increases the production of new neurons in the dentate gyrus (DG) of the 

hippocampus. In two independent studies [18,19], mice were housed under (A,I) control 

(CON), (B,J) enriched environment only (EEO), (C,K) running (RUN), or (D,L) enriched 

environment and running (EER) conditions in (A–D) single or (I–L) group housing. 

Confocal images of bromodeoxyuridine (BrdU)-positive cells in the DG in sections derived 

from mice housed under (E) CON, (F) EEO (G) RUN, and (H) EER conditions. Sections 

were immunofluorescently double-labeled for BrdU (green) and NeuN (red) indicating 

neuronal phenotype (adapted from [18]). Panels (A–D) are reproduced with permission from 

[19]. Both studies show that adult DG neurogenesis is increased under the RUN and EER 

conditions but not under CON or EEO, indicating that running is the neurogenic stimulus.
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Figure 2. 
In search of the neurobiological mechanisms mediating physical activity benefits on 

cognition, behavior, and neurodegenerative diseases. Physical activity influences both the 

peripheral nervous system and the central nervous system (CNS), which interact with each 

other in a bidirectional manner. Animal models provide a means to measure the effects of 

physical activity directly and at a microscale, whereas human studies mostly depend on 

noninvasive neuroimaging methods that measure biomarkers of cellular and molecular 

processes at a macroscale. There may be opportunities to bridge between animal and human 

measures with conceptually parallel experimental designs that assess the relationship 

between the effects of physical activity on central and peripherally measured outcomes 

and/or utilize analogous imaging methods to measure CNS outcomes. Ultimately, 

understanding the neurobiological mechanisms that mediate the effects of physical activity 

on human behavior and disease will improve public health recommendations that outline 

what types of physical activity produce the most neuroprotection and real-world benefit. It 

will also provide insight how this varies across the lifespan, different genetic profiles and 

neurodegenerative disorders. Abbreviations: BDNF, brain-derived neurotrophic factor; 

TrkB, tropomyosin receptor kinase B; LTP, long-term potentiation; LTD, long-term 

depression; DWI, diffusion-weighted imaging; MRS, magnetic resonance spectroscopy; 
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ASL, arterial spin labeling; MRA, magnetic resonance angiography; fMRI, functional MRI; 

BOLD, blood oxygen level dependent; TMS, transcranial magnetic stimulation; EEG/ERP, 

electroencephalography/event-related potentials; IGF-1, insulin-like growth factor 1; VEGF, 

vascular endothelial growth factor; CRP, C-reactive protein; SNP, single-nucleotide 

polymorphism.
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