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Tumors are the result of accumulated genomic alterations that cooperate synergistically to produce uncontrollable cell growth.

Although identifying recurrent alterations among large collections of tumors provides a way to pinpoint genes that endow a selective

advantage in oncogenesis and progression, it fails to address the genetic interactions behind this selection process. A non-random

pattern of co-mutated genes is evidence for selective forces acting on tumor cells that harbor combinations of these genetic alterations.

Although existing methods have successfully identified mutually exclusive gene sets, no current method can systematically discover

more general genetic relationships. We develop Genomic Alteration Modules using Total Correlation (GAMToC), an information theor-

etic framework that integrates copy number and mutation data to identify gene modules with any non-random pattern of joint alteration.

Additionally, we present the Seed-GAMToC procedure, which uncovers the mutational context of any putative cancer gene. The software

is publicly available. Applied to glioblastoma multiforme samples, GAMToC results show distinct subsets of co-occurring mutations,

suggesting distinct mutational routes to cancer and providing new insight into mutations associated with proneural, proneural/

G-CIMP, and classical types of the disease. The results recapitulate known relationships such as mutual exclusive mutations, place

these alterations in the context of other mutations, and find more complex relationships such as conditional mutual exclusivity.
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Introduction

Tumors are known to evolve by acquiring genetic lesions. Each

mutation creates a cellular state uniquely predisposed to thrive

with the addition of further specific survival abilities (Hanahan and

Weinberg, 2011). Recent studies have successfully exploited the se-

lective pressures on developing tumors to rank important cancer

genes by mutational recurrence across compendiums of tumor

samples (Beroukhim et al., 2007; Mermel et al., 2011; Lawrence

et al., 2013). But approaches that score each gene individually

ignore the known effects of mutational context on selection.

Tumor survival can be promoted by damage to only one of a set of

alternate genes in a pathway (mutual exclusivity of aberration),

while other genetic changes only provide a selective advantage to

a cancer in a given mutational context (co-occurrence of aberration).

For example, in melanoma, BRAF gain-of-function mutations occur in

40% ofpatients andNRASmutations in25%,but thesetwo members

of the MAPK pro-growth pathway almost never co-occur, either

because of lack of selective advantage to further disruption of the

MAPK pathway, or because such co-mutation proves deleterious

(Davies et al., 2002). Despite their frequency, MAPK-activating muta-

tions alone are an evolutionary dead end for the cancer, resulting in

cell senescence (Michaloglou et al., 2005). Cancer progression also

requires disruption of a tumor suppressor function such as CDKN2A

(Michaloglou et al., 2005). This example shows that complex pat-

terns of mutual exclusivity and co-occurrence of mutation, thus far

identified in a piecemeal fashion, are to be expected across cancer

cases. Additionally, the observed mutational relationships of

genes, and thus the context in which a genetic aberration is

of benefit to tumor development, can provide insight into the

functions of genes that are altered in cancer.

However, most approaches seeking relationships between
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cancer mutation events focus on mutually exclusive lesions,

reasoning that this pattern may reflect underlying pathways

(Miller et al., 2011; Vandin et al., 2012; Leiserson et al., 2013;

Szczurek and Beerenwinkel, 2014). But these methods will miss

other relationships between mutations, such as co-occurrence.

Additionally, the assumption that different genes in the same

pathway are interchangeable is a strong claim. Combinations of

genes have been found to jointly predict cancer phenotype

(Varadan and Anastassiou, 2006; Mo et al., 2013), but, to our

knowledge, no unsupervised method exists for finding related

genetic alterations.

A different approach has been developed to scan for representa-

tion of dysregulated genes within gene sets known to be function-

ally related. Recent studies have found pathways predicted to be

perturbed by differential gene expression (Tarca et al., 2009), or

mutation (Boca et al., 2010), or when multiple sources of informa-

tion on gene activity are integrated (Vaske et al., 2010). Other

methods have used graph topology to find functional interaction

sub-networks enriched in mutated genes (Cerami et al., 2010;

Wu et al., 2010; Vandin et al., 2011; Hofree et al., 2013), or to iden-

tify cliques of genes with mutually exclusive mutational occurrence

(Ciriello et al., 2011). These approaches have the advantage of

being able to use diverse genome-wide alteration information

and provide a biological context for the patterns discovered, but

they rely on known gene interactions and on narrow definitions

of gene interaction.

We propose a method that integrates copy number and point

mutation information, does not require prior functional informa-

tion, and can find any structured module of genes, rather than

only mutually exclusive alterations. The method, Genomic

Alteration Modules using Total Correlation (GAMToC), selects a

gene set with high total correlation. Total correlation measures

the difference between the joint uncertainty, or entropy, of a set

of variables (genes), as compared to their individual uncertainties.

When there is no joint relationship between the variables, the

difference will vanish. On the other hand, a high total correlation

suggests a joint relationship among the variables, which is not

necessarily linear. Because our method can detect any sort of

dependency between the variables, it is sensitive to unexpected

varieties of gene interactions. It does not require the assumption

that different alterations to the same pathway are more or less

interchangeable, and it is not restricted to finding genes only in

the same pathway. Instead, the genomic data can lead us to the

combination of functional changes that are cooperating in the

cancer. We present two implementations of GAMToC, one that

uses a greedy method to find a single module starting from a pair

of related genes, and another that uses a simulated annealing

(SA) method to find the highest-scoring gene set. We examine

the speed of the two implementations as compared to exhaustive

search, and we evaluate their sensitivity in simulated data. Then,

we apply the method to glioblastoma multiforme (GBM) copy

number and mutation data from The Cancer Genome Atlas

(TCGA). Additionally, in Seed-GAMToC, we make use of the same

principles to characterize query genes with a likely, but unclear,

role in cancer progression by finding a module that contains

genes with a related pattern of selection.

We apply GAMToC to copy number and nucleotide mutation mea-

surements from TCGA glioblastoma project (Cancer Genome Atlas

Research Network, 2008), as summarized in Figure 1. We are

able to recapitulate known gene interactions, and we additionally

recover genes associated with subtypes of glioblastoma. Our

results suggest that specific alterations to key cancer pathways

are not equivalent; on the contrary, there are clear contexts

where functionally related genes are differentially selected for

alteration. Thus, our method is uniquely suited to find and charac-

terize genes that are related in cancer development. The software is

freely downloadable and can be applied to any copy number and

point mutation data set.

Results

Utility of searching for mutually informative gene sets

Whilemany well-characterizedcancerdrivergenesarehighlyrecur-

rent, more rarely mutated tumor drivers are difficult to identify amidst

unstable genomes when using mutational frequency alone. Thus, we

must utilize other aspects of the alteration pattern of these genes,

such as mutual exclusivity or co-mutation with other genes,

keeping in mind that frequency of individual lesions may be low.

As shown in Figure 2A, the number of samples needed to statis-

tically identify mutual exclusivity between a pair of genes grows

large when the frequency of mutation is low, and this size is

orders of magnitude larger than the number needed to identify

co-mutated pairs. This is intuitive, as the expectation is that two

infrequent mutations are most likely to have no co-occurrence.

When a set of mutually exclusive genes, each with the same low

mutational frequency, is instead assessed for a significantly

related mutation pattern, the number of samples required to

attain significance is much lower (Figure 2B).

Additionally, multi-gene patterns may exist other than mutual

exclusivity or co-occurrence. An example would be an ‘exclusive

or’ triplet of genes where lesion of any two of the genes is

enough to change a phenotype, and the third adds no further ad-

vantage. As shown in Figure 2C, the total correlation of this

three-gene pattern is highly significant, but the genes display no

mutual exclusivity or co-occurrence pattern.

Evaluation of greedy and SA algorithms

We have implemented two methods that integrate copy number

and point mutation data to find sets of genes with high total cor-

relation, both taking different approaches to finding patterns in

this data set. The greedy method finds a module by starting

from the pair of genes with the strongest mutual information, it-

eratively adding the gene that creates the best score. On the

other hand, the SA method allows us to explore the broader land-

scape of modules in order to find an optimal solution. In general,

SA methods semi-randomly sample possible solutions to a hard

problem, sampling those with the better scores (objective func-

tion) more often. Our application of SA samples combinations

of genes with high total correlation, and it can find a solution

with a higher score. A detailed description can be found in the

Materials and methods.
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First, we compared the running time of our implementations

against each other and against an exhaustive method. We create

a simulated data set containing 100 genes and 100 samples. As

shown in Figure 3A, time complexity of the exhaustive method

increases exponentially with module size, while the greedy

method will finish in tens of seconds and the SA method will

finish in tens of minutes.

To evaluate the accuracy of the greedy and SA approximations,

we randomly generate an embedded module in randomly simu-

lated data, as described in the Materials and methods. This simu-

lated module has a six-gene pattern including an exclusive or

triplet of genes and their negations (Figure 3B), while all other

genes are randomly mutated at an exponentially distributed back-

ground mutation rate (see Materials and methods). Two simulation

parameters are used: coverage and noise. In a larger coverage,

most patients contain this pattern for the module genes, while

the rest of the patients have a pattern as generated by the back-

ground model. Thus, the score of the module genes will be

higher and the module will be more readily detected. At each cover-

age, the noise varies from low noise (on average 1% of the mutation

statuses are flipped at random), to high noise (15% of the mutation

statuses). We generate the module and the rest of the data 100

times for each setting of the parameters. Then, we assess the

average number of genes from the gene set that is recovered by

the algorithms, where six genes is the maximum (Figure 3C).

Note that in each setting, including low coverage and high noise,

at least three of the six module genes are recovered. This shows

that our score, as well as our module recovery method, is able to

discover the patterns robustly in these settings.

Application of greedy GAMToC to TCGA GBM samples

First, we explore modules of different sizes using only the muta-

tion data, which are much more sparse than copy number data. The

resulting mutation matrix contains 256 genes that are mutated in at

least 2% of 283 patients with whole exome sequencing. For a

module of size 3, the SA method and the greedy method arrive at

the same module of mutated genes. Comparing this against the ex-

haustive method, we find that GAMToC recovers the best module in

the data. When module size equals 4, it would take 3.5 days for the

exhaustive method to search all modules (Figure 3B).

Figure 1 Workflow of GAMToC gene set finding. Genomic alterations (e.g. CNAs and somatic mutations) are integrated to create a binary matrix

of samples and genes. The total correlation score compares the entropy of the mutational statuses of individual genes (labeled g1 through g4)

against their joint entropy, in effect testing the hypothesis that these gene mutational statuses have a relationship (indicated by the connected

network). GAMToC finds sets of mutationally related genes using this score, and we visualize the results in a pairwise correlation network.
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Notice that while total correlation increases according to the

module size, it does not make sense to compare different size

modules in terms of total correlation. We use the G-statistics to

overcome this issue (refer to Materials and methods for detail),

and calculate P-values based on the chi-square distribution for

all modules. We find that the five-gene module containing TP53,

IDH1, ATRX, RB1, and PTEN is the most large and significant one

in this example (Figure 4). In fact, TP53, IDH1, ATRX, RB1 are all sig-

nificantly positively correlated with each other. PTEN has a signifi-

cant negative correlation with IDH1, as well as a positive correlation

with mutation in RB1.

Next, we apply the greedy algorithm to a set of 273 tumors from

the TCGA GBM project that have available copy number and exome

sequence. Collating these data results in a mutation matrix of 756

alterations on the 273 samples. The greedy module recovered dis-

plays an interesting pattern of pairwise co-occurrence and mutual

exclusivity between mutations (Figure 5A). It is important to note

that total correlation finds a multi-gene structure of related altera-

tions: as in the ‘exclusive or’ example (Figure 2C), there may not be

any strong pairwise relationships in a strong module. However, for

visualization purposes, we display the resulting modules in terms

of their network of pairwise positive correlations (co-occurrence

of a pair of genes) and negative correlations (mutually exclusive

mutations). Thus, for the remainder of this work, we provide a pair-

based network visualization of the module structure.

We grow a greedy module up to the maximum feasible size,

which is eight genes. In the greedy module, patients appear

more likely to display mutations that co-occur with TP53, IDH1,

and RB1, or that are mutually exclusive with these genes.

Patients with mutation or deletion of TP53 are significantly more

likely to also have mutations in IDH1 and ATRX, and ATRX and

IDH1 as a pair have the highest mutual information in the data

set. The deleted and mutated gene RB1 strongly co-occurs with

TP53 lesions, though it has no positive correlation with IDH1 or

ATRX. Deletion to the terminal section of chromosome 11p,

which GISTIC2 (Beroukhim et al., 2007) identifies as peak gene

BRSK2, also frequently co-occurs with lesions of TP53 and RB1.

The 11p15 region is imprinted, and it is known to be deleted, to

undergo loss of heterozygosity and to have differential epigenetic

regulation in multiple cancer types (Schwienbacher et al., 2000;

Onyango and Feinberg, 2011).

Many of the genes that co-occur with TP53 alteration have a mu-

tually exclusive pairwise relationship with copy number alterations

in EGFR, CDKN2A region, or chromosome 10 deletion. The domin-

ant effect of chromosome 10 deletion is likely the inactivation of

the tumor suppressor PTEN, which is one of the most prevalent

events across tumors. However, it is interesting that a large

section of the chromosome is deleted, not just PTEN. The greedy

GAMToC selects the GISTIC2 deletion peak on the terminus of

10p, containing ADARB2, as well as IDI1, IDI2, and WDR37. Very im-

portantly, this region has stronger pattern of positive correlation

with EGFR deletion, and negative correlation with IDH1 mutation,

than does PTEN deletion, explaining its selection by the greedy

method. While the full module of eight genes is very interesting,

the seven-gene module (removing CDKN2A region) is more statis-

tically significant.

Seeding the greedy algorithm

The greedy method has a disadvantage of performing only a local

search for a high-scoring module. It starts from the pair of genes

with highest mutual information (pairwise total correlation), and

uses a greedy approach to find a module that contains that pair.

While we also develop the SA method to find other modules, the

greedy method has two advantages for understanding cancer evo-

lution. First, exploring the search space around the pair of genes

with the highest mutual information is informative of processes

in cancer, as we show above. Second, the greedy algorithm

allows us to choose the starting point of the module search, by

fixing an initial gene, which we call a seed gene. In this procedure,

termed Seed-GAMToC, we identify a local maximum of total cor-

relation that includes that seed gene. First, we find the partner

gene for the seed gene, forming a gene-pair with the highest

mutual information, and we grow the greedy module from this

pair. Thus, we seek to characterize a given gene by finding

what module of high total correlation contains that gene, or, in

other words, the genetic context in which mutations of that gene

Figure 2 Ability to find multi-gene co-mutational patterns. (A) Finding

mutually exclusive pairs of gene mutations requires orders of magni-

tude more samples as compared with finding co-mutated genes. (B)

With a larger set of genes, fewer samples are needed. (C) For an exclu-

sive or triplet pattern, the total correlation is strong, but a pairwise cor-

relation or anti-correlation score would fail to detect a relationship.
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appear. Discovering these relationships, such as the genetic

context in which disruption of a query gene is advantageous, can

illuminate the function of putative cancer genes.

Among the results of cancer genomics studies are frequent

mutations in genes with a role in the cancer of interest that is not

fully characterized. We run Seed-GAMToC for a number of genes

that are significantly mutated or in copy number peaks in GBM

patients, but were not selected by the greedy algorithm. We were

interested in CDK4 because it is a cell cycle kinase that is focally amp-

lified in GBM, and mutual exclusivity has been observed between

amplification of CDK4, deletion to the CDKN2A locus, and deletions

and mutations to RB1. We wondered what factors influence this

mutual exclusivity, and we ran Seed-GAMToC starting from CDK4

(Figure 5B). In fact, while CDKN2A is mutually exclusive with both

CDK4 and RB1, the latter as a pair are not strongly mutually exclusive

(chi-square P-value ¼ 0.39). However, in patients with no CDKN2A

deletions, their conditional mutual exclusivity is significant (chi-

square P-value¼ 4 × 10
24). It is interesting that both CDK4 and

RB1 have strong co-occurrence with other genes that are also mutu-

ally exclusive with CDKN2A. CDK4 co-occurs in patients with muta-

tion to SPTA1, a recurrently mutated member of the spectrin cell

scaffolding complex. Mutation to SPTA1 could impact cell adhesion,

and mutations to other spectrins have been shown to affect cell cycle

regulation (Metral et al., 2009). On the other hand, RB1 co-occurs

with TP53 and its correlated genes. CDKN2A can regulate CDK4

and RB1, as well as TP53, explaining this discovery.

Figure 3 Comparison of different methods in GBM mutation data. (A) Time complexity of SA, Greedy method and Exhaustive method, as compared

to the increase of module size. (B) Example of a simulated module (with coverage 50% and noise 5%). (C) The average number of simulated module

genes recovered (out of the full six gene module) across 100 simulations. The SA method has better recovery than the greedy method, but both

recover five of the six genes on average at 50% or more coverage.
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Figure 4 Recovery of different module sizes in only mutation data. The P-value associated with the total correlation is indicated on the y-axis, and

the modules for each size are shown. For each size, the same module was found from the greedy and SA methods. Edge colors represent positive

and negative correlations between genes. Edge thickness denotes the strength of the association. Node size represents the frequency of alteration.

Node border width represents the number of nonsynonymous mutations in that gene.

Figure 5 Networks of total correlation modules. The legend is the same as in Figure 4, except for that node color represents average copy number

amplification or deletion. (A) The greedy module from glioblastoma. (B) The Seed-GAMToC module, seeded with CDK4. (C) The SA module. (D) The

genes from the greedy and SA modules are compared to subtypes of glioblastoma. The darker the shade, the stronger the association (Fisher’s

exact test) of gene mutation status and that subtype.

208 | Melamed et al.



Because RB1, CDK4, and CDKN2A all have roles in cell cycle, we

also looked at the patterns associated with other cell cycle genes

that are significantly mutated. For example, CDK6 plays a similar

role in promoting cell cycle progression as CDK4, and, like CDK4,

this gene is strongly amplified. Seeding with CDK6, we find a

strong correlation with PTEN deletion, and anti-correlation with

ATRX and IDH1 mutations (Supplementary Figure 1A). Thus, unlike

CDK4, CDK6 may be a beneficial amplification in the context of the

mitogenic PI3-kinase pathway, which is deregulated by PTEN dele-

tion or mutation. On the other hand, another mitogenic event, amp-

lification of PIK3C2B (along with its chromosomal neighbor MDM2),

seems to cooperate with deletion of RB1 and amplification of the cell

cycle promoting amplification MYCN (Supplementary Figure 1B).

One final gene closely related to cell cycle regulation is CCNE1, and

amplification of this gene is most strongly mutually exclusive with

TP53 (Supplementary Figure 1C). One effect of TP53 inactivation is

in fact de-repression of CCNE1, and CCNE1 likewise can mediate

genetic instability (Hwang and Clurman, 2005). Thus, the module

identified by the greedy method is useful for understanding the

role of a query gene in glioblastoma development, including closely

functionally related genes.

Simulated annealing results consistently identify a high

scoring module

The SA algorithm provides an alternate mode of selecting a

module, allowing us to more broadly search for a high-scoring

module. Unlike the greedy method, SA can escape local maxima

and find a higher scoring module. Over the course of the semi-

random sampling, the SA undergoes ‘annealing’, becoming

more selective for high total correlation modules. A run of SA

will eventually converge on one module, but in practical settings,

SA will converge on a local optimum. Because there are many

more copy number events than nucleotide mutation events, and

all alterations are counted equally in GAMToC, the SA is more

likely to converge on states involving broader copy number

changes, making it somewhat less sensitive to mutational pat-

terns or very focal somatic copy number aberrations than the

greedy algorithm. In multiple runs of the SA, one best module

was found, which has a higher total correlation score than the

greedy module (1.28 as opposed to 1.03), and is extremely

statistically significant.

In the SA’s best module, a pattern appears related to that of the

greedy module, but dominated by copy number changes

(Figure 5C). As in the greedy module, the SA module has a set of

genes that co-occur with mutation of TP53. This includes, as

before, RB1 and BRSK2. Additionally, deletion in chromosome

15, in GISTIC2 peak gene TMCO5A co-occurs with these genes,

while another deletion region on chromosome 14 centered on

PTPN21 is also associated with some of TP53
′s co-occurring part-

ners. Mutually exclusive with TP53 and RB1 mutations is again

deletion to the CDKN2A/CDKN2B locus.

Discussion

Our algorithms search for genes with related occurrence of alter-

ation across tumor samples, based on the premise that the joint

alteration status of genes in tumor samples can inform us of the

evolutionary process behind the cancer. Unlike mutual exclusivity

methods that impose a single structure on the data, our approach is

able to form a more comprehensive picture of alteration patterns

that exist in cancer data. The result of applying GAMToC to the

TCGA GBM data is a network of genes with a jointly related mutation

pattern, suggesting that the alterations in GBM do in fact follow an

underlying structure. The interpretation of the module can be more

complex, as opposed to mutual exclusivity, which is often inter-

preted as representing alternative mutations in a pathway. But

one interpretation is that the co-occurring sets of gene lesions

represent alternative pathways to glioblastoma development:

there are different contexts in which these different lesions

provide a selective advantage.

It is important to consider that cross-sectional data, such as is

represented in TCGA, is the result of a progressive process of

cancer development. Modeling this process is the subject of

many studies (Beerenwinkel et al., 2014; Olde Loohuis et al.,

2014; Wang et al., 2014). In fact, the results of GAMToC can be

thought of as a view into these selective forces as they act across

the population of patients. While our goal is not to model the evo-

lutionary relationships of mutation events, the uncovered patterns

show collaborating mutations that can only be the result of the

genetic context created by sequential somatic mutations.

The interpretation of the sub-module structure as indicating

routes to GBM development suggests that patients harboring dif-

ferent sets of mutations may have different characteristics. In

fact, this pattern has been observed in the TCGA GBM cohort.

Subtypes of glioblastoma have been identified by expression

(Verhaak et al., 2010), as well as by methylation (Noushmehr

et al., 2010), and these have been related to specific genetic altera-

tions (Brennan et al., 2013). Patients with a methylation profile

known as glioblastoma CpG island methylator phenotype

(G-CIMP) have better survival, while patients with a gene expres-

sion pattern that follows the proneural subgroup have different re-

sponse to therapy. To support the hypothesis that the GAMToC

module is indicative of these types of tumors, we examine

whether the GAMToC modules are related to these patient sub-

types. We test whether patients with mutations to each module

gene are more likely to fall into one of the subtypes. In result, the

classical and proneural gene expression subtypes are strongly

associated with certain module genes, as is the G-CIMP methyla-

tion group (Figure 5D). Thus, our approach successfully captures

biological differences between patient groups, as reflected in dif-

ferent patterns of genetic lesions.

The classical subtype typically has co-occurring mutations in

EGFR and CDKN2A. Mouse models have suggested that activation

of EGFR can cooperate with loss of the CDKN2A locus and PTEN

to generate gliomas with high resemblance to GBM (Zhu et al.,

2009). However, rather than PTEN, the chromosome 10 deletions

of ADARB2 are selected by GAMToC. This region is strongly co-

deleted with PTEN (chi-squared P-value ¼ 3.7 × 10
225), since in

many cases of PTEN deletion most of chromosome 10 is deleted.

However, ADARB2, IDI1, IDI2, and WD47 have a stronger pair-

wise pattern with the other module genes chosen by GAMToC.
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Additionally, patients with this deletion are significantly more

likely to fall into the classical expression subtype (chi-squared

P-value ¼ 0.029), while PTEN is weakly associated with the mesen-

chymal subtype (P-value ¼ 0.086). Thus EGFR amplification,

chromosome 9 deletion of CDKN2A and CDKN2B, and ADARB2

locus deletion (including IDI1, IDI2, and WDR37) are all negatively

correlated with TP53 and are all associated with the classical ex-

pression profile.

In contrast to the better understood classical subtype of

GBM, the IDH1-p53 network associated with G-CIMP and with

proneural groups has been long studied but has so far remained

of uncertain significance for tumor initiation in the brain. The

strong co-occurrence of TP53 alterations with deletions of 11p15

(BRSK2) and 15q14 (TMCO5A) is an exciting novel finding. While

TP53, IDH1, ATRX, and BRSK2 are all highly associated with

G-CIMP, TP53 and BRSK2 are also strongly associated with pro-

neural status. BRSK2 is particularly intriguing because it is a

kinase that is highly expressed in brain and may be involved in

apoptotic stress response (Wang et al., 2012) and cell cycle regula-

tion (Li et al., 2012). Proneural tumors are also strongly associated

with TMCO5A deletion, a lesion that, distinctively, is not associated

with G-CIMP tumors. The genes in these regions may provide the

missing element to recapitulate the gliomagenic process in these

tumors.

It is also interesting to compare our modules with modules of

mutually exclusive genes. Methods to find patterns of mutual ex-

clusivity, such as MeMo (Ciriello et al., 2011) or DENDRIX

(Leiserson et al., 2013), have pointed out genes also selected by

GAMToC. These methods sometimes claim to find new pathway

interactions in this manner, exemplified by the mutual exclusivity

between CDKN2A, CDK4, and RB1, or between CDKN2A and

TP53. But GAMToC’s ability to find other relationships between

mutations shows that the mutual exclusivity is related to the

subtype-specific nature of mutations. It is very interesting to

focus on the example of the retinoblastoma pathway, which can in-

tegrate signals from the mitogenic pathways (PI3-kinases, PTEN)

and DNA damage (TP53), among others. We find that mutations

to the DNA damage (TP53), cell cycle (RB1), and mitogenic

(PTEN) pathways are prevalent across the glioblastomas, but that

different specific alterations seem to confer subtle advantages in

different mutational backgrounds. In Supplementary Figure 2, we

outline the subtype associations of genetic alterations affecting

these pathways. For example, TP53 and RB1, as well as CDK4,

are advantageous for G-CIMP and proneural tumors, while

CDKN2A is a dominant lesion in classical glioblastomas, and

CCNE1, and CDK6 also occur less frequently in the proneural

tumors. Highly functionally related genetic alterations have been

suggested to have similar effects. In the case of CDKN2A (p16)

and TP53, both lesions alter DNA damage response, while cell

cycle regulation is transformed by mutations to CDKN2A, CDK4,

CDK6, CCNE1, and RB1. However, far from the simplifying as-

sumption that mutually exclusive events represent alternative

equivalent routes to cancer development, clearly there are

subtleties resulting in subtype-specific mutations. The data

imply that mutations to genes in the same pathway are not in

fact interchangeable.

More generally, our results also provide insight into the nature of

subtype-specific lesions. As the method will detect any non-

random pattern of alteration in a collection of samples, the result-

ing module may contain genes that are co-mutated, because

they are both present in tumors of the same subtype or environ-

mental condition, rather than because of any direct functional

interaction. While patterns of joint lesion status do not allow us

to distinguish between these two conditions, our results show

that genetic context has a strong influence on selection. Thus,

the distinction between subtype-specific co-alteration versus syn-

ergistic co-alteration may be thought of as a matter of the degree of

selective advantage, rather than as two different phenomena. In

conclusion, we have developed a method to uncover novel relation-

ships between genes that are key to cancer development, and we

have related the findings to previous subtypes of glioblastoma.

Understanding the combination of genetic alterations present in

patients with a tumor will help to target therapies to their pattern

of aberrations. This application is an example of the power of a

generalized entropy-based approach to gene set recovery.

Materials and methods

Preprocessing genetic aberration data

Currently the GAMToC algorithm can start from assessments of

sample copy number aberrations and from nucleotide variant

calls resulting from whole exome sequencing (WES) data. For the

TCGA GBM data, we downloaded processed data from the Broad

Institute Firehose (http://www.broadinstitute.org/cancer/cga/

Firehose) download data set of 9/23/2013. This includes mutation

calls, GISTIC2 results, and thresholded calls of copy number status

per gene per tumor. Both copy number and matching WES data

were available for 273 GBM patients.

For copy number data, we remove calls in regions of copy

number polymorphism, as called by the Broad Institute pipelines,

and we keep only copy number alterations in genes that are in

called GISTIC2 peaks. For the nucleotide variant calls, we record

any gene with a somatic nonsynonymous mutation as mutated

in the patient. The result of this initial step is a binary matrix of

patients and genes that marks patients as having a mutation in

a gene.

We combine the two matrices in an ‘or’ gate fashion. Finally, we

merge genes on the same chromosome that are altered in exactly

the same samples into a single unit. It is important to note that

copy number aberrations are usually not focal events targeting a

single driver gene, and in fact often involve entire chromosomes.

Thus, even distant genes on the same chromosome, as another

gene already included in the module, will score as the best candi-

dates for module inclusion, although this does not reflect any func-

tionally interesting genetic interaction. In order to remove this bias,

we do not allow any module to contain more than one gene from the

same chromosome.
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Scoring the module

Our aim is to find the most mutually informative set of genes,

using the total correlation score:

TC(X1, X2, . . . , Xn) =
∑n

i=1

H(Xi) − H(X1, X2, . . . , Xn)

To find the significance of this value, we apply the G-test as follows.

As an extension of the deduction for Mutual information in

(Goebel et al., 2005), we can reformulate the total correlation

formula as

TC(X1,X2, . . . ,Xn)

=
∑n

i=1

H(Xi) − H(X1,X2, . . . ,Xn)

= 1

ln 2

∑
x1

∑
x1

· · ·
∑

x1

px1x2···xn
(x1, x2, . . . , xn)

×ln
px1x2···xn

(x1, x2, . . . , xn)
px1

(x1) · px2
(x2) · · · · pxn

(xn)

= 1

2 ln 2

∑
x1

∑
x1

· · ·

∑
x1

[px1x2···xn
(x1, x2, . . . , xn) − px1

(x1) · px2
(x2) · · · · pxn

(xn)]2

px1
(x1) · px2

(x2) · · · · pxn
(xn)

+ O3

= 1

2N ln 2

∑
x1

∑
x1

· · ·

∑
x1

[n(x1, x2, . . . , xn) − n(x1) · n(x2) · · · · n(xn)/Nn−1]2

n(x1) · n(x2) · · · · n(xn)/Nn−1
+ O3

where O3 is the Taylor series remainder term of order 3;

n(x1, x2, . . . , xn) is the observed number of events, and

n(x1) · n(x2) · · · · n(xn)/Nn−1 is the expected number of events.

According to chi-square test, 2 N ln 2 · TC approximately follows

a chi-squared distribution, with degree of freedom 2n − n − 1

(Kullback, 1968) (correct only when the number of samples is

bigger than 2
n). To give an example of the calculation of the

degrees of freedom, if we have two genes in the module, there

are four possibilities: mutated–mutated, non mutated–mutated,

mutated–non mutated, and non mutated–non mutated. That can

be seen as a 2 by 2 contingency table, which has 2
2 ¼ 4 cells with

3 constraints (the number of mutations per each of two genes, and

the total number of samples). Following the formula, the degrees

of freedom is 2
2 2 2–1 ¼ 1.

Actually, total correlation is a special case of the G-test. In statis-

tics, G-tests are formulated as

G = 2
∑

i

Oi · ln
Oi

Ei

( )

where Oi is the observed distribution (frequency), and Ei is the

expected distribution based on null assumption. It can be proved

that G approximately follows a chi-squared distribution (Sokal

and Rohif, 1981).

It is important to mention that the number of samples is import-

ant to the approximation of the distribution of total correlation. As

shown in Supplementary Figure 3, we simulate five independent

variables with different number of samples ranging from 2 to

100. The theoretical value approaches simulation results very

well when the number of sample is larger than 20, but the G-test

fails when sample size is small. Therefore in our application of

our total correlation method, if the number of samples is larger

than 2n − n − 1, we can use the G-test. Otherwise, we must use a

permutation method to calculate the P-values.

Thus, we also use the G-test to determine the maximum module

size that can be measured given the number of samples. The

number of possible module states increases exponentially with the

number of genes in the module. We are limited by the number of

samples available in order to observe the frequency of each of

these module states. Yet, the greater the number of genes in the

module, the more complex non-pairwise relationships can be

observed. Therefore, we limit our maximum module size to the size

where the total correlation can be modeled by the G-test, as described

above. An additional limitation is possible, which is to limit the module

size by the P-value attained, as described in (Liu et al., 2011). We

provide both total correlation and P-value, using the G-test.

Module selection

The greedy method starts from the pair of genes with the highest

mutual information. To grow the module from this initial pair of

genes, we then test each other remaining gene to find one,

which, together with the existing gene set, will create a set with

the highest total correlation. If no module is found at a greater sig-

nificance level than 0.05 divided by the number of genes remaining

in the module, growth is terminated. We continue to add genes until

reaching the maximum module size, as described in the previous

section. If the module resulting is no longer significant, at a

nominal P-value of 0.05, then the module growth terminates

before the maximum size is reached.

The goal of the SA method is to sample modules of genes in

proportion to the total correlation of the modules. The GAMToC

SA starts from any initial gene set of a selected size. We use the

maximum feasible module size for G-test calculations, given our

sample size. For the GBM combined copy number and whole

exome data set of 273 tumors, this is a module of eight genes.

The chain continues at each iteration by randomly choosing a

gene from the module and replacing it with another gene chosen

at random from the non-module genes. If the score of the module

is improved by this replacement, then the replacement is retained.

If instead the new gene creates a decreased total correlation, the

module change has a probability of being retained (paccept), accord-

ing to the change of the total correlation. We define log (paccept) as

proportional to the change of total correlation, with a proportional-

ity constant that we defined as 1/temp.

The temperature starts as ‘hot’, such that a small decrease in total

correlation results in a likely probability of acceptance. The tem-

perature continues to decrease by a percentage after a minimum

number of iterations and a minimum number of changes to the

module. After the change is retained or discarded, the resulting
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module is the next state in the chain. If the annealing process stops

for a certain number of iterations, representing a local maximum, it

will restart at the highest total correlation module that was reached

in the course of the annealing, representing a global maximum over

the previous iterations. The process continues at the current

temperature. The restarts will continue until the annealing con-

verges: the local maximum is also the global maximum. Thus, a

lack of improvement in the total correlation score provides our

stopping criterion. The final highest total correlation module is

our solution.

Simulation of module and assessment of results

For the simulation, we chose to create a data set of 100 genes and

100 patients, and we embedded a six-gene module in this data set.

Thus, each simulation creates a binary matrix of gene mutations per

patient. For the embedded module, the simulation uses a param-

eter specifying the fraction C of the patients that are covered in

the module pattern, where the rest of the patients have no

module pattern. The other parameter specifies random noise N

added to the module genes.

First, we simulate the background mutations for independently

mutated genes. On average in the glioblastoma data, each gene is

mutated in 12.9 samples, with a steep decline in number of genes

withhigher mutation rates. Thus,we samplefroman exponential dis-

tribution, with this empirical value as the distribution parameter, to

simulate the background mutation rate for each gene, and then we

generate the mutations for each patient for each gene according to

that gene’s simulated mutation rate. Then, we embed in this data

set a module covering C patients. We generate an exclusive or

triplet for the first three genes by using a multinomial distribution,

based on the mutation frequencies of the three genes, to pick

which two of the three would be mutated for each covered patient.

The final three genes are the negation of the first three genes.

Then, according to the noise, N% of the module bits are flipped.

For each simulation, the greedy module and the SA module are

assessed. And we compare how many of the six genes are recov-

ered in each of the 100 simulations for each parameter setting.

Comparison of recovered module to random permutations

In order to estimate how likely it is to recover a module of the

observed total correlation, we compare the result observed in

the true data to the recovered modules from randomly permuted

versions of the data. We permute the patients containing each

mutation. Over the course of 100 permutations, no permutation

has a recovered module that attains the total correlation of the

module in the true data, indicating a false discovery rate under

1%. Additionally, no random data module attains any significance

beyond a size of six genes, while the observed data contains a

module of eight genes, the maximum size that can be observed.

In Supplementary Figure 4, the results of the random permutations

are shown.

Comparison to tumor classifications

Tumor classification performed by the TCGA in (Brennan et al.,

2013) was downloaded from http://tcga-data.nci.nih.gov/

docs/publications/gbm_2013/supplement/Molecular_subtype_

classification.xlsx. Of the patients included in our study, 233 were

classified in that work. We compared these classifications with mu-

tation status of each module gene, in order to assess whether the

mutations were markers of GBM subtypes.

Software availability

The software and pre-processed data used are available at

http://sourceforge.net/p/melamedgamtoc.

Data source

The results published here are in whole or part based upon

data generated by TCGA pilot project established by the NCI and

NHGRI. Information about TCGA and the investigators and institu-

tions who constitute the TCGA research network can be found at

http://cancergenome.nih.gov/.

Supplementary material

Supplementary Material is available at Journal of Molecular Cell

Biology online.
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