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Abstract

To explore the underlying mechanisms whereby noncoding variants affect transcriptional regulation, we identified
nucleotides capable of disrupting binding of transcription factors and deactivating enhancers if mutated (dubbed can-
didate killer mutations or KMs) in HepG2 enhancers. On average, approximately 11% of enhancer positions are prone to
KMs. A comparable number of enhancer positions are capable of creating de novo binding sites via a single-nucleotide
mutation (dubbed candidate restoration mutations or RSs). Both KM and RS positions are evolutionarily conserved and
tend to form clusters within an enhancer. We observed that KMs have the most deleterious effect on enhancer activity. In
contrast, RSs have a smaller effect in increasing enhancer activity. Additionally, the KMs are strongly associated with liver-
related Genome Wide Association Study traits compared with other HepG2 enhancer regions. By applying our framework
to lymphoblastoid cell lines, we found that KMs underlie differential binding of transcription factors and differential local
chromatin accessibility. The gene expression quantitative trait loci associated with the tissue-specific genes are strongly
enriched in KM positions. In summary, we conclude that the KMs have the greatest impact on the level of gene expression
and are likely to be the causal variants of tissue-specific gene expression and disease predisposition.
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Introduction
Understanding the regulatory program is critical to under-
standing cellular development and disease susceptibility.
However, the regulatory code is much more complex than
the interpretable triplet code of protein-coding sequences
and is highly lineage-specific and context-dependent (Jolma
et al. 2013). The majority (88%) of Genome Wide Association
Study (GWAS; Welter et al. 2014) polymorphisms are in
noncoding DNA. Specifically, a noncoding variation that
alters DNA-binding sites of a transcription factor (TF) and
impacts transcriptional regulation might affect the pattern of
gene expression and have an impact on cellular development,
morphology, function, and phenotype. The fundamental
mechanisms of how genetic variants disrupt TF binding and
lead to downstream effects on gene expression are not yet
fully understood.

Accumulating evidence implicates DNA variants within
regulatory sequences in human disease and disorders (Visel,
Rubin, et al. 2009; Maurano, Humbert, et al. 2012; Sakabe et al.
2012; Dickel et al. 2013; Monteiro and Freedman 2013). A
growing number of genomic studies incorporated the inves-
tigation of functional properties of regulatory sequences into
gene expression quantitative trait loci (eQTL; Gaffney et al.
2012) and GWAS analyses. For example, breast cancer risk-
associated single nucleotide polymorphisms (SNPs) were
found to be enriched in the TF-binding sites (TFBSs) of
FOXA1 and ESR1, modulating the binding affinity of these
TFs at distal enhancer regions. These SNPs resulted in allele-
specific gene expression, exemplified by the most studied

breast-cancer-associated SNP, rs4784227. This SNP within
the 16q12.1 locus was experimentally verified to impact the
expression of the TOX3 gene which stimulates estrogen re-
sponse element-dependent transcriptional programs
(Dittmer et al. 2011) and is differentially expressed in breast
cancer cell lines that are metastatic to bone (Smid et al. 2006).
In addition, when mapping the eQTLs and SNPs to DNase I
hypersensitivity sites (DHSs; Degner et al. 2012; Maurano,
Humbert, et al. 2012), approximately 50% of the eQTLs
were also found to be DNase I sensitivity QTLs (dsQTLs;
Degner et al. 2012), and disease-associated SNPs were found
to be enriched in DHS, systematically disturbing TFBSs as well
as associated with the allele-specific chromatin accessibility
(Maurano, Humbert, et al. 2012). Overall, these studies indi-
cate that sequence-encoded regulation can impact corre-
sponding gene expression. Therefore, elucidation of
sequence-encoded regulation would facilitate better under-
standing of the relationship between genotype and
phenotype.

However, the key question is how to accurately identify
causative single nucleotide variants (SNVs). Heinz et al. (2013)
proposed a hierarchical collaborative model for enhancer se-
lection and function to prioritize regulatory variants. By ex-
ploring this model in combination with transient/stable
reporter assays, they found that the motif-disrupting variants
of the lineage-determining TFs are the causal variants that
underlie strain-specific enhancer activity. Recently, a method
named “combined annotation-dependent depletion
(CADD)” (Kircher et al. 2014) was developed to annotate
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and interpret human genetic variation. By combining diverse
annotations of genetic variation into a single score, this gen-
eral framework measures the likelihood of deleteriousness of
all possible SNVs and could facilitate the inference of all path-
ogenic variants. Nevertheless, a method that could provide a
straightforward way to identify most deleterious causative
variants in a cell type-specific manner and infer deleterious
effects of the causal variants on gene regulation is still lacking.
We recently developed a computational approach to quantify
the disruptive effects of SNPs in enhancers (Huang and
Ovcharenko 2015), which was instrumental in devising our
current study. Here, we aim to establish the complete
genome-wide profile of deactivating and advantageous mu-
tations in enhancers.

We developed an approach that extends our previous
work to systematically dissect the genetic variants (all possible
mutations) in enhancer regions and prioritize the genetic
variants with respect to their potential deleterious effects
on TF binding and functional constraints. We identified the
cell type-specific motif disrupting variants that are most likely
to deactivate enhancers (candidate killer mutations or KMs).
We observed that KMs are likely to impact the local chroma-
tin structure and might play an essential role in determining
tissue-specific (TS) gene expression. In total, approximately
0.3% of KM positions (KMPs) carry common SNPs (~4% of
KMP clusters hold common SNPs), providing us the searching
space of mutation candidates that could explain the pheno-
type differences among vertebrates in the future. We also
demonstrate that a bimodal mutation system of regulatory
elements shaped by evolutionary force relies on the co-oc-
currence of deleterious and restoration mutations (RSs)
within enhancers.

Results

Candidate KMs in HepG2 Enhancers

The goal of our study was to identify mutations in enhancers
that can disrupt binding of TFs and thus deactivate en-
hancers, which we refer to as candidate KMs. To identify
KMs, we detected potential binding sites of TFs from TF
ChIP-seq data sets and predicted mutations that alter the
binding of these TFs. As it is less likely to find a functional
binding site of the length k in a random sequence than in an
enhancer, we identified the top enriched k-mers (k = 8) in
ChromHMM HepG2 “strong enhancers” (referred to as
HepG2 enhancers later on; see Materials and Methods) as
the potential binding sites. We used binding significance—
defined as �log10(P-value) of k-mer enrichment—to identify
k-mers of interest. The greater the binding significance is, the
more likely it is that k-mer is a functional binding site of an
active TF. The top 522 k-mers (Bonferroni-corrected
P< 10�3, 32,896 tests, supplementary table S1,
Supplementary Material online) were considered significant
and selected as potential binding sites, whereas 30,647 k-mers
(P 4 10�3 without Bonferroni correction) were considered
background sites in HepG2 enhancers.

Next, to identify KMs, we computed the change in the
binding significance of a k-mer caused by a mutation using

a modified intragenomic replicates model (IGR [Cowper-Sal
lari et al. 2012]; see Materials and Methods). In the original
IGR model, the affinity of a k-mer is measured by averaging its
ChIP-seq signal across the whole genome. After that, the
impact on TF binding caused by a mutation was calculated
as a difference in wild-type and mutated k-mer affinities (all
possible k-mers overlapping a wild-type nucleotide and the
mutated allele are taken into consideration and two top-scor-
ing k-mers are used for the calculation; supplementary fig. S1,
Supplementary Material online). In our model, we used k-mer
binding significance instead of k-mer affinity to directly quan-
tify the impact of mutations on TF binding (see Materials and
Methods; supplementary fig. S1, Supplementary Material
online). This allowed us to use this method for detection of
KMs in a set of enhancers (which are enriched for binding
sites of multiple TFs), whereas the original IGR model was
tailored to the analysis of ChIP-seq signals of individual TFs. In
all, we identified 3,756,018 enhancer positions that carry
KMPs in HepG2 cell line, approximately 48% of which
could cause KMs by all three possible mutations. The majority
of enhancers (~96%) have at least one position carrying KMs.

Enriched k-mers in HepG2 Enhancers Correspond to
Liver TFBSs

We observed a noticeable sequence similarity among several
top HepG2 enhancer k-mers, with many of them overlapping
each other (supplementary fig. S2, Supplementary Material
online). To eliminate the redundancy, we clustered the 522
top k-mers into 33 distinct clusters using the Markov cluster-
ing (MCL) algorithm (van Dongen and Abreu-Goodger 2012)
based on the proportion of shared dimers between two
k-mers (see Materials and Methods). Next, these clusters of
k-mers were mapped to the TRANSFAC (Matys et al. 2006)
and JASPAR (Mathelier et al. 2014) databases of TFBSs and
further merged to 14 clusters using STAMP (Mahony and
Benos 2007) (see Materials and Methods). Twenty-two
TFBSs were matching these 14 k-mer clusters with the E-
value cut-off of 5e-3. Fourteen out of these 22 TFBSs (64%)
were liver-related, and the majority of k-mer clusters were
associated with at least one liver-related TFBS (fig. 1A and
supplementary fig. S3, Supplementary Material online). The
TFBS of HNF4� was associated with the largest k-mer cluster
(198 k-mers), which is concordant with the fact that HNF4� is
a major TF in liver and plays a crucial role in liver development
and fatty acid metabolism (Li et al. 2000; Fiegel et al. 2003;
Kyrmizi et al. 2006; Martinez-Jimenez et al. 2010).

We speculated that if the top k-mers represent the binding
sites of liver-specific TFs, they should be capable of differen-
tiating HepG2 enhancers from a random set of sequences. To
validate this assumption, we trained a support vector ma-
chine (SVM) classifier with a Gaussian kernel on the 14 clus-
ters of the top k-mers, with each feature representing the
count of a k-mer cluster in the P300 peaks located outside
the HepG2 enhancers (Materials and Methods). P300 is a
coactivator and its binding can accurately identify enhancers
(Visel, Blow, et al. 2009). The classifier has had an overall
accuracy of 0.79, measured as the area under the receiver
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FIG. 1. Enriched k-mers in HepG2 enhancers correspond to liver TFBSs. (A) Clusters of 522 top k-mers mapping to known TFBS. Thirty-three k-mer
clusters (subclusters) were aligned and merged into 14 motif clusters. STAMP (platform for similarity, tree-building, and alignment of DNA motifs and
profiles; Mahony and Benos 2007) identified 22 known TFBS in these clusters, from which 14 are liver-specific TFs. The inner-circle logos are the motifs
for each k-mer subcluster, the matched known TFBSs were labeled on the outer circle. The number within the parentheses indicates the number of k-
mers in each k-mer cluster. (B) Fraction of a peak region covered by the top k-mers. The top k-mers are enriched in the dip region of HepG2 histone
marks as well as in HepG2 strong enhancers, but not in other cell types. The black line indicates the mean value of a random background. The significant
enrichment of top k-mers in the peak regions compared with the random background is highlighted by an asterisk (Mann–Whitney test P-
value< 0.001). (C) The top k-mers are biased to the center of ChIP-seq peaks of liver-specific TFs and histone marks. In contrast, the bottom 50%
k-mers are depleted in the peak centers.
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operating characteristic curve (supplementary fig. S4,
Supplementary Material online), indicating that the top
k-mers could be used for distinguishing HepG2 enhancers
from random sequences.

As a final validation step, we reasoned that if a k-mer is a
binding site of a particular TF, that k-mer should be enriched
in the ChIP-seq peaks of the TF compared with random se-
quences. We collected ChIP-seq peaks of 56 TFs available for
the HepG2 and other cell lines from the ENCODE project
(Bernstein et al. 2012). We also generated random sequences
across the whole genome in two different ways: 1) randomly
sampling 1-kb sequences; 2) randomly sampling sequences
with the same length and repeat content as the HepG2 en-
hancer sequences. First, we demonstrate that the top k-mers
are enriched in HepG2 enhancers and enhancer-associated
histone marks (H3K27ac and H3K4me1) compared with
random sequences (fig. 1B; Mann–Whitney test,
P< 0.0001). We observe a higher top k-mer coverage at the
dips of the two histone marks than at the histone marks
themselves (as dips of H3K27ac, H3K4me1, and H3K4me2
are often correlated with TF binding [Ernst et al. 2011]).
Histone mark enrichment is not observed in other cell lines
(Gm12878), further indicating that the top k-mers are likely to
be HepG2-specific TFBSs. As for the coverage of top k-mers in
the ChIP-seq peaks of 56 TFs, 19 TFs (18 liver-specific TFs and
P300) shows a significantly higher top k-mer coverage than
expected (fig. 1B and supplementary fig. S5, Supplementary
Material online; Mann–Whitney test, P< 0.0001). Notably,
the top k-mers were enriched in ChIP-seq peaks of HNF4�,
FOXA1, and FOSL2 (a subunit of AP-1) in both HepG2 and at
least one other cell line to a very similar extent, suggesting
that these k-mers correspond to binding sites of TFs that may
be ubiquitously active. In contrast, the top k-mers of the
remaining 16 TFs (the 19 TFs excluding HNF4�, FOXA1,
and FOSL2), are either enriched in ChIP-seq peaks in both
cell lines but with a much higher level of enrichment in
HepG2 cell line, such as FOXA2, NR2F2 (fig. 1B), or enriched
in HepG2 ChIP-seq peaks only, such as RXR�, P300, SP1 etc.
(supplementary fig. S5, Supplementary Material online).
According to the clustering result of top k-mers (fig. 1A),
the top 522 k-mers mainly capture the TFBSs of six TFs:
HNF4� (198 k-mers), PPAR� (170 k-mers), PPAR� (165 k-
mers), NR1H2 (163 k-mers), NR2F1 (160 k-mers), and FOXA1
(146 k-mers). Combining all the results above, we speculated
that the high abundance of top k-mers in ChIP-seq peaks of
all other 16 TFs only in the HepG2 cell line could primarily be
caused either by their direct or indirect interaction with at
least one of the six TFs (HNF4�, PPAR� , PPAR�, NR1H2,
NR2F1, and FOXA1). For example, in figure 1B, the top k-
mers are enriched in both cell types for HNF4�, FOXA1, and
FOSL2, but are much less enriched in other cell line for FOXA2
and NR2F2, suggesting that the top k-mers are enriched in
FOXA2 due to interactions between FOXA2 and FOXA1 or
HNF4� to a large extent. Further investigation of an overlap
between all the ChIP-seq peaks of 56 TFs indicates that certain
TF pairs such as FOXA1-Nr2f2, FOXA1-FOXA2, FOXA1-
HNF4�, HNF4�-HNF4� , HNF4�-RXRA, and HNF4�-RXRA
tend to bind closer to each other as compared with a

random expectation; Nr2f2 has a strong tendency to bind
close to many active liver TFs, as does FOXA1 (supplementary
fig. S6, Supplementary Material online; Materials and
Methods). Both Nr2f2 and FOXA1 tend to bind close to
each other as well, suggesting a possible interaction between
these two TFs. The ChIP-seq peak regions of the remaining 37
TFs (56 TFs excluding the 19 TFs with top k-mer enriched in
the ChIP-seq peaks in at least HepG2 cell line) were not en-
riched with the top k-mers at least in HepG2 cell line (sup-
plementary fig. S7, Supplementary Material online).

Considering that the ChIP-seq technology does not have a
single base-pair resolution, the top k-mers should be concen-
trated in the center of peaks if they are the binding sites of the
TF of the ChIP-seq data set or the binding sites of another TF
that is interacting with the TF of the ChIP-seq data set. To
validate this assumption, we picked a [�500-bp, 500-bp] in-
terval around the ChIP-seq peak center for the 56 TFs avail-
able both in HepG2 and other cell lines, and separated this
interval into 21 contiguous 51-bp windows (each two adja-
cent 51-bp windows had a 1-bp overlap with each other).
Further validating our results, the closer a 51-bp window is
located to the center of the ChIP-seq peak, the more the
window is covered by the top k-mers for P300 and 22 liver-
specific TFs (six extra TFs with ChIP-seq data only available in
the HepG2 cell lines are also included into this analysis in
addition to the 19 TFs mentioned above, three of which
were liver-specific TFs: HNF4� , Mbd4, and Mybl2; fig. 1C
and supplementary fig. S8, Supplementary Material online).
The top k-mers are also enriched in the centers of HepG2
enhancers and dips of enhancer-associated histone modifica-
tion marks (H3K4me1 and H3K27ac). On the contrary, the
bottom 50% k-mers are depleted in the centers of ChIP-seq
peaks (fig. 1C and supplementary fig. S9, Supplementary
Material online), which is accordant with the assumption
that the bottom k-mers are unlikely to be TFBSs of liver-
specific TFs. Neither the top nor bottom k-mers have a loca-
tion bias in the random control sequences (fig. 1C; supple-
mentary figs. S8 and S9, Supplementary Material online).

Bimodal Mutation Profile of Enhancers

For each position in a potential binding site, all three possible
mutations could produce different levels of binding signifi-
cance change (fig. 2A). The mutations that change a signifi-
cant k-mer to a background k-mer could imply a possible
binding site loss and the mutations in the opposite direction
suggest a potential binding site gain. Since either losing or
gaining a binding site might lead to a phenotype change, we
were interested in both candidate KMs that could lead to a
binding site loss and candidate RSs that could lead to a bind-
ing site gain. The positions with KMs are called KMPs, and the
positions with RSs are called RS positions (RSPs). We paid
extra attention to the positions where all three possible
mutations would change a significant k-mer to a background
k-mer (defined as fragile KMPs [fKMPs], dubbed fKMPs) and
the positions where any mutation would change the back-
ground k-mer to a significant one (defined as fragile RSPs
[fRSPs], dubbed fRSPs). We defined the positions where
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FIG. 2. Distributions of KMPs/RSPs in enhancers. (A) Examples of a SNP associated with trait of HDL cholesterol in fKMPs. rs605066 is likely to be a
causal SNP for the trait of HDL cholesterol. This position associates with the strongly conserved nucleotide C of the FOXA2 binding site and it does
overlap with a FOXA2 ChIP-seq peak. This SNP is also in the LD blocks of two SNPs with liver-related traits (mean corpuscular hemoglobin and
adponectin levels). (B) The boxplot demonstrates enhancer content of KMP, RSP, fKMP, and fRSP. (C) The number of fKMP clusters per enhancer is
positively correlated with the number of fRSP clusters per enhancer (R2 = 0.642; PCC = 0.8). (D) The number of KMP clusters per enhancer is positively
correlated with the number of RSP clusters per enhancer (R2 = 0.93; PCC = 0.96).
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only one or two mutations were KMs as “stable KMPs”
(sKMPs). Analogously, positions with only one or two muta-
tions as RS mutations were defined as “stable RSPs” (sRSPs).
Figure 2A shows an example of eight KMPs located with a
binding site of FOXA2 and overlapping with a ChIP-seq peak
of FOXA2. The positions 1, 3, 4, 5, and 7 are fKMPs; yet, the
positions 2, 6, and 8 are sKMPs. One of the fKMPs (chr6-
139829666) corresponds to the SNP that was coincided
with the HDL cholesterol GWAS trait (SNP ID rs605066) tar-
geted to gene Cited2 (Teslovich et al. 2010; Willer et al. 2013).
This position also corresponds to a strongly conserved nucle-
otide C in the binding site of FOXA2 (fig. 2A) which has been
identified to be a major TF mediating HDL cholesterol level
via regulation of apolipoprotein M in mouse (Wolfrum et al.
2008) and human (Hu et al. 2012). Therefore, we speculate
that this fKMP is carrying a SNP causing a change in the HDL
cholesterol level. In addition, this SNP residing in the fKMP is
also a proxy of the tag SNP rs592423, associated with the trait
of adiponectin levels (Dastani et al. 2012) and another tag
SNP rs632057, coincides with trait of mean corpuscular he-
moglobin (Kamatani et al. 2010) (fig. 2A). The target gene of
these two SNPs is also Cited2 (Kamatani et al. 2010; Dastani
et al. 2012). Considering that the chromatin states of the two
tag SNPs are weak transcription and polycomb repressed
state based on the ChromHMM segmentation (fig. 2A), the
SNP rs605066 is also likely to be the causative SNP for the
traits of adipopectin levels and mean corpuscular hemoglobin
via modulating the FOXA2 regulation of the gene Cited2.

In total, 96.7% of HepG2 enhancers have at least one fKMP
in them, which is partially a reflection of the top k-mer abun-
dance in HepG2 enhancers (see supplementary Material,
Supplementary Material online, for details). On average,
5.7% of HepG2 enhancer positions are fKMPs. Similarly,
87.2% of HepG2 enhancers have at least one fRSP in them.
However, only 0.49% of HepG2 enhancer positions are fRSPs
(fig. 2B and table 1), indicating that fRSPs are much more
sparsely distributed in enhancer regions compared with
fKMPs. This greater than 10-fold enrichment of fKMPs over
fRSPs in HepG2 enhancers is not unexpected, given that the
abundance of active TFBSs in HepG2 enhancers is the source
of KMPs destroying these sites (only ~1% of k-mers of HepG2
enhancers are significant k-mers), while fRSPs correspond to
de novo creation of cell-specific TFBSs in the background
(~93% of k-mers of HepG2 enhancers are background k-
mers). The amount of sKMPs is similar to fKMPs; however,
there are many more sRSPs than fRSPs in HepG2 enhancers
(fig. 2B and table 1; supplementary fig. S10, Supplementary
Material online). By clustering two fKMPs located within 8 bp
from each other and applying the same clustering procedure
to fRSPs, we observed that fKMPs tend to form “hot spots” in
enhancer regions whereas fRSPs tend to form “singletons”
(supplementary fig. S11, Supplementary Material online),

which is due to fKMPs being approximately 10-times more
abundant than fRSPs. Interestingly, the number of fKMP clus-
ters and fRSP clusters is positively correlated for HepG2 en-
hancers, as are the KMP and RSP clusters (fig. 2C and D;
supplementary fig. S12, Supplementary Material online). In
addition, fRSPs are located much closer to fKMP clusters
than expected (supplementary fig. S13A, Supplementary
Material online). Over 60% of fRSPs are within 10 bp of an
fKMP cluster (supplementary fig. S13B, Supplementary
Material online). The distance of fRSPs to fKMP clusters is
significantly smaller than expected (Mann–Whitney test,
P< 2.23e-308, Materials and Methods). Similar location bias
is also observed in KMPs clusters and RSPs clusters (supple-
mentary fig. S14, Supplementary Material online). The inter-
dependency between KMPs and RSPs further implies the
“restoration” function of RSPs in compensation for the deac-
tivating effects of KMPs on enhancer activity. Our results
indicate presence of hot spots of TFBS creation and deacti-
vation in the sequence of HepG2 enhancers.

We next studied the clusters of TFBSs overlapping KMPs
and examined whether the binding sites of certain TF pairs
tended to be lost together (Materials and Methods). To
achieve this goal, enrichment of SNPs that are candidate
KMs (called KM SNPs) co-occurring in TFBS clusters were
analyzed here. We found that many TF pairs, including
HNF4A-FOXA1, FOXA1-RXRA, HNF4A-HNF1A, PPARG-
RXRA, HDAC2-PPARG, and HNF4A-RXRA, featured more
KM SNPs occurring in both TFBSs simultaneously than ex-
pected by chance (fig. 3). Most (73.9%) of these KM SNP pairs
belong to the same linkage disequilibrium (LD) block, sug-
gesting that a pair of TFBSs is lost in a KM mutant.

Functional Constraints of KMPs and RSPs

Because mutations at either KMPs or RSPs may cause a bind-
ing site loss or gain and may lead to phenotype modulations,
KMPs and RSPs might bear more functional constraints and
be under stronger pressure of purifying selection than other
enhancer regions. We therefore first compared the conserva-
tion levels of KMPs and RSPs with other positions in an en-
hancer region. phyloP (Cooper et al. 2005) was applied to
measure the conservation level at a single nucleotide resolu-
tion. The fKMPs are the most conserved positions over the
enhancer region, followed by the sKMPs. The KMPs are sig-
nificantly more conserved than the RSPs (Mann–Whitney
test P< 2.23e-308), which are in turn more conserved than
regular enhancer regions (supplementary fig. S15A,
Supplementary Material online). To compare the proportion
of conserved KMPs and RSPs to the proportion of conserved
enhancer nucleotides (excluding KMPs and RSPs), all the po-
sitions were separated into two categories (supplementary fig.
S15B, Supplementary Material online): 1) conserved
(phyloP� 1), in which the fKMPs and sKMPs are strongly
enriched (Fisher’s exact test, P< 2.23e-308), followed by
fRSPs and sRSPs (Fisher’s exact test, P< 1.78e-110); 2)
nonconserved (phyloP� -1), in which the KMPs are depleted
(Fisher’s exact test, P< 2.23e-308) whereas RSPs are not.
Kircher et al. (2014) developed a scoring framework named

Table 1. Statistics of KMPs and RSPs.

fragile stable Total KMP/RSP

KMP 1,818,923 1,937,095 3,756,018

RSP 139,180 4,347,169 4,486,349
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CADD that measures the deleteriousness caused by any pos-
sible human SNV (Kircher et al. 2014). We implemented the
phred-like (Ewing and Green 1998) CADD score (scaled C
score) to evaluate the functional constraint on each position

(KMP, RSP, and other enhancer position) by averaging the
scaled C score of all three possible mutations at that particular
position. Similar results are obtained with the CADD frame-
work (fig. 4A and B).

FIG. 3. KM SNPs tend to coexist in TFBS clusters. Values in the heat map represent the log (ratio of the fraction of TF pairs both having a KM SNP to the
fraction of random TF pairs both having a KM SNP), that is, the log-ratio of proportion of TFBS clusters overlaying KM SNPs associated with certain TF
pairs to the product of that overlaying KM SNPs associated with each TF separately (Materials and Methods). The red rectangle focuses on the
coexistence of binding sites of HNF4A-FOXA1. The nucleotide colored in red within the parenthesis is the reference allele; the one colored in gray is the
alternative allele (KM allele).
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Moreover, since a greater binding significance of a partic-
ular k-mer indicates a greater likelihood of that k-mer being a
functional TFBS, we can quantify the deleteriousness of a KM/
RS as a change in binding significance of the k-mer. The
smallest binding significance change of the three possible
mutations (minfabsð�sigÞg) was used to evaluate the delete-
rious effect of mutations on the fKMPs/fRSPs (see Materials
and Methods for details). A larger value of minfabsð�sigÞg
indicates a greater deleterious effect of mutations on the
fKMP/fRSP.

We again used the conservation level (phyloP score) of a
single nucleotide to further validate the assumption that the
deleterious effect would be a good estimator for the functional
constraints on a position, considering that evolutionary con-
straints often indicate functional constraints. Indeed, there is a

positive correlation between conservation level and deleterious
effect of fKMP (supplementary fig. S16A, Supplementary
Material online). fKMPs, where the mutations would cause
larger drops in binding significance, show stronger evolutionary
constraints. In contrast, no such clear relationship is observed
for fRSPs (supplementary fig. S16B, Supplementary Material
online), which might be caused by the relative small number
of fRSPs and the small magnitude of the deleterious effect on
fRSPs. Moreover, the C-score also has a positive correlation
with the deleterious effect of fKMPs (supplementary fig.
S17A, Supplementary Material online), whereas the correlation
disappears again when dealing with RSPs (supplementary fig.
S17B, Supplementary Material online).

To further examine the coordination between KMPs and
RSPs, RSP clusters were assigned to their most proximal KMP

FIG. 4. The CADD score of KMPs and RSPs is higher than those of enhancer positions. (A) Box plot of CADD scores of fKMP, sKMP, fRSP, sRSP, and
enhancer positions, respectively. fKMPs are the most conserved category, followed by sKMPs, fRSPs, and sRSPs. The P-values were calculated using the
Mann–Whitney test. (B) KMPs and RSPs are both enriched in the conserved category (scaled C-score� 6), and depleted in the nonconserved category
(scaled C-score� 3). The mean values in the legend are the average scaled C-scores for the corresponding categories. Both P-values for enrichment and
depletion were calculated using the Fisher’s exact test. An asterisk represents significant enrichment compared with control (enhancers), P< 2.23e-308.
A triangle represents significant depletion compared with control (enhancer), P< 2.23e-308. (C) The average C-score of KMP clusters is positively
correlated with the average C-score of the nearest RSP cluster. (R2 = 0.79; PCC = 0.89).
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clusters, then the assigned RSP clusters and the KMP clusters
were denoted as correlated pairs. We observed that SNPs are
more likely to exist at the correlated pairs simultaneously
compared with random pairs of KMP clusters and RSP clus-
ters (fold enrichment = 1.28, binomial test P-value = 3.42e-12;
Materials and Methods), with approximately 52.7% of the
coexisting SNP pairs located in a single LD block. The corre-
lated KMP clusters and RSP clusters seem to have similar
levels of functional constraints (average C-scores) (fig. 4C).
The fRSPs were also assigned to the fKMPs by the same prin-
ciple. The associated fKMP-fRSP cluster pairs also tend to host
similar levels of functional constraints (supplementary fig.
S15C, Supplementary Material online) and are more likely
to carry SNPs simultaneously than random pairs (fold enrich-
ment = 1.33, binomial P-value = 0.11) (Materials and
Methods). The similar levels of functional constraints and
co-occurrence of SNPs at the correlated KMP clusters and
RSP clusters suggest that if a binding site is lost due to single-
nucleotide mutation, a new binding site nearby is likely to be
gained by another single-nucleotide mutation. In this way, the
organism might maintain its function simply through reor-
dering the binding sites in enhancer regions.

KMs Have the Most Deleterious Effect on
Enhancer Activity

We used the results of a massively parallel reporter assay
(MPRA) experiment (Kheradpour et al. 2013) to directly eval-
uate the disruptive effects of our predictions. The original
study tested 2,104 145-bp enhancer sequences containing
manipulated target motifs of HepG2-specific TFs (HNF1,
HNF4, FOXA) and K562-specific TFs (GATA, NFE2L2).
There were five single-nucleotide mutations on each en-
hancer sequence including max 1-bp decrease, least 1-bp
change, max 1-bp increase, and two separate random 1-bp
changes on the 145-bp enhancers. These motif manipulations
were conducted in the assay because they reduce, improve,
make the smallest change and make random changes, respec-
tively, to the PWM match score. To take full advantage of the
MPRA data set and to strengthen the statistical significance of
our results, we also applied our framework in K562 cell line to
predict KMPs/RSPs. Considering that top K562-enriched k-
mers chiefly represent potential binding sites of GATA and
NFE2L2, whereas the top k-mers in HepG2 mainly consist of
potential binding sites of HNF4� and FOXA1, we only se-
lected the corresponding enhancer sequences containing
motif instances of GATA, NFE2L2, HNF4, and FOXA.

After mapping the 580 engineered enhancer variants to
our predictions (Materials and Methods), we grouped them
into four categories: 153 KMs at fKMPs, 71 KMs at sKMPs, 38
RSs (3 RSs at fRSPs), and 151 controls (mutations that keep a
k-mer within the insignificant set). A total of 167 variants in
the engineered enhancers did not belong to the above three
categories of our predictions (the details of their effect on
enhancer activity are provided in supplementary materials,
Supplementary Material online).

We first compared the effect sizes (magnitude of enhancer
activity change measured as a drop of the normalized

expression value) of mutations in each category with the
control and investigated whether there was a correlation be-
tween the effect size of a mutation and the binding signifi-
cance change caused by the mutation. Because the scale of
the binding significance score depends on the size of the null
distribution of enhancers, to facilitate quantifying the change
of significance values (�log10 of P-value) without a large stan-
dard error, we defined a phred-like (Ewing and Green 1998)
significance score (scaled significance score, Materials and
Methods) ranging from 0 to 45, on the basis of the rank of
each k-mer, to interpret the decrease of the binding signifi-
cance caused by a mutation. As shown in figure 5A, the en-
hancers with KMs at fKMPs feature the most pronounced
decrease in enhancer activity (Mann–Whitney test
P = 3.765e-05 as compared with the control set), followed
by KMs at sKMPs (Mann–Whitney test P = 0.0082). In con-
trast, the RS mutations do not show a significant increase in
enhancer activity (Mann–Whitney test P = 0.127). The smal-
ler effect size of RSs compared with KMs might be partly due
to the smaller magnitude of binding significance changes
caused by the RSs compared with those caused by KMs
(fig. 5A). On the other hand, this result suggests enhancers
might cease their activity by losing a specifically positioned
active binding site which might be a part of a complex en-
hancer structure, as opposed to gaining a randomly posi-
tioned binding site which might not be sufficient to create
a functional enhancer alone.

To understand the relationship between the effect size and
the deleterious effect of mutations at fKMPs (as defined pre-
viously) we binned fKMPs into four percentile intervals of
deleterious effect: [0, 5%], [5%, 25%], [25%, 50%], [50%,
100%]. Then we mapped the 153 experimentally character-
ized KMs at fKMPs to the four intervals. As expected, the
fKMPs with greater deleterious effects tend to have larger
effect sizes in deactivating enhancers (supplementary fig.
S18, Supplementary Material online), which is accordant
with the previous conclusion that the fKMPs with larger del-
eterious effect might bear more functional constraints and,
therefore, tend to have a greater disruptive effect on enhancer
activity once mutated.

Secondly, we examined the tendency of mutations to
diminish the enhancer activity in all four categories of en-
gineered enhancer variants by comparing the proportion of
mutations that decreased the expression levels of en-
hancers. As expected, the KMs (at both fKMPs and
sKMPs) have the largest portion (65.2%) of mutations
that reduce enhancer activity. In contrast, the RSs have
the smallest portion of mutations that reduce enhancer
activity (31.6%) (fig. 5B; supplementary table S2,
Supplementary Material online).

In summary, these results show that KMs and RSs are
associated with decrease and increase in enhancer activity,
respectively. Across all the SNVs, the KMs have the largest
proportion of mutations that deactivate enhancers.
The effect size in enhancer activity disruption by KMs is
larger than the one in increasing enhancer activity of RS
mutations.
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HepG2 KMs Are Enriched in Liver-Related
GWAS Traits

To test whether HepG2 KMs are correlated with liver disor-
ders and traits, we used the NHGRI GWAS Catalog (Welter
et al. 2014) to assess the association between KMs and liver-
related diseases (see Materials and Methods). Once overlap-
ping our predictions with the GWAS LD blocks, the KM SNPs
are strongly associated with the liver-related traits such as
HDL-cholesterol, triglycerides, adiponectin levels, liver
enzyme levels, blood trace elements (see levels), type I

diabetes, and several other liver-related traits when compared
with either all SNPs and enhancer SNPs (fig. 6; supplementary
tables S3 and S4, Supplementary Material online). As an ex-
ample, the KM SNP rs10422861 located within the ChIP-seq
peaks of FOXA1, FOXA2, HNF4�, and HNF4� resides in the
intronic region of the gene PEPD. The KMP SNP is in strong
LD with a tag SNP rs3786897 of the trait Type II diabetes (Cho
et al. 2012), which is also an eQTL linked to gene PEPD (Schadt
et al. 2008). Although the tag SNP rs3786897 is also located in
the same enhancer region, but it does not overlap with other
HepG2 ChIP-seq peaks. This KM SNP is also a proxy of an-
other tag SNP rs731839 associated with traits of triglycerides,
HDL cholesterol, and adiponectin levels, which is also linked
to the gene PEPD (Willer et al. 2013; supplementary fig. S19,
Supplementary Material online). All these results suggest that
the KM SNP rs10422861 is the causative SNP modulating the
regulation of the gene PEPD, and has a strong correlation with
type II diabetes, HDL cholesterol, triglycerides, and adiponec-
tin levels (supplementary fig. S19, Supplementary Material
online). In another example, the KM SNP rs6037083, located
within the ChIP-seq peaks of FOXA1/FOXA2/AP1, is in strong
LD with a tag SNP rs7267979, associated with the trait of liver
enzyme levels, and targeted to gene ABHD12 (Chambers et al.
2011). This tag SNP is also an eQTL linked to the expression
level of gene ABHD12 (Schadt et al. 2008), which is located in
the intronic region of ABHD12, with an expression state based
on the ChromHMM prediction. Similarly, it is highly likely
that the KM SNP rs6037083 is the causal SNP of the trait
liver enzyme levels by regulating the expression of gene
ABHD12. Another two examples are also listed in supplemen-
tary figure S19, Supplementary Material online, both of which
also suggest the strong association between KMs and liver
diseases/phenotypes.

KMs Play an Important Role in Differential TF Binding
and Affect Local Chromatin Accessibility

KMs are likely to disrupt the enhancer activity through alter-
ing binding fitness of major TFs. Therefore if KMs are a crucial
factor for differential TF binding, KMs should be enriched in
the differential TF-binding regions. We studied the enrich-
ment of KMs in variable TF-binding regions from two
mother–father–daughter trios (supplementary table S5,
Supplementary Material online) in the 1000 Genomes
Project (Abecasis et al. 2012). TF-binding data were available
for lymphoblastoid cell lines (LCLs). We redid our analysis on
LCL and identified the most overrepresented k-mers, which
were subsequently mapped to TFs whose motif variants have
the most deleterious impact on enhancer activity in LCLs
(Materials and Methods). In total, 498 significant k-mers
were identified representing the binding sites of major TFs
in LCLs including PU.1 and IRF. PU.1 (also known as SPI1) is an
essential TF that plays key roles in differentiation and prolif-
eration of B-lymphocytes (Lloberas et al. 1999). Therefore, we
picked PU.1 as an example to study the effect of KMs on
differential TF binding. Next, we identified PU.1 KMs in both
the maternal and paternal genomes (Kasowski et al. 2013;

FIG. 5. Candidate KMs have the most deleterious effect on enhancer
activity. (A) Relationship between the drop of the scaled significance
score and the drop of the normalized expression level of a 145-bp
enhancer. The y axis is the normalized expression level drop caused
by a 1-bp mutation, and x axis is the drop of the scaled significance
of the mutated k-mer relative to the original k-mer. Error bars indicate
the mean and the standard deviation of the corresponding axis in each
category. (B) Tendency of decreased expression of each predicted mu-
tation category. The y axis is the ratio of proportion of mutations that
decrease expression to that of mutations that increase expression. The
fraction above each bar indicates the ratio. The numerator is the per-
centage of mutations leading to a decrease in expression, the denom-
inator is the percentage of mutations that increase expression. KM:
fKMPs and sKMPs. RS: fRSPs and sRSPs. The pie chart above each bar
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Materials and Methods) using 313 significant k-mers and
31,370 background k-mers.

The PU.1 ChIP-seq peaks were first separated into three
categories based on the comparison between any two indi-
viduals: 1) individual-specific peaks (peaks that exist in only
one individual), 2) differential peaks (peaks that exist in both
individuals but have differential binding signals), and 3) similar
peaks (peaks that exist in both individuals and have similar
binding signals). We applied Homer (Heinz et al. 2010) to
systematically identify PU.1 peaks belonging to these three
categories (Materials and Methods). Compared with the sim-
ilar ChIP-seq peaks, the KMs are significantly enriched in both
individual-specific and differential ChIP-seq peaks (P-
value� 1.02e-06; fig. 7A and B; supplementary fig. S20,
Supplementary Material online).

Although we do not know whether chromatin modifica-
tion is the cause or the consequence of the change in TF
binding, one mechanism that may be important is that the
functional variants that alter a TF recognition sequence also
frequently alter the local chromatin accessibility (Maurano,
Wang, et al. 2012; Kasowski et al. 2013). Therefore, we spec-
ulated that the KMs that disrupt TF binding should be en-
riched in the dsQTLs, which are regions of genomic variants
typically affecting chromatin accessibility in a range of about
200–300 bp (Degner et al. 2012). There were 32,728 hetero-
zygous KM SNPs in the maternal and paternal genomes of the
two trios (Materials and Methods), 1,082 of which were
dsQTLs. As for the 826,362 enhancer SNPs, 10,864 were
dsQTLs. Hence, consistent with our expectation, the hetero-
zygous KM SNPs were strongly enriched in dsQTLs relative to
enhancer SNPs with a 2.51-fold enrichment (Hypergeometric
test P-value = 1e-164). The enhancer SNPs were also strongly
enriched in dsQTLs compared with the random SNP sets with
a 2.56-fold enrichment (binomial test P-value< 2.23e-308)
(supplementary fig. S21A, Supplementary Material online).
We further evaluated the imbalance in the fraction of

DNase-seq reads obtained from each allele in heterozygous
KM SNPs to manifest the affect of KMs on the local chroma-
tin state. We detected 299 heterozygous KM SNPs in
GM12878 with sufficient DNase-seq reads coverage (at least
11 reads covered each heterozygous KM SNP) within the
high-confidence DHSs (at a false discover rate [FDR] of 5%;
Materials and Methods). It seemed that the KM SNPs are
associated with the local chromatin states, with the higher
binding significance allele (reference allele) exhibiting higher
accessibility (fig. 7C). KM alleles that are more deleterious are
less likely to exhibit open chromatin states, and have more
DNase-seq reads associated with the reference allele on the
heterozygous KM loci (fig. 7D and E). This imbalance in the
reads obtained from each allele is indicative of the negative
effects of the KMs on local chromatin accessibility. Figure 7C
shows two examples of heterozygous KM SNPs that would
disrupt TF binding and affect local chromatin accessibility.
The SNP rs9391834 (G/A) associated with a putative binding
site of RUNX1 located in the intronic region of gene HLA-B,
which is the top susceptibility gene for psoriasis (Tiilikainen
et al. 1980; Nair et al. 2006). In addition, a previous work
indicated that dysregulation of two target genes (SLC9A3R1
or NAT9) by RUNX1 is a susceptibility factor for psoriasis
based on the study on cohorts of psoriasis patients from
the United States (Helms et al. 2003). Therefore, it is likely
that the KM allele A of rs9391834 might affect the expression
of psoriasis-associated gene HLA-B through disrupting the
binding of RUNX1 and modulating the local nucleosome oc-
cupancy around its binding site. As another example, the KM
SNP rs4443980 (A/C) was associated with the putative bind-
ing site of c-Fos (component of AP1), which may participate
in B cell differentiation (Corcoran 2005; Ohkubo et al. 2005).
By altering the binding affinity of the TF c-Fos and the local
chromatin structure, the KM allele C might be the causative
allele associated with affecting B cell differentiation and the
autoimmune system.
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FIG. 6. Enrichment of GWAS traits in KM SNPs relative to enhancer SNPs. The y axis is the ratio of fold enrichment of KM SNPs as compared with
random expectation to the fold enrichment of enhancer SNPs as compared with random expectation. Only the top 35 enriched GWAS traits are
presented here. Full results are presented in supplementary table S3, Supplementary Material online.
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eQTLs are genomic regions that are correlated with a
change in the level of gene expression (Rockman and
Kruglyak 2006). An extensive number of studies have charac-
terized the level and patterns of regulatory variation and
eQTLs over the last decade (Morley et al. 2004; Cheung
et al. 2005; Stranger et al. 2005, 2012). eQTLs have been stud-
ied in diverse tissues and cell lines (Myers et al. 2007; Emilsson

et al. 2008; Schadt et al. 2008; Grundberg et al. 2009; Stranger
et al. 2012). More importantly, it has been discovered that as
many as 55% of eQTLs are also dsQTLs (abbreviated as eQTL-
dsQTLs) (Degner et al. 2012), leading us to the possible un-
derlying mechanism by which eQTLs affect gene expressions:
when the alternative alleles at a particular heterozygous SNP
site cause allele-specific TF binding or different nucleosome

FIG. 7. Candidate KMs affect TF binding and modulate local chromatin accessibility. (A) KMs/RSs are enriched in the differential and individual-specific
ChIP-seq peaks of PU.1. P-values were calculated based on the Fisher’s exact test. The fraction above each bar indicates the percentage of peaks in the
corresponding category containing KMs. The numerator is the number of peaks with KMs, the denominator is the number of peaks (B). One example
showing that KM/RS is the causal variant that causes different PU.1 binding. The regions shown here are 1.2 kb long. (C) Examples of allele-specific
DNase I sensitivity in GM12878 for KMs that disrupt TF binding (801-bp windows centered on a heterozygous KM SNP). In total, 299 heterozygous
SNPs with at least 11 DNase-seq reads are KMs. The number after each nucleotide indicates the number of reads associated with that nucleotide. (D)
Correlation between local accessibility and binding significance. The y axis is the log odds ratio of DNase I read coverage of the reference allele to that of
the alternative KM allele. The x axis is the decrease in binding significance of the original reference allele caused by a KM allele. (E) Proportion of positive
log odds ratio of DHS coverage (reference allele/KM allele) versus binding significance drop caused by a KM allele.
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occupancy at the TF-binding regions, this in turn might cause
allele-specific differences in the rates of transcription (Degner
et al. 2012), thus further lead to allele-specific gene expression
levels. Interestingly, the heterozygous KM SNPs are 2.62-fold
enriched in eQTL-dsQTLs compared with enhancer SNPs
(supplementary fig. S21B, Supplementary Material online; hy-
pergeometric test P-value = 1.3e-39). The enrichment of KM
SNPs in eQTL-dsQTLs indicates that the KMs are likely to
affect the gene expression level through modulating affinity
of TF binding as well as changing the local chromatin
accessibility.

KMs at fKMPs Significantly Affect Cell Type-Specific
Gene Expression

Next, considering the lack of a genome-wide map of chroma-
tin structure that links enhancers to their targeted genes in
LCL, we investigated the potential effects of the KMs on the
TS gene expression by studying the enrichment of TS eQTLs
at the fKMPs. We utilized a data set of eQTLs in LCLs with
associated gene expression data of the CEU populations from
the HapMap3 project (Stranger et al. 2012) to uncover the
potential effects of KMs on gene expression. Since the eQTLs
and the associated genes are only available for two individuals
(GM12891 and GM12892) of the two trios in our study, we
included only the data of these two individuals into our anal-
ysis (supplementary table S6, Supplementary Material online).
Unlike housekeeping genes that are ubiquitously expressed
and perform basic cellular functions, the TS genes are highly
expressed only in a few tissues. Due to the limited knowledge
of the genomic features and mechanism responsible for ex-
pression of TS genes, we selected the 2,000 most highly ex-
pressed genes in LCL based on the genome-wide expression
profile of the Human U133A/GNF1H Gene Atlas (Su et al.
2004) and considered them as the potential TS genes in LCL.
By mapping the common SNPs (MAF� 0.01) from the 1000
Genome Project and the eQTLs associated with the 2,000 TS
genes of LCL to the fKMPs and enhancers, we found that the
TS-gene-associated eQTLs are 2.6-fold enriched in enhancer
SNPs relative to sets of matched random SNPs (binomial test,
P = 6.9e-131), indicating that the causal variants for cell type-
specific gene expression tend to be located in enhancer re-
gions. Meanwhile, the eQTLs associated with the TS genes in
LCL are 3.6-fold enriched in fKMP SNPs compared with en-
hancer SNPs (Hypergeometric test, P = 3.4e-17). The enrich-
ment of eQTLs in SNPs located at fKMPs is even greater when
the 1,000 most highly expressed genes are considered (fold
enrichment = 3.9, hypergeometric test, P = 1.78e-10) (supple-
mentary fig. S22 and table S7, Supplementary Material
online). The results indicate that fKMPs are more enriched
in eQTLs associated with TS genes as compared with random
enhancer SNPs, suggesting an essential role of fKMPs in reg-
ulation of TS genes.

Discussion
We developed a framework to identify essential positions in
enhancer sequences, which are likely to have either a delete-
rious (KM) or advantageous (RS) effect on the function of the

enhancers if mutated. KMPs and RSPs that we identified in
HepG2 enhancers are strongly associated with the functional
binding sites of several major liver-specific TFs including
HNF4�, FOXA1, PPAR�/PPAR� , AP-1 (FOSL2), NR1H2, and
NR2F1. Our framework is capable of identifying binding sites
of essential TFs within any set of ChIP-seq enhancers, where
mutations are likely to impact enhancer activity and affect the
precise pattern of TS gene expression and cause a phenotype
change.

We observed that the vast majority of HepG2 enhancers
contain at least one KMP, and both KMPs and RSPs are more
conserved than other enhancer regions during the course of
evolution. Fragile fKMPs and RSPs show even greater func-
tional constraint. The stronger pressure of purifying selection
acting on these positions confirms that mutations at these
positions are likely to result in a functional outcome. KMPs
are more conserved than RSPs, and they both tend to be
located near each other, forming mutational hot spots in
enhancer sequences. We also found that the conservation
level between the nearest KMP-RSP cluster pairs is strongly
correlated, with SNPs coexisting in cluster pairs, suggesting
binding site reshuffling. The significant correlation between
these two types of mutations suggests a bimodal mutation
system in the regulatory genome, which is shaped by evolu-
tionary forces: an active binding site can be gained rapidly in
the proximity of “fragile” enhancer regions hosting deleterious
nucleotides. An organism might utilize this bimodal cis-regu-
latory mechanism to maintain enhancer activity during
evolution.

We also observed that KM SNPs are likely to co-occur in
the clusters of TFBSs overlapping KMP hot spots, suggesting
that the major TFs with deleterious motif variants tend to lose
their binding sites together.

A vital part of a genomic association study is the identifi-
cation of causal genetic variants. Based on our findings, eQTLs
that are linked to TS genes are significantly enriched in fKMPs,
indicating that fKMPs should be the primary candidates in
the search for causal noncoding variants. The causal role of
fKMP mutations was further supported by their impact on
the level of gene expression based on our analysis of the
massively reporter assay (Kheradpour et al. 2013). Although
the in vivo scenario of the regulatory circuit might be deter-
mined by multiple combinatorial factors rather than a single
enhancer, we can still propose a solid conclusion that muta-
tions at fKMPs are most likely to deactivate enhancers and
have the largest effect size on reducing enhancer activity as
compared with other genetic variants in the enhancer region.
In addition, KMs at the fKMPs with higher deleterious effect
tend to have a greater impact on the level of gene expression.
Due to the most deleterious variants at fKMPs, enhancers
would easily cease their activity. However, it would not be
so easy to create a functional enhancer by simply gaining a
randomly positioned binding site, although the RS mutations
at RSPs do have the largest portion of mutations increasing
the enhancer activity. Additionally, the functional analysis of
GWAS SNPs indicates that the KM SNPs are strongly associ-
ated with TS traits/diseases, suggesting the causative role of
KMs in underlying TS phenotype and disorders.
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Our previous work (Huang and Ovcharenko 2015) re-
ported enrichment of KM SNPs at the allele-specific TFBSs,
but the underlying mechanism for the allele specificity in
chromatin structure had not been fully studied. This moti-
vated the analysis of the association between KMs and open
chromatin accessibility in our study. We observed that KMs
and RSs are likely to be the causal variants that underlie local
chromatin modifications and differential binding of TFs. In
summary, by altering the local chromatin accessibility of the
TFBSs and the binding affinity of the TFs, KMs, and RSs are
likely to affect the transcription rate and therefore decrease
and increase enhancer activity, respectively. This conclusion
was further supported by the enrichment of dsQTL-eQTL in
the heterozygous KM/RS SNP sites.

Unlike CADD (Kircher et al. 2014), which annotates all
possible genetic variants based on a single score (C-score)
generated by integrating diverse annotations into a single
measure, our pipeline prioritizes genetic variants in enhancer
regions and focuses on identifying causal variants which have
the most deleterious effects on the cis-regulatory role of en-
hancers given a specific tissue/cell type. These variants are
more likely to be the pathogenic ones and could determine
the TS gene expressions. By determining the KMPs/RSPs that
are strongly correlated with loss and gain of cis-regulatory
elements of the major TS TFs, the proposed approach is
likely to identify driver mutations that underlie the TS diseases
and phenotype divergence. However, our framework does
have several limitations. First, although the MPRA data facil-
itate the validation of the deleterious effects of KMs/RSs, to
further limit false positives in our predictions, large-scale gold-
standard experimental data on the noncoding regions are in a
great need. Second, the overall precision of KMs in predicting
differential/individual-specific binding is 68%, whereas the
sensitivity of KMs in predicting differential/individual-specific
binding is low (35% for individual-specific binding, 19% for
differential binding; fig. 7A). This may be caused by the com-
plex scenarios of TF binding, which cannot be completely
explained by a simple disruption of a canonical binding site.
It is known that a large portion of TFs that bind to nonca-
nonical motifs or interact with a partner which binds to either
a canonical or noncanonical motif (Wang et al. 2012). Either
scenario cannot be detected by our framework since our ap-
proach targets deleterious mutations in canonical motifs.
Future work could expand our framework to include the
local mutation rate, nucleotide divergence, and genomic
data across different species in order to identify pathogenic
and causal variants which underlie phenotype divergence
during evolution. We hope our framework will provide the
research community a valuable source for the study of the
phenotype divergence across species during evolution in near
future.

Materials and Methods

Data Availability

We used the GRCh37 (hg19) assembly of the human genome,
which we downloaded from the UCSC Genome Browser
(Kent et al. 2002).

Putative strong enhancers no longer than 3-kb predicted
by ChromHMM (Ernst and Kellis 2012) were used as the
training set for the enrichment analysis of k-mers. HepG2
and LCLs (GM12878) ChromHMM strong enhancers and
ChIP-seq peaks (narrowPeak format) of 62 TFs were down-
loaded from the USCS Genome Browser (Kent et al. 2002;
http://genome.ucsc.edu/, last accessed May 23, 2015). HNF4�
ChIP-seq data in differentiated Caco-2 cells were downloaded
from NCBI Gene Expression Omnibus (GEO) (accession
number: GSM575229).

For the analysis in LCLs, our study targeted individual ge-
nomes of two father–mother–daughter trios (supplementary
table S5, Supplementary Material online). The first trio was of
Utah residents of European ancestry (CEU), and the second
was Yoruban from Ibadan Nigerian ancestry (YRI). Genetic
variation data were downloaded from the 1000 Genomes
Project (Abecasis et al. 2012) and dbSNP 138 (Sherry et al.
2001). Genomic coordinates of SNPs were mapped from hg18
to hg19 using the UCSC liftOver tool (Hinrichs et al. 2006).
The personal genomes of each individual of the two trios were
obtained by overlaying the maternal and paternal SNPs hap-
lotypes onto the hg19 genome (Kasowski et al. 2013). As for
the differential binding of PU.1 in LCLs, we used the ChIP-seq
data of PU.1 from the study in which the ChIP-seq reads were
aligned against the maternal and paternal genomes of the
corresponding individual (Kasowski et al. 2013). The DNase
I data used in the analysis of local chromatin accessibility in
GM12878 were downloaded from GEO with accession
number GSE29692. This DNase I data includes reads
mapped to hotspot DHS at an FDR threshold of 5%
(Maurano, Humbert, et al. 2012). For the prediction of
KMs/RSs of maternal and paternal genomes, fKMPs/fRSPs
in LCL ChromHMM strong enhancers and the analysis of
enrichment of eQTLs in fKMPs/fRSPs, we used the
ChromHMM strong enhancers of the two individuals from
the study conducted by Kasowski et al. (2013). The eQTL
data with linkage to associated genes for CEU populations
were obtained from a study (Stranger et al. 2012), and
the gene expression profile of 79 tissues was downloaded
from BioGPS (Wu et al. 2009, 2013) (accession number:
GSE1133).

k-mer Analysis of Enhancer Sequences

We generated a set of controls for each ChromHMM strong
enhancer sequence. Controls were randomly sampled from
the whole genome with the same GC-content, repeat-con-
tent, and length as the corresponding enhancer sequence.
Twenty-four control sequences were extracted for each en-
hancer. In cases when not enough controls with our strict
criteria (�GC-content� 0.005, �repeat-content� 0.01)
could be identified, we created additional controls by reshuf-
fling enhancer sequences.

We use k-mers to identify potential binding sites in en-
hancers. We determined the optimal length of k-mers by
considering the trade-off between sensitivity and specificity.
The sensitivity of k-mers could be evaluated by coverage of
known TF binding motifs in the TFBS database such as
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TRANSFAC (Matys et al. 2006) and JASPAR (Mathelier et al.
2014). We observed that the informative regions of 78% of
known TF-binding motifs are best modeled by 8-mers (sup-
plementary fig. S23, Supplementary Material online). In a pre-
vious study (Cowper-Sal lari et al. 2012), 8-mers have been
used to successfully identify causative SNPs in breast cancer
cell lines Gorkin et al. (2013) also used 6-mers to build a
classifier for enhancer prediction in melanocytes. To test
the specificity of 8-mers, we compared the enrichment of
the regulatory domains of liver-specific genes in KMPs iden-
tified by 6-mers, 8-mers, and 10-mers, respectively. We ob-
served that KMPs identified using 8-mers have the highest
enrichment in the regulatory domains of liver-specific genes
(the most highly expressed genes in liver relative to other
tissues, supplementary material and fig. S24, Supplementary
Material online). Therefore, for each of the possible 32,896 k-
mers (k = 8), we used the Fisher’s exact test to evaluate en-
richment of k-mers in the HepG2 ChromHMM strong en-
hancer set and identified the top 522 k-mers significantly
enriched in enhancers (P� 1e-3 after Bonferroni correction;
supplementary table S1, Supplementary Material online) as
potentially functional k-mers and 30,647 insignificant k-mers
(P 4 1e-3 without Bonferroni correction) as background k-
mers. Finally, the significance of the P-value (–log10(P-value))
was used to estimate the functional constraint of a k-mer. The
putative strong enhancers predicted by ChromHMM (Ernst
and Kellis 2012) were chosen as the positive set because these
DNA segments correspond to histone marks H3K4me1 and
H3K27ac correlated with transcriptionally active chromatin
and high expression level of associated genes (Zentner et al.
2011). For the k-mers enriched in HepG2 enhancers with high
significance (small P-value), there is only a small chance of
finding them in a random sequence. Therefore, the top
k-mers are likely to represent binding sites of active TFs in
the HepG2 cell line. In other words, the statistical measure
(–log10(P-value)) could be a good estimation for the binding
fitness of the k-mer.

To remove redundancy among the top k-mers and identify
associated motifs, we clustered the top k-mers in two steps:
the first step was to cluster the k-mers without alignment,
and the second step was to align k-mer clusters and map the
aligned k-mer clusters to known TFBSs. To calculate the sim-
ilarity between any two k-mers, each k-mer was treated as a
node in the graph, there would be an edge connecting two
nodes if the two k-mers share at least five dimers without
alignment (two dimers in both k-mers would be considered
the same if and only if they have the same letter contents and
are located in the same position in the two k-mers), that is,
the similarity score (formula 2) between the two correspond-
ing k-mers need to be no smaller than 5/(8�1). We next
applied the Markov Cluster Algorithm (MCL) algorithm
(Dongen 2000; van Dongen and Abreu-Goodger 2012) to
find clusters on the graph with each node representing a k-
mer. The motif profiles generated by k-mer MCL clusters were
further aligned and merged and matched to the known TFBS
database, including JASPAR (Mathelier et al. 2014) and
TRANSFAC (Matys et al. 2006), using the web-based tool
STAMP(Mahony and Benos 2007).

simðKmer1; Kmer2Þ ¼

XK�1

K�1

IðkÞ

K � 1
ð2Þ

IðkÞ ¼
1 if dimer1k ¼ dimer2k

0 if dimer1k 6¼ dimer2k

(
ð3Þ

where
dimerik is the di-mer starting from the kth position of the ith

k-mer

We also built an SVM classifier on the 14 clusters of the top
k-mers to validate their ability to discriminate enhancers from
controls. Since the 522 k-mers were picked due to their en-
richment in ChromHmm HepG2 enhancers, we used the
21,944 P300 peaks located outside ChromHmm HepG2 en-
hancers for the 5-fold cross validation test. For each P300
ChIP-seq peak, we randomly sampled 24� control sequences
genome-wide with the same length and GC- and repeat con-
tent. We used a Gaussian kernel SVM with a vectorized rep-
resentation of sequences, with each feature representing a k-
mer cluster, considering that the number of features (14 top
k-mer clusters) is significantly smaller than the number of
data points (21,241 strong enhancers). We applied the pack-
age libsvm (Lin 2011) to build the classifier.

To study the potential effect of candidate KMs on differ-
ential binding of the TF PU.1 in LCLs, we applied the same
pipeline to PU.1 ChIP-seq regions in the two trios to identify
its potential binding sites, resulting in 313 significant k-mers
and 31,370 insignificant k-mers. In the LCLs dsQTL and eQTL
analysis, for the prediction of top k-mers in LCLs, the same
pipeline was performed for GM12878 (one individual in LCL
cell lines) ChromHMM strong enhancers and 498 significant
k-mers and 30,741 insignificant k-mers have been identified.

Candidate KMs and Candidate RMs

Once we identified top k-mers in the positive training set, we
applied a modified IGR model (Cowper-Sal lari et al. 2012) to
predict mutations with potential phenotypic effects in
HepG2, K562, and LCL ChromHMM strong enhancers.

IGR analyzes k-mer composition change caused by a mu-
tation to estimate a change in TF-binding affinity. For both
the wild type and derived nucleotides, there were eight 8-
mers associated with each nucleotide, respectively. The high-
est scoring k-mer (maxima k-mer) was extracted from the set
of k k-mers overlapping the position of the mutation. TF-
binding affinity was estimated as a genome-wide average TF
ChIP-seq signal for each of the two k-mers and Student’s
t-test was used to estimate the affinity change between
these k-mers (see [Cowper-Sal lari et al. 2012] for details).
Same as IGR, our approach was constructed based on the
model that if a canonical binding motif is altered by a muta-
tion, there should be no alternative binding motif in the im-
mediate proximity of the mutation in either orientation. In
our study, we utilized the same approach for selection of
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maxima k-mers and comparison between maxima k-mers for
each allele given the genomic context of the mutation posi-
tion as in the IGR approach, except that the score of the k-
mer is its binding significance (�log10P). Instead of studying
the binding affinity change of a particular TF caused by a SNP,
we were interested in identifying the most deleterious motif-
disrupting variants that are associated with multiple TFs and
could deactivate enhancers. This precluded us from applying
the IGR approach directly. Therefore, we needed to recognize
the potential binding sites of the most essential liver-specific
TFs in enhancer regions. The putative strong enhancers pre-
dicted by ChromHMM (Ernst and Kellis 2012) were chosen as
the positive set to identify the mostly enriched TFBSs (k-
mers). Since higher binding significance indicates stronger
functional constraints, we used the change of binding signif-
icance �Sig (formula (4), P1 is the P-value of the original k-
mer, and P2 is the P-value of the mutated k-mer) of the k-
mers to evaluate the change of binding fitness caused by the
SNV (supplementary fig. S1, Supplementary Material online).

�Sig ¼ �log10P1 � ð�log10P2Þ ð4Þ

More importantly, we considered all three possible nucleotide
substitutions at an enhancer position to quantify binding
significance change. At the positions where the original asso-
ciated maxima k-mer belonged to the 522 significant k-mers,
the nucleotide substitution that changed a significant k-mer
to an insignificant one was considered a candidate KM, due to
which a binding site might be lost in the enhancer region. At
the positions where the original associated maxima k-mer
belongs to the 30,647 insignificant k-mers, the nucleotide
substitution that changes an insignificant k-mer to a signifi-
cant one was considered a RS, leading potentially to a gained
TFBS. Because either losing or gaining a binding site could lead
to phenotype change, we were particularly interested in the
positions that are more easily to lose or gain a binding site due
to a single-nucleotide mutation. Specifically, the positions
where all three mutations would cause a binding site loss
(change a significant k-mer to an insignificant one) were de-
fined as fKMPs; the positions where all three mutations would
cause a binding site gain (change an insignificant k-mer to a
significant one) were defined as fRSPs. To differentiate the
fKMPs from all the other positions where only one or two
mutations are KMs, we defined positions with KMs caused by
no more than two mutations as sKMPs. Similarly, the posi-
tions with RSs caused by no more than two mutations were
defined as sRSPs. fKMPs and sKMPs together are called KMPs.
fRSPs and sRSPs together are termed as RSPs.

Since different single-nucleotide substitutions on a posi-
tion have different levels of binding significance modulations
on the original k-mer, the minimum absolute modulation of
binding significance minfabsð�sigÞg (formula 5) among the
modulations caused by all three possible single-nucleotide
substitutions on the fKMP/fRSP were used to evaluate the
level of disruption on TF binding once a mutation occurred at
that particular position. To further validate the correlation
between minfabsð�SigÞg of a fKMP/fRSP and the functional
constraints on the position, we first sorted the fKMP/fRSP by

their minfabsð�SigÞg (defined as deleterious effect) decreas-
ingly and partitioned the sorted fKMPs/fRSPs into 20 bins.
Within each bin, we checked the proportion of positions with
high phyloP score (� 2).

minfabsð�SigÞg ¼ minfabsðð�log10P1Þ � ð�log10P2ÞÞg

ð5Þ

To identify the fKMPs/fRSPs and KMs/RSs in LCL cell lines,
using the top 498 significant k-mers enriched in GM12878
ChromHMM strong enhancers as well as the 30,741 insignif-
icant k-mers, we applied the modified IGR approach with the
same parameters to both the paternal and maternal genomes
in each individual of the two trios. To study the association of
KMs and differential binding of PU.1 in LCL cell lines, the same
pipeline was applied to the PU.1 ChIP-seq peaks by consider-
ing both maternal and paternal genome of each individual of
the two trios. When counting KMs in the individual-specific/
differential/similar PU.1-binding regions between two individ-
uals, one KM would be counted if the reference allele was also
an RS for the k-mer associated with the killing allele.

Analysis of Correlation between RSP and KMP
Clusters

Any two KMPs located within an 8-bp window were clustered
together, and a KMP was joined with its nearest cluster if its
minimum distance to the cluster was not larger than 8 bp.
Furthermore, any two KMP clusters with their minimum dis-
tance not larger than 8 bp were merged into one cluster. We
applied the same clustering procedure to RSPs. The distance
of a RSP cluster to a KMP cluster is defined as the minimum
distance between the two clusters. To study the statistical
significance of the distance of a given RSP cluster to its nearest
KMP cluster, for the KMP cluster we randomly picked a set of
non-KMP positions (with the same number of positions and
the same relative distances as the RSP cluster) from the en-
hancer 1,000 times. The distances between the 1,000 random
sets of positions and the KMP clusters formed an expected
empirical background. As shown in supplementary figure S14,
Supplementary Material online, the distances from RSP clus-
ters to the nearest KMP cluster are significantly smaller than
the null distribution, with P-value< 2.23e-308 using Mann–
Whitney test. As for the coexistence of common SNPs in the
coordinated KMP and RSP clusters, we applied the binomial
test to examine enrichment: for the coexistence of SNPs in
the assigned pair of KMP and RSP clusters, the probability of
finding it in a randomly picked KMP-RSP cluster pair was
calculated as the product of frequency of the SNPs in KMP
clusters and RSP clusters separately.

Enrichment of Closely Bound TF Pairs

We considered that the ChIP-seq peaks of two TFs overlap
each other if the distance between the centers of the two
peaks is no greater than 50-bp. The ratio of their overlapping
is estimated by ratio = jA \ B j = jA [ B j ; where A, B rep-
resent the ChIP-seq peaks for TFA and TFB, respectively, jA j
represents the size of the ChIP-seq peaks of TFA. jA \ B j is
the size of overlapping peaks; jA [ B j is the total amount of
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ChIP-seq peaks of TFA and TFB. We speculated that if two TFs
bound close to each other, there was likely to be functionally
cooperation between these two TFs, either by direct or
indirect interactions. To evaluate the significance of the in-
teraction between A and B, we established a null distribution
by randomly generated 1,000 independent pairs of TF ChIP-
seq peaks, each similar in size as the tested TFs. The enrich-
ment of the interacting TF pairs was then evaluated by ra-
tioreal/rationull.

Enrichment of KM SNPs in the Clusters of TFBSs

We first extended the sequence of the overlapping top k-mer
clusters (associated with a KMP cluster) with 6-bp in both
directions and applied FIMO (Bailey et al. 2009) with
TRANSFAC (Matys et al. 2006) and JASPAR (Mathelier et al.
2014) matrices of TF binding specificities to search for known
TFBSs overlapping the KMP clusters. The overlapping TFBSs
were ranked by their widths covering the top k-mer clusters,
and only the top one TFBS was kept. The TF would be con-
sidered if at least 2,000 of its binding sites were overlapping
KMP clusters. The neighboring TFBSs no more than 30-bp
between them were further clustered. To determine the en-
richment of the co-occurrence of common SNPs in the TFBS
pairs within a TFBS cluster, we applied the same procedure of
the enrichment analysis of co-occurrence of SNPs as in KMP-
RSP clusters.

Validation of Disruptive Effects of Our Predictions
Using MPRA

We only selected the engineered enhancer sequences with
HNF4 and FOXA motif instances from the MPRA experiment
(Kheradpour et al. 2013). Because there are five single-nucle-
otide mutations on each enhancer sequence including the
max 1-bp decrease, least 1-bp change, max 1-bp increase of
the motif match score, and two separate random 1-bp
changes of the 145-bp enhancers, and there are 30 enhancers
for the targeted TFs: HNF4, FOXA, and GATA, 26 enhancers
for NFE2L2. In total, 116 enhancers with 580 engineered var-
iants were selected in our study and superimposed onto our
predictions.

Scaled Significance Score

Instead of using the raw score of binding significance
(S =�log10P) to evaluate the biological significance of a k-
mer and to estimate the modulation of binding significance
caused by SNVs, we used the rank of k-mers as the variant to
define a normalized significance score with a comparable
unit, that is, the phred-scaled significance score (scaled-
significance =�10� log10(rank_S/N), where rank_S is the
rank of the binding significance score and N the total
number of k-mers). For example, a scaled binding significance
of 10 referred to the top 10% of all 32,896 k-mers. With scaled
binding significance score it would be easier to infer the sig-
nificance of the probability of picking a k-mer(s) at that score
or greater when selecting randomly from the control set.

Enrichment Analysis of GWAS Traits

The NHGRI GWAS Catalog was downloaded in February 2015
(Welter et al. 2014). To study the enrichment of a set of SNPs
coinciding with a certain trait, we generated a null distribu-
tion composed of 1,000� random SNP sets with the same
size as the tested SNP set. The P-value of the association
between the set of the SNPs and the studied trait was esti-
mated using binomial distribution. The enrichment of KM
SNPs coinciding with a trait relative to enhancer SNPs was
evaluated as the ratio of the enrichment of KM SNPs on this
trait relative to the null distribution to that of enhancer SNPs
on this trait relative to the null distribution. In all, 665 traits
with at least three tag SNPs were kept for the association
study. The tag SNPs coinciding with the 665 GWAS traits
were further expanded by LD (r2 4 0.8, minimum distance
of 500-bp). In total, 219 KM SNPs coincided with liver or liver-
related traits (supplementary table S4, Supplementary
Material online).

Peak Calling

We used BEDTools (Quinlan and Hall 2010) to transfer
mapped bam files (a binary version of a tab-delimited text
file that contains sequence alignment data; Li et al. 2009) of
the ChIP-seq data to bed files (tab-delimited text file that
defines a feature track; Kent et al. 2002). Then we applied
Homer (Heinz et al. 2010) to identify peak regions of TF ChIP-
seq data sets and dip regions of histone mark ChIP-seq data
sets, using “-style factor” and“-size 1000 -nfr” parameters,
respectively.

To study the effect on differential TF binding of candidate
KMs of the two trios in LCLs, we first separated the ChIP-seq
peaks into three categories: common peaks (ChIP-seq peaks
having similar binding signals between two individuals), dif-
ferential peaks (ChIP-seq peaks existing in both individuals
but having differential binding signals), and individual-specific
peaks (ChIP-seq peaks that are present in one individual while
missing in another). To identify individual-specific and
common-peaks of PU.1 shared between any two individuals
of the two trios, we applied Homer again to merge any two
peaks (in two individuals) with at most 100-bp between the
two peak centers using the parameter “-d 100” for the com-
mand “mergePeaks.” We also applied Homer to identify dif-
ferential ChIP-seq peaks of PU.1 between any two individuals
using the command “getDifferentialPeaks,” which by default
identifies peaks that have more than a four-fold difference of
tag counts between two experiments with a cumulative
Poisson P-value� 0.0001.

If a peak had an individual-specific/differential binding
signal between two individuals with the same KM(s) in at
least one pair-wise comparison, it could be considered as one
individual-specific/differential peak caused by certain KMs.
The peaks which were not individual-specific/differential
peaks between any two individuals were considered as similar
peaks. The similar peaks are also binned to two categories: 1)
similar peaks without KMs for any pair-wise comparison; 2)
similar peaks with KMs (same as individual-specific/
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differential peaks, similarly bound peaks sharing the same
KMs across different pair-wise comparisons are considered
as one peak).

Allele-Specific Local Chromatin Structure

To study the allelic imbalance in chromatin accessibility
caused by a KM/RS, we compared the fraction of reads ob-
tained from each allele. We first called the KMs/RSs in both
the paternal and maternal genomes of GM12878: one posi-
tion in the paternal genome would be considered to carry a
KM if the maternal allele at the position is a KM for the
paternal genome, meanwhile the paternal allele at the posi-
tion is a RS for the maternal genome, and vice versa. The
DNase I data includes reads mapped to hotspot DHS at an
FDR threshold of 5% (Maurano, Humbert, et al. 2012). At
8,766 KM/RS sites, the DNase-seq reads were extracted
using SAMtools (Li et al. 2009). Because in the original aligned
data (Maurano, Humbert, et al. 2012), the DNase I reads were
mapped to GRCh37/hg19 human reference sequence, to cor-
rect for mapping bias caused by mismatches, reads containing
the maternal or paternal reference allele were only counted if
they have at most one mismatches. Sites with less than 11
reads were filtered for library or mapping noise and lack of
statistical power, leaving 299 sites for further analysis.

dsQTL Analysis in LCLs

In total, 5,450 dsQTLs coincided with common SNPs
(MAF� 0.01) from the 1000 Genomes Project and dbSNP.
We collected all proxy SNPs of the dsQTL SNPs based on LD
analysis by using SNAP (Johnson et al. 2008) to expand the
LCL dsQTL SNP set. The r2 threshold of 0.8, D0 � 0.9, and the
maximal distance between two proxy SNP of 500 bp were
applied. To study the enrichment of dsQTL in enhancer
SNPs compared with all common SNPs, the empirical control
set of random SNPs had to be generated in order to alleviate
the ascertainment bias. For each enhancer SNP, 500 SNPs
located at approximately the same distance to the nearest
TSS were chosen at random. Then the binomial test b(x;n,p)
was applied to calculate the enrichment of enhancer SNPs
coinciding with dsQTLs, setting the first parameter x to the
number of enhancer SNPs coinciding with dsQTLs, the
second parameter n to the number of enhancer SNPs, and
the third parameter p to the proportion of random matched
SNPs carrying dsQTLs (P = 0.00513). For the enrichment of
dsQTLs in KM/RS SNPs compared with enhancer SNPs, we
counted the number of dsQTLs matched with both catego-
ries and studied the enrichment using the hypergeometric
test.

eQTL Analysis in LCLs

We first applied the same modified IGR approach to the
strong enhancers of GM12891 and GM12892 to identify
the KMPs/RSPs. The predicted ChromHMM strong (active)
enhancers were generated by another study (Kasowski et al.
2013).

There were originally 67,758 eQTL-gene links in LCLs from
CEU populations based on a previous study (Stranger et al.

2012). To expand the LCL eQTL SNP set, we identified all
proxy SNPs of the eQTL SNPs based on an LD analysis
using SNAP (Johnson et al. 2008) with the stringent criteria:
r2 threshold of 0.8, D0 � 0.9, and maximal distance between
two proxy SNPs of 500-bp. In the analysis of the enrichment
of eQTLs associated with highly expressed genes in enhancer
common SNPs relative to the matched random SNP sets
described earlier, binomial test b(x; n,p) was applied to calcu-
late the enrichment of enhancer SNPs coinciding with eQTLs
linked to highly expressed genes, setting the first parameter x
to the number of enhancer SNPs coinciding with eQTLs
linked to highly expressed genes, the second parameter n to
the number of enhancer SNPs, and the third parameter p to
the proportion of random matched SNPs that carry eQTLs
linked to the same set of genes. For the enrichment of eQTLs
in fKMP/fRSP SNPs compared with enhancer SNPs, we
counted the number of eQTLs matched with both categories
and studied the enrichment also using hypergeometric test.

Supplementary Material
Supplementary text, figures S1–S34, and tables S1–S7 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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