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Abstract

Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological proc-

esses and diseases. However, the combinatorial effects of these molecules in a specific biolo-

gical function are poorly understood. Identifying co-expressed protein-coding genes of

lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we

have developed Co-LncRNA, which is a web-based computational tool that allows users to

identify GO annotations and KEGG pathways that may be affected by co-expressed protein-

coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes

were first identified in publicly available human RNA-Seq datasets, including 241 datasets

across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA com-

binatorial effects in a given GO annotations or KEGG pathways are taken into account by the

simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets,

which is realized by enrichment analysis. In addition, this software provides a graphical over-

view of pathways that are modulated by lncRNAs, as well as a specific tool to display the rele-

vant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA

also supports users in uploading their own lncRNA and protein-coding gene expression pro-

files to investigate the lncRNA combinatorial effects. It will be continuously updated with

more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a

web-based application for investigating lncRNA combinatorial effects, which could shed light

on their biological roles and could be a valuable resource for this community.
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Introduction

Large numbers of long non-coding RNAs (lncRNAs) with

little or no protein-coding potential have been identified in

mammalian genomes (1–3). In particular, the emergence of

high-throughput RNA-Seq technology provides an unpre-

cedented opportunity to perform comprehensive identifica-

tion and characterization of lncRNAs in mammals (4, 5).

Moreover, lncRNAs are known to be involved in many im-

portant biological processes, including imprinting control,

cell differentiation and development, and human complex

diseases (6–8). However, most lncRNAs have not been

functionally characterized, and their combinatorial effects

are not known with respect to a specific biological func-

tion. Therefore, systematically investigating the functions

of individual or multiple lncRNAs would be an important

step towards unravelling their biological roles and empha-

sizing the significance of this group of lncRNAs in a variety

of systems and diseases.

To help researchers better understand lncRNAs and

their functions, the ‘lncRNAdb’ database focuses on col-

lecting the validated functions of lncRNAs based on the

published literature (9). However, only 280 lncRNAs have

been included in this database to date. Increasing evidence

shows that lncRNAs can interact with DNA, RNA, protein

molecules and/or in combinations, acting as essential regu-

lators (10, 11). Several databases have made a substantial

effort to collect these different types of interactions, such

as RCSB databank (12), starBase (13) and lncRNAtor

(14), providing protein–lncRNA interactions. However, to

date there have been few interactions assayed. In turn,

based on the hypothesis that lncRNA target genes are dif-

ferentially expressed after lncRNA knockdown or overex-

pression, LncRNA2Target was developed, and a limited

number of human lncRNAs were included (15).

Systematically predicting the lncRNA function has al-

ways been one of the major challenges. Functionally

related genes that are involved in the same biological path-

ways are often regulated by similar gene regulators (16,

17). Thus, an alternative approach to genome-wide infer-

ences to the potential function of lncRNAs is to determine

whether their expression patterns correlate with those of

known genes with certain functions based on co-expression

analysis. For example, Ramos et al. (18) constructed co-

expression networks, including both mRNAs and

lncRNAs, to associate specific lncRNAs with specific neu-

ral cell types in vivo and in neurological disease states.

Currently, the transcriptome data that contain both

lncRNA and protein-coding genes are rapidly increasing

due to the dramatic advances in RNA-Seq techniques, and

several methods or databases have also been developed to

fill this gap. For example, based on the re-annotated

microarray data, Liao et al. (19) developed a tool called

‘ncFANs’, which performs functional annotation of human

and mouse lncRNAs based on coding–non-coding gene

co-expression networks or condition-related differentially

expressed lncRNAs. Based on expression correlations be-

tween lncRNAs and protein-coding genes across 19 human

normal tissues, LncRNA2Function was developed by using

hypergeometric tests to functionally annotate lncRNAs

with significantly enriched functional terms among the

protein-coding genes that are co-expressed with the

lncRNAs across 19 human normal tissues (20). In addition,

‘lncRNAtor’ developed a module to investigate only indi-

vidual lncRNA function based on co-expressed protein-

coding genes using collected RNA-Seq data (14). However,

increasing evidence has shown that both essential biolo-

gical functions and complex diseases could be affected by

several lncRNAs and that the lncRNAs often function in

highly complex regulatory networks (21–23). Thus, in sys-

tematic studies in which lncRNA combinatorial effects

may alter a specific biological function, it is important to

understand the mechanisms of complex regulations in

humans; however, none of the databases has been ad-

dressed this issue.

Here, based on the re-use of 241 independent RNA-Seq

datasets, we introduced Co-LncRNA, a web-based compu-

tational tool that performs enrichment analyses of expres-

sion-related genes with individual or multiple lncRNAs in

all known GO annotations and KEGG pathways. The

combinatorial effects of lncRNAs in the modulation of a

specific biological function are investigated by our tool

through the simultaneous analysis of multiple lncRNAs.

Co-LncRNA offers graphical output to overview the parts

of the pathways that are modulated by lncRNAs, and pro-

vides a specific tool to display relevant lncRNA–protein-

coding gene co-expression networks. Co-LncRNA also

allows users to upload lncRNA and protein-coding gene

expression profiles to investigate the lncRNAs combinator-

ial effects in their relevant biological context. All of the

lncRNA/protein-coding gene expression and correspond-

ing co-expression analysis results can be downloaded

freely.

Materials and methods

Data curation and reprocessing

We followed the principle and workflow shown in

Figure 1 to generate lncRNA combinatorial effects in all

known GO annotations and KEGG pathways.

First, we curated the human total/poly(A)þ RNA-Seq

datasets that are available from GEO (24) before
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December 2014 by searching keyword combinations of

‘human’ and ‘RNA-Seq’. Some RNA-Seq datasets from

TCGA were downloaded at level 3 of the read counts to

gain further insight into the combinatorial effects of

lncRNAs in human cancer, which is publicly available at

http://www/cancergenome.nih.gov/. For each dataset, we

manually collected many types of sample information,

such as tissue types/cell lines, cancer status, molecular

treatment and smoker/non-smoker status. Considering

the different types of samples that were mixed in one data-

set, we also classified them into refined sub-groups based

on the sample information that is abstracted above. All of

the RNA-Seq datasets with <5 samples were excluded. In

total, we obtained 241 independent datasets across 28

human tissue types/cell lines for a total of 6560 individuals

(29 012 samples) (Figure 2, Table S1).

To obtain genome-wide lncRNA and protein-coding

gene expression profiles from GEO datasets, we down-

loaded the raw data of the majority of the datasets and sub-

sequently performed transcriptome assemblies by applying

TopHat v2.0.9 and Cufflinks v2.1.1 with the default param-

eters (25, 26). For the other GEO datasets, their ready-made

profiles were directly applied. To identify the co-expressed

protein-coding genes for the lncRNAs, only the expressed

genes were considered, and the threshold of the expression

value was set to 0.001. For the TCGA datasets, expression

profiles were obtained from RSEM quantification (27). In

this study, human lncRNA and protein-coding gene annota-

tion was directly downloaded from GENCODE v22 (28)

(http://www.gencodegenes.org/releases/22.html). All of the

categories in the ‘Long non-coding RNA gene annotation’

GTF file were considered lncRNAs. In addition, protein-

coding gene annotation was obtained from the ‘protein_cod-

ing’ category.

Next, based on reuse of the RNA-Seq sub-dataset that

contained both lncRNA and protein-coding genes, we used

two different methods to estimate the co-expression rela-

tionships between the lncRNA and protein-coding genes,

namely, the linear regression model and Spearman rank

correlation (Supplementary Methods). Moreover, the sig-

nificance P-value of the regression/correlation coefficient

was estimated. Finally, a set of co-expressed genes (CEGs)

of each lncRNA were identified under a given coefficient

threshold and/or threshold value of significance; in other

Figure 1. Flowchart used in Co-LncRNA for investigating the combinatorial effects of lncRNAs in GO annotations and KEGG pathways.
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words, the expression of these protein-coding genes was

significantly associated with the lncRNA expression level.

Each dataset was analysed independently.

The aforementioned regression/correlation analysis was

used to identify CEGs of individual lncRNA under a spe-

cific dataset. For a given lncRNA list (two or more

lncRNAs), their CEGs sets were integrated together (inter-

section or union of CEGs from individual dataset). Instead

of performing analyses on a dataset-by-dataset basis, the

CEGs of lncRNAs could also be integrated to decrease the

influence of the datasets (intersection or union of the CEGs

from different datasets). Then, enrichment analysis was

used to detect the lncRNA combinatorial effects, and the

significant P-values were calculated by a hypergeometric

distribution (Supplementary Methods). Two kinds of cor-

rection methods, Bonferroni and Benjamini & Hochberg,

were offered for multiple hypothesis testing. Two types of

function information were considered, including the three

branches of GO and KEGG pathways. At a given threshold

of significance for the P-values, we could obtain the com-

binatorial effects of lncRNAs in all known GO

annotations and KEGG pathways. Different thresholds of

significance are considered here.

Implementation

Co-LncRNA is based on a relational schema, which is sup-

ported by future Co-LncRNA updates (Figure S1). This

web site was developed in JSP using a Servlet framework

and is deployed on a Tomcat 6.0.33 web server, which

runs under a CentOS 5.5 system. The JQuery was used to

render, generate and manipulate the gene expression distri-

bution views. The ‘CEGsNet’ module can be visualized by

a Cytoscape Web tool that is embedded into Co-LncRNA.

The ‘Analyse your data’ module is realized by R and Perl

script. Co-LncRNA was fully tested in Google Chrome

(version 17 and later).

Figure 2. Statistics of datasets and samples used in Co-LncRNA. Distribution of (a) the datasets and (b) the samples. The two numbers behind the tis-

sue type/cell line names represent the dataset sizes and sample sizes, respectively.
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Results

Database content

Co-LncRNA was designed to investigate the lncRNA com-

binatorial effects in the GO annotations and KEGG path-

ways based on human RNA-Seq data, and is available at

http://www.bio-bigdata.com/Co-LncRNA/. Co-LncRNA

currently contains 241 independent RNA-Seq datasets

across 28 human tissue types/cell lines for a total of 6560

individuals (29 012 samples) (Figure 2). Detailed informa-

tion of each dataset is available in the sources provided in

Supplementary Table S1. Co-LncRNA currently con-

tains six modules (Figure 3): (a) the acquisition of lncRNA

co-expressed protein-coding genes (entitled ‘CEGs’); (b)

the lncRNA combinatorial effects in functions,

including GO annotations and KEGG pathways under a

specific dataset (entitled ‘CEGsFuncs’); (c) the integrated

results of lncRNA combinatorial effects from differ-

ent datasets (entitled ‘merge CEGsFuncs’); (d) the visual-

ization of lncRNA–protein-coding gene co-expression

network (entitled ‘CEGsNet’); (e) the online analysis tool

(entitled ‘Analyse your data’); and (f) the download

module.

After choosing the tissue/disease condition of interest

and entering a gene name (lncRNA or protein-coding

gene), the ‘CEGs’ module provides a list of the co-

expressed pairs between the lncRNAs and protein-coding

genes, as well as the values of correlation and significance

(Figure 3a). In the current version of Co-LncRNA, the

gene names could be represented by Ensembl gene ID or

symbol, and two different types of methods were used to

detect the co-expression pairs. Moreover, the users are

allowed to further filter the co-expressed list by the stricter

correlation or significance thresholds. For each correlated

pair of lncRNA and protein-coding genes, a correlation

plot was also provided in a pop-up window.

As one of the most important modules of Co-LncRNA,

the ‘CEGsFuncs’ component can be used to investigate the

lncRNA combinatorial effects in the GO annotations and

KEGG pathways in a given dataset (Figure 3b). Similarly,

the users must choose a biological condition of interest and

input a single lncRNA or set of lncRNAs, and the

‘CEGsFuncs’ returns the enriched GO annotations and

KEGG pathways list under a given threshold value of sig-

nificance. The combinatorial effects of multiple lncRNAs

are considered to be based on the union or intersection of

Figure 3. Six main modules of Co-LncRNA. (a) The ‘CEGs’ module provides the co-expressed associations between the lncRNA and protein-coding

genes. (b) The ‘CEGsFuncs’ module provides the combinatorial effects of the lncRNAs in the GO annotations and KEGG pathways. (c) The ‘merge

CEGsFuncs’ module provides the integrated results for the combinatorial effects of lncRNAs in multiple datasets. (d) In the ‘CEGsNet’ module, the

relevant networks that were built with lncRNAs and CEGs can be visualized. (e) In the ‘Analyse your data’ module, the users can submit their own

matched lncRNA and protein-coding gene expression profiles to investigate the combinatorial effects among the lncRNAs. (f) All of the internal

lncRNA and protein-coding gene expression data and the lncRNA-CEG pairs can be downloaded in the ‘Download’ module for further analyses.
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their co-expressed protein-coding genes. The enrichment

P-value of the union co-expressed protein-coding genes in

a specific GO annotations and KEGG pathways will reflect

the coordinated correlation of the function by all

lncRNAs, whereas the intersection of co-expressed pro-

tein-coding genes gives an overview of the cooperative cor-

relation of single genes by all of the lncRNAs. Moreover,

co-expressed protein-coding genes that are implicated in a

given pathway are graphically annotated as an overlay of

the pathway wiring diagram that is provided by the KEGG

database to facilitate the identification of genes of interest

directly on the pathway map.

The ‘merge CEGsFuncs’ module was developed to de-

crease the effects of different datasets on the co-expressed

protein-coding genes of lncRNAs (Figure 3c). Similar to

the ‘CEGsFuncs’ module, the ‘merge CEGsFuncs’ module

allows users to select multiple datasets. First, the unions or

intersections of the CEGs of multiple lncRNAs within each

dataset are merged. Then, the second type of merge is per-

formed across different datasets, and it generates the inte-

grative CEGs of the lncRNAs, which are further used to

perform function enrichment analysis.

In addition, another three modules with different useful

functions were provided. For a given lncRNA set,

the ‘CEGsNet’ component is developed to visualize the co-

expression network between these lncRNAs and

corresponding co-expressed protein-coding genes, which is

realized by the Cytoscape Web tool (Figure 3d). We also

encouraged users to submit their own matched expression

profiles of both lncRNA and protein-coding genes to the

‘Analyse your data’ module and investigate the lncRNA

combinatorial effects in all known GO annotations and

KEGG pathways that involve their selected biological con-

dition (Figure 3e). Finally, all of the internal lncRNA and

protein-coding gene expression data and corresponding co-

expression relationships can be freely downloaded in the

‘Download’ component for further analyses (Figure 3f).

Case study

Co-LncRNA allows users to investigate the function effects

of individual lncRNA or multiple lncRNAs in known biolo-

gical functions under user-selected tissue(s) or disease(s)

context. Take a combination of MALAT1 with TUG1 as

an example. Several studies suggested that high MALAT1

expression is associated with poor prognosis in non-small

cell lung cancer (NSCLC), whose elevated expression is

also associated with cellular hyper-proliferation (29, 30).

Zhang et al. (31) reported that lncRNA TUG1 can regulate

cell proliferation in NSCLC. To infer putative combin-

ational functional effects for these two lncRNAs in lung

cancer, we first separately obtained the CEGs of MALAT1

and TUG1 in the ‘CEGs’ module by using the ‘Lung (GEO

Seo JS et al.)’ dataset, which contains 87 lung adenocarcin-

omas and 77 adjacent normal tissues. The correlation

method was set to the linear regression model, and the

threshold of regression significance was 0.01. As a result,

there are 7191 CEGs for MALAT1 and 8087 CEGs for

TUG1. Next, in the ‘CEGsFuncs’ module, we performed an

enrichment analysis of integrated CEGs (union of CEGs) of

these two lncRNAs in the KEGG pathways by using the

‘Lung (GEO Seo JS et al.)’ dataset. In agreement with previ-

ous reports, the ‘CEGsFuncs’ results showed that these two

lncRNAs can significantly affect the ‘KEGG pathways in

cancer’, ‘Cell Cycle’ and other various pathways (P< 0.05)

(Figure 3b). Moreover, to decrease the effects of different

datasets, we further integrated two datasets (a union of

datasets), the ‘Lung (GEO Seo JS et al.)’ and ‘Lung (GEO

Kim SC et al.)’ datasets, to investigate the combinatorial ef-

fects of lncRNAs in multiple datasets in the ‘merge

CEGsFuncs’ module. Similarly, these two lncRNAs are also

involved in ‘KEGG pathways in cancer’ and ‘Cell Cycle’

(Figure 3c). These results indicate that lncRNAs can co-

operate with another to modulate a specific biological

function.

Conclusions and future directions

To the best of our knowledge, Co-LncRNA provides a series

of highly specific tools for lncRNA-related analysis, includ-

ing identifying lncRNA co-expressed protein-coding genes,

and investigating single lncRNA or lncRNA combination ef-

fects in GO annotations and KEGG pathways. We hope

that Co-LncRNA will become an efficient tool that is easy

to use and that can be incorporated successfully into

lncRNA-related analysis pipelines, particularly for lncRNA-

targeted functional analysis. Considering the heterogeneity

between different datasets, the subsequent analysis of RNA-

Seq data will also be appropriately adjusted following each

dataset’s specifications. The system will be continuously

updated with more human RNA-Seq datasets on an annual

basis. As the number of human RNA-Seq experiments in-

creases, after both manual curation and computational ana-

lysis, we will incorporate them into Co-LncRNA.

Supplementary Data

Supplementary data are available at Database Online.
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