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ABSTRACT The availability of dense panels of common single-nucleotide polymorphisms and sequence variants has facilitated the
study of statistical features of the genetic architecture of complex traits and diseases via whole-genome regressions (WGRs). At the
onset, traits were analyzed trait by trait, but recently, WGRs have been extended for analysis of several traits jointly. The expectation is
that such an approach would offer insight into mechanisms that cause trait associations, such as pleiotropy. We demonstrate that
correlation parameters inferred using markers can give a distorted picture of the genetic correlation between traits. In the absence of
knowledge of linkage disequilibrium relationships between quantitative or disease trait loci and markers, speculating about genetic
correlation and its causes (e.g., pleiotropy) using genomic data is conjectural.
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THE interindividual differences for a trait or disease risk
that can be explained by genetic factors, such as trait

heritability (h2), the genetic correlation (rG), and the coher-
itability between two traits (rGh1h2), are very important pa-
rameters in quantitative genetic studies of animals, humans,
and plants. These quantities play a role in the study of evo-
lution due to artificial and natural selection, and knowledge
thereof is required for statistical prediction of outcomes in
animal and plant breeding as well as medicine. Traditionally,
these parameters have been estimated using phenotypes and
pedigrees, e.g., family and twin data in human genetics. The
availability of dense panels of common single-nucleotide
polymorphisms (SNPs) and of sequence data more recently
has made it possible to assess kinship among distantly related
individuals (Morton et al. 1971; Thompson 1975; Ritland

1996; Lynch and Ritland 1999). This development has
opened new opportunities for study of the genetic architec-
ture of complex traits and diseases. For instance, Yang et al.
(2010) suggested using whole-genome regressions (WGRs)
(Meuwissen et al. 2001) to assess the proportion of variance
of a trait or disease risk that can be explained by a regression
of phenotypes on common SNPs or genomic heritability and
a related parameter, the “missing heritability.”More recently,
WGR models have been extended for the analysis of systems
of multiple traits, so the concept of genomic correlation also
has entered into the picture (Jia and Jannink 2012; Lee et al.
2012). For instance, Maier et al. (2015) used multivariate
WGR models and reported estimates of genetic correlations
between psychiatric disorders, and Furlotte and Eskin (2015)
presented a methodology that incorporates genetic marker
information for the analysis of multiple traits that, according
to the authors, “provide fundamental insights into the nature
of co-expressed genes.” In a similar spirit, Korte et al. (2012)
argued thatmultitrait-marker-enabled regressions can be useful
for understanding pleiotropy.More recently, Bulik-Sullivan et al.
(2015) proposed a methodology for “estimating genetic corre-
lation” using statistics derived from single-marker genome-wide
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association studies (GWAS) and reported estimates of such
correlations among 25 human traits.

de los Campos et al. (2015) discussed potential problems
that emerge when trying to infer genetic parameters using
molecularmarkers that are imperfectly associatedwith the gen-
otypes at the causal loci. In this paper, the framework described
in de los Campos et al. (2015) is extended for the analysis of
systems of traits, and it is demonstrated that correlation param-
eters inferred using markers can give a distorted picture of the
genetic correlation between traits. For instance, it is shown that
an analysis based on markers may suggest a genetic correlation
when none exists or may fail to detect a genetic correlation
when one does exist. It is concluded that in the absence of
knowledge about linkage disequilibrium (LD) relationships be-
tween quantitative trait loci (QTL) and markers, speculating
about genetic correlations, and even more about their causes
(e.g., pleiotropy), using genomic data is conjectural.

Theory

To set the stage, consider a single-locusmodel. In an additive-
inheritance framework, a phenotype (y) is regressed on aQTL
genotype code Q (0, 1, and 2 for genotypes aa, Aa, and AA,
respectively) according to the linear model

y ¼ a0 þ a1Qþ E (1)

where a0 and a1 are fixed parameters, and Q and E are in-
dependent random variables, the latter representing a model
residual. The proportion of phenotypic variance explained by
the linear regression on Q, or narrow-sense heritability, is

h2 ¼ a2
1SQ

a2
1SQ þ s2

E

where SQ ¼ varðQÞ is the variance in allelic content, and
s2
E ¼ varðEÞ is the residual variance. If Q is standardized to

a unit variance,

SQ ¼ 1 and h2 ¼ a2
1

a2
1 þ s2

E

In quantitative genomic analysis,marker genotypes (X) are
used in lieu of the QTL genotypes Q because the latter are
unknown or unobserved. The marker-based or instrumental
model, assuming a single marker, is a linear regression on
marker genotype X with form

y ¼ a0 þ b1X þ E9 (2)

where E9 is a regression residual. Assuming without loss of
generality that both X and Q are in standard deviation units,
the marker effect can be shown to be b1 ¼ rQXa1, where rQX
is the correlation between themarker and the QTL genotypes,
which depends on their LD. In this setting, the proportion of
variance of phenotypes explained by the linear regression on
the marker, or genomic heritability, is h2marked ¼ r2QXh

2, and

missing heritability is h2missing ¼ ð12 r2QXÞh2. Hence, missing
heritability is a function of the LD between the marker and
the QTL. Genomic heritability has h2 as an upper bound (de
los Campos et al. 2015).

The regressionmodel just described can be extended to the
analysis of multiple traits affected by multiple QTL. For
simplicity, we consider only two markers (X1 and X2) and
two QTL (Q1 and Q2). A multivariate representation of the
model with an arbitrary number of QTL and markers is pro-
vided in the Appendix. Figure 1 depicts a system with two
traits, two QTL, and two markers. The left panel represents
the regression of the phenotypes on the two QTL, with blue
arrows denoting effects from QTL on traits and green arcs
denoting LD between QTL. In the QTL model of Figure 1, the
genetic correlation is (see Appendix)

rG ¼ a19SQa2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a19SQa1

��
a29SQa2

�q (3)

where a19 ¼ ða11 a12 Þ contains the effects of QTL 1 and 2
on trait 1, and a29 ¼ ða21 a22 Þ contains the effects of QTL 1
and 2 on trait 2. The variance-covariance matrix between
QTL genotypes is given by SQ. If genotypes are standardized,

SQ ¼
�

1 rQ12

rQ21 1

�

with rQ12
being the correlation between genotypes at QTL 1

and 2. In the QTL model of Figure 1, there are two sources of
genetic correlation: pleiotropy (i.e., the same QTL affects
more than one trait) and LD between QTL, in this case rep-
resented by rQ12

6¼ 0. This is well known in quantitative ge-
netics (Falconer and Mackay 1996; Knott and Haley 2000).

We now bring the two markers into the picture, as shown in
the right panel of Figure 1; here gray arrows are regressions on
markers (these are distinct from regressions onQTL genotypes),
and arcs denote correlations between genotypes due to LD. In
the Appendix, we show that the genomic correlation is

rG;marked ¼ a19SQXS
21
X SXQa2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

a19SQXS
21
X SXQa1

��
a29SQXS

21
X SXQa2

�r
(4)

In this expression, SQX is the covariance matrix between QTL
and marker genotypes (reflecting marker-QTL LD), and SX is
the covariance matrix between marker genotypes, reflecting
mutual LD relationships among markers. If markers and gen-
otypes are in standard deviation units,

SX ¼
�

1 rX12

rX21 1

�
and SQX ¼

�
rQ1X1

rQ1X2

rQ2X1
rQ2X2

�

Comparison of the genomic correlation (4) with the genetic
correlation (3) indicates that in rrG;marked , SQXS

21
X SXQ replaces

SQ: Inspection of (4) reveals that the sources of the genomic
correlation are (1) pleiotropic QTL effects via a1 and a2, (2)

24 D. Gianola et al.



marker-QTL LD patterns conveyed by SQX, and (3) among-
marker LD relationships, as conveyed by SX : Notably, one of
the sources of genetic correlation, i.e., LD between QTL, as
conveyed by SQ, has no effect on rG;marked. Conversely, there
are sources that contribute to the genomic correlation, i.e.,
marker-marker andmarker-QTL LD, that do not enter into rG:

Because the sources affecting genetic and genomic corre-
lations are distinct, the two parameters can differ greatly. This
point is strengthened by considering four stylized cases rep-
resented in Figure 2. All the demonstrations supporting the
discussion that follows can be found in the Appendix.

Application to Four Situations

Case 1: Independent marker-QTL pairs and absence of
pleiotropy (Figure 2, upper-left panel)

This is the simplest case: it consists of two marker-QTL pairs
with linkage equilibrium (LE) between pairs but LD within
pairs. Each trait is affected by only oneQTL;QTL1 affects trait
1, and QTL 2 affects trait 2. Several simplifications take place
here. For instance, because of LE between pairs, rQ1X2 ¼ 0, so
SQX becomes an identity matrix. Therefore, the genetic co-
variance in the numerator of (3) reduces to a19a2. In the
absence of pleiotropy, a19 ¼ ða11 0 Þ and a29 ¼ ð 0 a22 Þ
are orthogonal; i.e., a19a2 ¼ 0. Therefore, the genetic corre-
lation is null. Furthermore, with LE between pairs,
rQ1X2 ¼ rQ2X1 ¼ rX1X2 ¼ 0, leading also to an absence of geno-
mic correlation. Thus, in case 1 there is complete agreement
between the genomic and genetic correlations: both are null.

Case 2: Phantom correlation (Figure 2,
upper-right panel)

The setting is obtained by adding LD between the twomarkers
to case 1. There is no pleiotropy, and the two QTL are in LE, so
the genetic correlation is zero (genetically, the system is equiv-
alent to case 1). However, because of the LD betweenmarkers,
SQXS

21
X SXQ in (4) is no longer diagonal. Consequently, there

will be nonzero genomic correlation even in absence of genetic

correlation: markers can induce genomic correlation when
traits are genetically uncorrelated—a crucial issue.

Case 3: Missing correlation (Figure 2, lower-left panel)

This scenario illustrates a situation in which the genetic
correlation is undetected by themarkers and is obtained from
case 1 by adding LD between QTL, which, in the absence of
pleiotropy, is the only source of genetic correlation between
traits. However, SQXS

21
X SXQ remains diagonal as in case 1.

Furthermore, in the absence of pleiotropy, a19a2 ¼ 0 (orthog-
onality); consequently, rG;marked is null. This example shows
how one source of genetic correlation, namely, LD among
QTL, may be completely lost in a genomic analysis.

Case 4: Pleiotropy (Figure 2, lower-right panel)

Here we allow each of the two QTL to affect both traits;
otherwise, the setting is as in case 1. Pleiotropy now induces
a genetic and a genomic correlation. However, rG and rG;marked

differ in magnitude depending on the patterns of LD and on
the magnitude of the pleiotropic effects. To illustrate, we set
SX ¼ SQ ¼ I2, an identity matrix of order 2; this implies LE
between pairs of QTL and pairs of markers. Further, we take

SQX ¼
�
0:5 0

0 0:5

�
or SQX ¼

�
0:2 0

0 0:8

�

i.e., homogeneity or heterogeneity of marker-QTL LD, respec-
tively. Finally, QTL effects are set to a19 ¼ ð 1 a12 Þ and
a29 ¼ ða21 1 Þ, with a12 ¼ a21; this pleiotropic effect was
varied over the set of values ½20:9; 2 0:8; . . . ; 0:8; 0:9�. Fig-
ure 3 displays the resulting values of the genomic (vertical
axis) vs. genetic (horizontal axis) correlations computed us-
ing (3) and (4); the blue curve represents the case where

Figure 2 Two-trait system. Four possible cases of interplay between QTL,
markers, and phenotypes. The arrows have the same interpretation as in
Figure 1.

Figure 1 Two-trait system. A system of two traits (Y) involving two QTL
and two markers (X). Single-pointed blue arrows denote causal effects,
green double-pointed arrows denote LD, and single-pointed gray arrows
represent regression coefficients.

Communications 25



marker-QTL LD was the same for both pairs, and the red
curve represents the case where LD differed between pairs
1 and 2. The figure shows how different patterns of LD induce
different magnitudes of genomic and genetic correlations
that, however, do not differ in sign in this example.

The genomic covariance does not always preserve the sign
of the genetic covariance. Suppose that the two QTL are not
pleiotropic but are in LD, with effects a19 ¼ ða 0 Þ and
a29 ¼ ð 0 2a Þ and with

SQ ¼
1

1
2

1
2

1

2
664

3
775

Using the expression in the numerator of (3), the genetic
covariance is

ða 0 Þ
1

1
2

1
2

1

2
664

3
775ð 0 2a Þ9 ¼ 2

a2

2

which is negative at any nonnull value of a. Now let the LD
relationships between markers and between QTL and
markers be such that

SX ¼
1

4
5

4
5

1

2
664

3
775 and SQX ¼

4
5

0

0
4
5

2
664

3
775

The genetic system is such that QTL 1 (QTL 2) is in LD with
marker 1 (marker 2), but there is LE between QTL 1 and
marker 2 and QTL 2 and marker 1. In the numerator of
expression (4),

SQXS
21
X SXQ ¼

16
9

2
64
45

2
64
45

16
9

2
664

3
775

and the genomic covariance is (64/45)a2, always positive. In
this example, the genomic correlation is 4/5, and the genetic
correlation is 21/2.

Discussion

In the analysis of systems of complex traits, none of the cases
just discussed are likely to “hold” exactly as described, and
there is an enormous range of possibilities in terms of within
and between marker-QTL genotypes as well as allelic effects
sizes and signs. However, the underlying mechanisms that
our examples describe are an integral part of the multivariate
system involving QTL and markers and are key to an under-
standing of why genomic and genetic correlations are distinct
parameters. Importantly, there is an ambiguous link between
the two parameters. For instance, all or a fraction of the

component of rG that is due to LD among QTL is likely to
be missed by an analysis based on markers that are in imper-
fect LD with QTL. Also, a fraction of the genetic correlation
due to pleiotropy is likely to be missed as a result of imperfect
LD between marker and QTL. Finally, LD between markers
can create illusory genetic correlations.

What happens if all QTL genotypes are included in the
panel of markers, as may be expected if full DNA sequence
information is available?Here the sequence canbepartitioned
into neutral markers (x) and QTL (q) such that for a given
individual the genomic data presents as xseq ¼ ðx9;q9Þ. Thus,
the sequence covariance matrix is

varðxseqÞ ¼ Sxseq ¼
�
SX SXQ
SQX SQ

�
(5)

The marked genotype for trait i using the DNA sequence is

Ĝi ¼ ai9SQxseqS
21
xseqxseq; i ¼ 1; 2 (6)

and the genomic or marked covariance is

covðĜ1; Ĝ2Þ ¼ a19SQxseqS
21
xseqSxseqS

21
xseqSxseqQa2

¼ a19SQxseqS
21
xseqSxseqQa

9
2 (7)

Using partitioned matrix techniques for obtaining the inverse
of Sxseq de los Campos et al. (2015) showed that

SQxseqS
21
xseqSxseqQ ¼ ½SQX SQ �

�
0
I

�
¼ SQ (8)

Hence, covðĜ1; Ĝ2Þ ¼ a19SQa2, the genetic covariance de-
fined in equation (A2) in the Appendix. This shows that if
the sequence information contains the variants at the causal
loci, the marked covariance is equal to the genetic covariance

Figure 3 Genomic vs. genetic correlation in the system described by case 4.
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between traits, and therefore, the genomic correlation is
identical to the genetic correlation in that case. However,
the genetic correlation depends on allelic frequencies and
allele effect sizes at the QTL as well as on LD relationships
between the QTL; these parameters, as well as the trait-specific
QTL, will still need to be learned properly. Apart from finite-
sample-size statistical problems, technical issues suchas a large
percentage of singleton reads and incomplete gene coverage
will complicatematters (KerrWall 2009).Hence,when sequence
data become available for quantitative genetic studies, unrav-
eling the structure of the genetic correlation will not be an
easy task, even under the simplifying assumptions of an additive
model of inheritance.

In conclusion, multivariate quantitative genetic analysis
based on markers can be used to obtain more accurate pre-
dictions of complex traits and to estimate genomic correla-
tions. However, these parameters cannot always be viewed as
genetic correlations because the sources of genetic and geno-
mic correlations are distinct. Imperfect LD between markers
and QTL produces missing heritability in single-trait analysis;
in multivariate models, the problem becomes one of missing,
excessive, or spurious (MES) correlation. Care must be exer-
cised when interpreting estimates of genomic correlations
between complex traits when these traits are assessed by
molecularmarkers as opposed toQTL and evenmore sowhen
interpreted from a causality perspective. Unfortunately, con-
siderably more information is needed than what is now avail-
able for a meaningful interpretation of estimates of genomic
correlations between pairs of traits when gene action involves
many additiveQTL. Speculating on themultivariate statistical
genetic architecture of complex traits using imperfect instru-
ments such as markers seems risky at this time.
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Appendix

Genetic Correlation

Let G1 ¼ a19q and G2 ¼ a29 q be additive genetic values for a pair of traits, where a1 and a2 are vectors of fixed allelic
substitution effects affecting traits 1 and 2, respectively, and q is a random vector indicating the incidence of genotypes at
the corresponding QTL. Following de los Campos et al. (2015), the additive genetic variance of trait i is

varðGiÞ ¼ ai9SQai; i ¼ 1; 2 (A1)

The additive genetic covariance between traits 1 and 2 is then

covðG1;G2Þ ¼ a19SQa2 (A2)

where SQ is a covariance matrix between allelic contents at loci affecting the traits. For example, with two QTL (assuming
Hardy-Weinberg equilibrium at each of the two QTL),

SQ ¼
�
2p1ð12 p1Þ 2D12

2D12 2p2ð12 p2Þ
�

(A3)

where pj is the frequency of the reference allele at locus j (j = 1,2), and D12 is the LD statistic between alleles at the two loci. In
scalar notation, (A2) takes the more explicit form

covðG1;G2Þ ¼ 2½p1ð12 p1Þa11a21 þ p2ð12 p2Þa12a22� þ 2D12ða12a21 þ a11a22Þ (A4)

Thegenetic covariancehasapleiotropy component (thefirst part of theexpression)plus aLDcomponent that vanishes if theQTL
are in pairwise equilibrium, i.e., D12 ¼ 0: The genetic correlation (Falconer and Mackay 1996) is

rG ¼ a19SQa2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a19SQa1

��
a29SQa2

�q (A5)

Genomic Correlation

Let x be a vector of genotypes at p marker loci. The multiple linear regressions of G1 and G2 on x produce as fitted values
Ĝi ¼ a9

iSQXS
21
X x. The genomic covariance (or marked genetic covariance) is defined as

Cmarked ¼ covðĜ1; Ĝ2Þ ¼ a19SQXS
21
X SXQa2 (A6)

The genomic correlation is

rG;marked ¼ Cmarkedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a19SQXS

21
X SXQa1

��
a29SQXS

21
X SXQa2

�r (A7)

Interpreting thisparametermeaningfully requiresknowledgeof (1)bivariateQTLeffects at all loci, (2)LDrelationshipsbetween
QTL affecting the two traits and themarkers via theSQX matrices, and (3) LD relationships amongmarkers. Unfortunately, only
phenotypes, marker genotypes, and LD relationships between markers are observable. Most of the required ingredients in the
formula are yet unknown. Importantly, note that SQ; conveying LD between QTL, does not enter into the genomic correlation.

Independent QTL-Marker Blocks (Case 1 in Figure 2)

Each of two independently segregating QTL is in LD with a marker, with the two markers being in mutual LE, and there is no
pleiotropy. Here

SQX ¼ SXQ ¼ SX ¼
�
1 0
0 1

�
(A8)

so the genetic and genomic correlations both become
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rG ¼ rG;marked ¼ a19 a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða19a1Þða29a2Þ
p (A9)

Because there is no pleiotropy, a19a2 ¼ ða11 0 Þ9ð 0 a22 Þ ¼ 0, and both correlations are null.

Phantom Correlation (Case 2 in Figure 2)

Consider SQXS
21
X SXQ in (A6), where (given standardized genotypes)

SQX ¼
"
rQ1X1

rQ1X2

rQ2X1
rQ2X2

#
¼

"
rQ1X1

0

0 rQ2X2

#

S21
X ¼

"
1 rX1X2

rX1X2
1

#21

¼ 1
12 r2X1X2

"
1 2rX1X2

2rX1X2
1

#

SXQ ¼
"
rQ1X1

0

0 rQ2X2

#
(A10)

Then

SQXS
21
X SXQ ¼ 1

12 r2X1X2

"
r2Q1X1

2rQ1X1
rQ2X2

rX1X2

2rQ1X1
rQ2X2

rX1X2
r2Q2X2

#
(A11)

The off-diagonals of this matrix are nonnull, so a genomic correlation will arise when there is no genetic correlation.

Missing Correlation (Case 3 in Figure 2)

Because the markers are in LE, S21
X is an identity matrix, so

SQXS
21
X SXQ ¼ SQXSXQ ¼

"
r2QX 0

0 r2QX

#

Therefore, in the absence of pleiotropy, Cmarked in (A6) and, thus, rG;marked will be null no matter what the value of the genetic
correlation.

Pleiotropy (Case 4 in Figure 2)

The results in Figure 3were obtained using expressions (3) and (4)with the parameter values described in themain body of the
paper.
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