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Abstract

Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of 

a tree—what connects to what—from a two-dimensional image of it. However, the projected 

branches often cross in the image: the tree projects to a planar graph, and the inverse problem of 

reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this 

problem with a generative, parametric tree-growth model. Under this model, reconstruction is 

possible in linear time if one knows the direction of each edge in the graph—which edge endpoint 

is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the 

latter case, we present a heuristic search algorithm to estimate the most likely topology of a 

rooted, three-dimensional tree from a single two-dimensional image. Experimental results on 

retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate 

and efficient.
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Introduction

TREES are fundamental physical structures in nature. Aside from the eponymous large plants, 

other examples include retinal vessels, lung airways, neurons, lightning, plant roots, and 

more. Trees typically arise from a branching process that grows away from an initial root to 

efficiently distribute a fluid, a current, or signals between a central source and a set of end-

points. Different growth processes produce strikingly different trees, both in terms of their 

geometry and their connectivity, as Figure 1 illustrates.

A wide variety of imaging techniques—including fluorescein angiography, retinal fundus 

imaging, and x-ray and color photography—yield two-dimensional images of trees, from 

which it is often useful to reconstruct the tree's original connectivity. However, the three-
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dimensional location of each tree branch is lost after projection, and parts of different 

branches often map to the same point on the image. See Figure 1 again.

Specifically, the image of a tree obscures its original topology in two key ways:

1. There may be spurious branch crossings in the image that resemble true 

branchpoints.

2. The directionality (flow to or from the root) along the branches may be lost.

The resulting loss of information makes reconstructing tree connectivity and flow direction 

from an image an ill-posed problem, and a prior model must be introduced to regularize the 

solution. Fortunately, good theoretical and empirical models have been developed in several 

domains to describe the expected morphology or growth pattern of a particular type of tree. 

Well-studied trees include blood vessels [31], [33], plant roots [2], [20], neurons [24], [28], 

leafy trees [3], [34], and lightning [15], [29].

In this work, we present a comprehensive methodology for estimating the most likely 

topology of a rooted, directed, three-dimensional tree given a single two-dimensional image 

of it and a growth model for that type of tree. We address this challenging inverse problem 

through a combination of greedy approximation and heuristic search algorithms that 

efficiently explore the space of possible trees. Our main theoretical contributions are:

1. The formalization of the tree estimation problem from a single projection.

2. A proof that the tree estimation problem is NP-hard if flow direction is unknown.

3. A greedy linear-time algorithm for approximating the most likely topology of a 

tree.

4. A heuristic search algorithm that efficiently explores the space of possible trees 

starting from the greedy solution.

The rest of this paper is organized as follows: Section 2 discusses related work. Sections 3 

and 4 describe the projection of three-dimensional trees onto two-dimensional images and 

elucidate the space of possible solutions, respectively. Section 5 presents a generative, 

parametric model of tree growth and defines the probability of a projected tree given the 

model. Section 6 examines the complexity of estimating the most probable tree. Section 7 

presents both a greedy approximation algorithm and a heuristic search method that refines 

the greedy estimate. Finally, Section 8 presents experimental results on retinal vessel, plant 

root, and synthetic tree datasets, and Section 9 discusses future work.

2 Related Work

To the best of our knowledge, the only prior work on automatically determining the 

topology of a three-dimensional tree given a single, two-dimensional image of it is the 

method developed by Zeng et al. [44] for modeling visually plausible unfoliaged trees from 

images. Their algorithm greedily assigns to each branch segment the parent branch that has 

the most plausible thickness and forms the most plausible angle with the candidate branch. 

The results in their paper did not include any quantitative evaluation. We now survey other 

related work concerning tree imaging and modeling.
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Tree reconstruction

Most previous tree estimation work focused on three-dimensional data, primarily from MRI, 

computed tomography (CT), and optical coherence tomography (OCT) scans of lung 

airways, cardiac vasculature, and retinal vessels. Reconstruction from three-dimensional 

images is a well-posed problem. The most popular methods in this field are region growing 

[16], [26], probabilistic branch tracking [12], [36], and dynamic programming [17], [18]. 

Tomographic reconstruction methods from conventional photographs have also been 

developed for plant roots grown in a clear medium using volumetric carving [20], [45]. We 

estimate the topology of a three-dimensional tree from a two-dimensional graph.

Tree segmentation

Two-dimensional analysis of tree structures, primarily of retinal vessels, has focused on 

binary segmentation, which seeks to extract the tree pixels but not the corresponding three-

dimensional topology. Segmentation methods employ local filtering [42], [37], dynamic 

programming [4], [10], spanning tree sampling [14], [40], Steiner trees [19], or tubular 

tracking [30], [43]. Recent work also attempts to distinguish arteries from veins using a 

combination of color features and vessel tracking [7], [35].

Graphical tree modeling

Work on modeling trees using computer graphics follows three main approaches: Rule-

based methods generate trees using fractals or other local deformations [1], [32]. In sketch-

based tree modeling, a user draws one or more two-dimensional sketches and a tree is 

generated based on them [6], [38]. In image-based modeling, a set of input images is used to 

synthesize a plausible three-dimensional tree model [27], [44]. Overall, the goal of graphical 

tree modeling is to obtain a visually plausible three-dimensional geometry based on either a 

user's traced branches or a set of branch-generating rules. Our focus, on the other hand, is to 

faithfully estimate an input tree's topology.

Tree-growth models

There has been considerable work on modeling the growth of specific types of trees by 

accounting for the interactions between the various forces that affect the growing tree. Blood 

vessel models describe growth at multiple scales—from single cells to tissues—primarily 

through systems of differential equations that describe cell development and migration [31], 

[33]. Plant-root growth models generally employ similar principles, but also incorporate 

architectural constraints driven by gravity [2], [20]. Neuron growth modeling has focused on 

statistical techniques, such as Bayesian networks [24], [28]. Leafy tree models have used 

flow diffusion and fractals [3], [34], while lightning modeling has focused on the ambient 

electric field [15], [29]. We develop a generative probabilistic model that captures a wide 

class of trees with a modicum of parameters, and lends itself well to stochastic search.

3 Tree Projection

We study rooted trees in three-dimensional space that project onto graphs in two-

dimensional images. More specifically, our trees carry a flow of something—a fluid, a 

current, information—from their roots to their leaves or vice versa, so that a direction 
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consistent with this flow is associated to each of their branches. For simplicity, we assume 

that all flow is from the root, the reverse case being entirely equivalent. In our discussion, 

we often distinguish a graph from its embedding. Thus, for clarity, we use the term “directed 

tree” to refer to the graph of the three-dimensional tree and “arborescence” to refer to its 

embedding, even though “arborescence” is typically used for both in the literature.

Projecting an arborescence removes information about the distance of each of its branches to 

the image plane. Most of the time, projection also obscures information about the direction 

of flow associated with each branch, as branches taper very slowly, if at all, in typical 

images. As a result, projecting an arborescence yields an undirected graph in the image 

plane. This graph is planar if new branch intersections, formed as a result of projection, are 

considered to be new vertices.

Assuming that the undirected image graph G has been segmented out of the image (see 

Section 8.2.1 for segmentation) of an arborescence A with directed tree T, our task is to 

reconstruct T from G. Since projection is a many-to-one mapping, many different directed 

trees can project to the same graph, making the reconstruction problem ill-posed. To 

regularize it, we introduce a generative prior model M for the growth of any given type of 

tree—the dendrites of a neuron, the vessels in a retina, plant roots, or the branchings in a 

stroke of lightning. This model allows us to define a prior probability pM(T) on the set of all 

possible directed trees, and we then seek a most likely tree given its image graph and the 

model:

(1)

where  is the set of directed trees consistent with the graph G and  is the set of 

all directed trees.

The formulation in Eq. 1 can be interpreted as a special case of maximum a posteriori 

(MAP) estimation,

where the observation probability pO(G|T) is uniform over graphs obtained by projecting T 

onto the image and zero elsewhere. Thus, our formulation leaves all regularization up to the 

prior model M, while any noise in the image is handled in the segmentation stage that 

extracts G from the image. We leave more nuanced models of image formation for future 

work.

The next two subsections describe how an arborescence projects to a planar graph and how 

to generate all possible directed trees consistent with this graph. Section 4 shows how to 

explore the space of all these trees.
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3.1 Arborescence Projection

The topology of a tree T is endowed with geometry by embedding it in an arborescence A, 

which then projects to a planar graph G in the image. More formally, the edges of a directed 

tree T = (VT, ET, rT) rooted at vertex rT ∊ VT are oriented away from the root; that is, every 

edge

is an ordered pair, with u the parent and v the child. The arborescence A = η(T) is an 

embedding of T in  such that every vertex v ∊ VT maps to a vertex v = η(v) of A in  and 

every edge e = (u, v) ∊ ET maps to a directed line segment e between the two vertices u = 

η(u) and v = η(v). In particular, we denote rA = η(rT). We assume that all the vertices of A 

are distinct points in space and all its edges are mutually disjoint [41]. Intuitively, an 

arborescence is a set of a non-intersecting, piecewise-linear, three-dimensional branches.

The image projection P(A) of A may intersect itself. More concretely, as Figure 2 illustrates:

1. Multiple vertices can project to the same point.

2. Distinct edges can intersect in the projection.

3. Vertices can project onto edges.

We exclude the degenerate cases of edges in A projecting to points in P(A), or distinct edges 

of A overlapping in line segments in P(A).

The set P(A) is the embedding η(Gd) of a directed planar graph Gd = (VGd, EGd, rGd) with 

root rGd = P (rA). This graph has one vertex v ∊ VGd for every vertex in A that projects to 

P(A) with no overlap, plus one for every point where two or more projected line segments 

overlap (including at their vertex endpoints). The latter type of vertex is called a crossing. In 

other words, v ∊ P(A) is a crossing whenever its multiplicity |P−1(η(v))| is greater than 1. 

Here, |X| denotes the size of set X.

The graph has an edge e = (u, v) ∊ EGd for u, v ∊ VGd if and only if the line segment between 

its endpoints is fully contained in P(A) and e has the same direction as the projected line 

segment that contains it. Thus, every edge of Gd is either identical to a projected line 

segment of A or is a subset of one. Either way, the edge inherits the segment's direction.

It is useful to add a new vertex, called a refined vertex, to the original tree T for every non-

vertex point of A = η(T) that projects to a crossing. These points are the green dots in Figure 

2. Edges are split at refined vertices as illustrated in Figure 3. The resulting tree T′ is called 

the refined (directed) tree. This tree is homeomorphic (in the graph-theoretical sense) to T. 

Its embedding A′ = η(T′) is called the refined arborescence. By construction, only vertices 

can yield crossings in the projection of a refined arborescence.

Typically, the directed graph Gd is not observed in the image, since projecting an 

arborescence often obscures the directions of its edges. What is observed instead is an 

undirected graph G = (VG, EG, rG) with the same vertex set VG = VGd and root rG = rGd as 
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Gd and with an undirected edge e = {u, v} ∊ EG if either (u, v) or (v, u) is in EGd. In other 

words, Gd is an orientation of G. Because of crossings, the number of vertices in Gd (and G) 

is at most equal to the number of vertices in T′. That is,

3.2 Crossings and Valid Partitions

In general, multiple directed trees are consistent with (i.e. project down to) a single directed 

planar graph Gd; we will now show how to generate these possible trees. To this end, we 

assume that (i) the root rGd is not a crossing, (ii) the pre-image of every point x on the 

embedding P(A) of Gd is finite—whether x is a crossing or not—and (iii) the number of 

crossings is finite. These conditions are mild. In particular, finite pre-images prevent any 

edge segment from projecting “edge-on”to a single point, and a finite number of crossings 

excludes infinitely tortuous edges.

Under these assumptions, crossings are exactly those vertices with in-degree greater than 1 

in Gd. To see this, let deg(v) and deg−(v) denote the degree and in-degree of a vertex v ∊ 

VGd. Since Gd is the projection of tree T′, each (directed) edge entering v must enter a 

distinct vertex in T′, so the multiplicity of v is deg−(v). In particular, no vertex other than the 

root can have in-degree zero. Furthermore, all possible directed trees consistent with Gd 

yield the same crossings; thus, in what follows we will treat the “crossings of Gd”as intrinsic 

to the projected graph, without needing to reference any particular tree that is consistent with 

it.

Thus, to reconstruct T′, each crossing of Gd must be split into deg−(v) vertices, and the 

deg+(v) = deg(v) − deg−(v) edges out of v, if any, must be partitioned into deg−(v) sets. Such 

a partition is valid if each edge exiting v is associated to exactly one of the new vertices. 

Different combinations of valid partitions correspond to different trees that could have 

projected down to Gd, and the number of these trees is exponential in the number of 

crossings [9].

4 Graph Orientations

When only an undirected graph G is available from the image, we must first choose an 

orientation for each of its edges before we can generate a directed tree consistent with it. 

This section shows a systematic way to generate good graph orientations. First, Section 4.1 

defines a “good”orientation as one for which every combination of valid partitions of its 

crossings yields a single, connected directed tree. Then, Section 4.2 shows that all good 

orientations for a given graph can be visited by flipping the orientation of one edge at a time, 

i.e. that they are connected. Based on these results, in Section 7 we present a heuristic search 

algorithm that explores this space by iteratively flipping edges to move between 

orientations. To the best of our knowledge, all the following results in this section are novel 

and may be of independent interest.
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4.1 Flow Directed Acyclic Graphs

Figure 4 shows that some graph orientations cannot be transformed into connected directed 

trees by any set of valid partitions on its crossings, while Figure 5 shows that, for other 

orientations, only some combinations of valid partitions lead to a tree. In this section, we 

characterize the set of graph orientations for which every combination of valid partitions 

yields a single connected directed tree.

If we examine Figure 4 again, we can see that if we flip edge (w, v) to (v, w), then the 

resulting orientation is consistent with the tree u → v → w. We denote this new orientation 

as a flow orientation. More generally, an orientation Gd of an undirected graph G is a flow 

orientation if and only if there exists a vertex rGd from which every other vertex in VGd can 

be reached while respecting edge orientations.

Then, we propose that a directed graph Gd is the projection of at least one directed tree if 

and only if Gd is a flow orientation. To prove this, note that if Gd is not a flow orientation, 

then at least one vertex is unreachable from the root. Valid partitions can only eliminate 

paths between nodes, so there is no sequence of valid partitions that will create the necessary 

path and transform Gd into a directed tree. Conversely, if Gd is a flow orientation, a directed 

tree can be built in two steps: first, make a directed spanning tree rooted at rGd. Then, assign 

an arbitrary orientation to each of the edges that are not in the spanning tree to obtain a full 

orientation of G. By construction, the directed spanning tree guarantees that every vertex is 

reachable from rGd, thus ensuring that Gd is a flow orientation.

We denote graphs that are both flow orientations and Directed Acyclic Graphs (DAGs) as 

flow-DAGs. Flow-DAGs enjoy two important properties:

1. All connected, undirected graphs admit at least one flow-DAG. A simple way to 

build one is to first run breadth-first search starting at an arbitrary vertex to define a 

topological ordering of the graph's vertices. Then, orient every edge of the graph 

based on this ordering, i.e. orient every edge from the vertex that appears earlier in 

the ordering to the one that appears later.

2. Every combination of valid partitions for the crossings of a flow-DAG yields a 

directed tree. To see this, pick any node v in the flow-DAG other than the root. 

Since the graph is a flow orientation, v is reachable from the root. Since there are 

no cycles in a DAG, the parents of v must be on paths from the root to v. When v is 

validly partitioned, every child of v is connected to one of the parents of v, and is 

therefore reachable from the root. By this construction, after partitioning every 

crossing, every resulting vertex other than the root has exactly one parent, so the 

resulting graph is a connected directed tree.

Note, however, that not every tree projects to a flow-DAG. In particular, if some branches of 

the tree grow back towards the root, it may happen that the resulting true orientation of the 

image graph contains cycles. By restricting our attention to flow-DAGs we rule out these 

types of trees. These are rare in nature, however, because doubling back towards the root 

implies inefficiency in the flow mechanism that the tree embodies.
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4.2 The Flow-DAG Meta-Graph

Any two flow-DAGs for a given undirected graph G differ only by the subset of edges that 

are oriented differently in the two orientations. Thus, one possible way to explore the set of 

flow-DAGs for a given undirected graph G is to build an initial flow-DAG for it (Section 4.1 

showed that we can always do so) and then successively modify it by changing the direction 

of one of the edges—an edge flip—to obtain other solutions. In this section, we show that it 

is possible to reach every other flow-DAG for G given the initial solution through some 

sequence of flips, such that every intermediate orientation is also a flow-DAG.

Flipping edge (u, v) in Gd yields a flow-DAG  if and only if (i) vertex v is a crossing of 

Gd, and (ii) the directed graph that results from the flip is acyclic. The first condition ensures 

that the in-degree of v is greater than 1, so v is still reachable from the root through one of 

the other incoming edges. The second condition retains the DAG nature of the resulting 

graph, and can be verified by a depth-first search of  [39]. A flip that satisfies these two 

conditions is a valid flip, and Gd and  are neighbors in the meta-graph whose undirected 

edges connect flow-DAGs that differ by one valid flip.1 Figure 6 illustrates this point.

We now show that the flow-DAG meta-graph is connected. That is, any two flow-DAGs for 

the same graph can be reached from each other by sequences of valid flips. We will show 

this by relying on a similar property that relates all the directed spanning trees of a graph to 

each other.

Let S be a directed spanning tree of Gd. Adding a non-tree edge (u, v) of Gd to S creates a 

cycle called a fundamental circuit. The edge (u, v) is a forward edge if u is an ancestor of v 

in S, a backward edge if v is an ancestor of u in S, or a cross edge otherwise. If (u, v) is 

forward or cross, it can be exchanged with one of the tree edges in the fundamental circuit of 

(u, v) to form another (directed) spanning tree. Any two spanning trees related by exactly 

one such edge exchange are said to be adjacent to each other, and repeated exchanges can 

transform any directed spanning tree into any other [21]. Thus, the set of (directed) spanning 

trees of a given (directed) graph is connected with respect to this adjacency relation.

To extend this result to flow-DAGs, we say that a flow-DAG Gd for an undirected graph G 

is consistent with a directed spanning tree S of G if S is a (directed) subgraph of Gd. In the 

following, we show that (i) all the flow-DAGs consistent with a given directed spanning tree 

for G are connected to each other, and that (ii) for each pair of adjacent spanning trees, there 

is a flow-DAG that is consistent with both of them. This allows walking between any two 

flow-DAGs by valid flips: Given flow-DAGs Gd and , find spanning trees S and S′ 

consistent with them. Connect S to S′ through a sequence of adjacent spanning trees S = S0, 

…, Sn = S′, and form the sequence of flow-DAGs  where flow-DAG Gi 

is consistent with trees Si−1 and Si for i = 1, …, n.

To prove property (i), let S be a directed spanning tree of G, and let Gd be a flow-DAG 

consistent with S. The set of non-tree edges of Gd cannot contain backward edges (with 

1We use the term “meta-graph”to avoid confusion with other graphs in this paper.
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respect to S), as they would form cycles. For the same reason, the flip of a forward non-tree 

edge of Gd is not valid, as it would yield a backward edge. Flipping a cross edge, on the 

other hand, is always valid, as it creates no cycles. Thus, any two flow-DAGs consistent 

with S are related by one or more cross flips, and the flow-DAGs consistent with S form a 

connected component of the flow-DAG meta-graph.

To prove property (ii), let directed spanning trees S and S′ of G be adjacent to each other. 

Specifically, S′ is obtained from S by replacing edge e = (u, v) with edge e′ = (w, v). Edge e′ 

cannot be a backward edge in S. If it were, v would be an ancestor of w in S, and removing e 

from S would sever the only path from the root to v. Then, S′ would not be a spanning tree. 

Because of this, e′ must be either forward or cross, so that adding e′ to S (without removing 

e) yields a flow-DAG Gd. So Gd contains both e and e′ and therefore includes both S and S′, 

and is consistent with both.

In summary, the flow-DAG meta-graph is connected. In Section 7, we define an algorithm 

to traverse this meta-graph to look for likely trees for a given image graph. We define this 

likelihood over trees in the following section.

5 Prior Model for Arborescences

In this section, we present a generative, parametric, tree-growth model that allows us to 

define a likelihood over the set of trees consistent with an input graph.

5.1 A Growth Model for Arborescences

Current research on tree growth models (see Section 2) reveals that the forces that guide 

growth patterns are often complex, multi-scale, and interdependent. Overall, the shape of a 

tree depends on a myriad of global and local interactions that determine when a given 

branch spawns new branches, how many children it has, and in what directions they grow.

In this paper, we describe the growth of an arborescence generatively as a stochastic, 

discrete, spatial Markov branching process that evolves over time. The resulting 

arborescence is a set of branches made of concatenated line segments. In our model, an 

arborescence can only grow by extending its leaf branches that are still “active”. Since we 

do not allow internal branches to increase in length, our model does not describe all actual 

growth processes in nature, but is rather to be seen as an abstract, generative model of the 

final shape of an arborescence. Although our model is simple, the experiments in Section 8 

show that it adequately captures the morphology of a number of different types of trees, 

including retinal vessels and plant roots.

The frontierF(t) of a growing directed tree T(t) = (VT (t), ET (t), rT) with embedding A(t) is 

the set of m(t) active vertices
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in VT (t) that are leaves and are still growing. The nonnegative integer t denotes the tree-

depth of the leaves. At depth t = 0, the directed tree is a single point—its root rT, embedded 

at the origin of space—and F(0) = {rT}.

At depth t > 0, each leaf v in F(t) spawns a number c ≥ 0 of labeled branch stubs with 

probability ps(c),where

(2)

A stub is a short branch segment that connects a new leaf to its parent. If c > 0, we assign an 

ordered label i ∈ {1,2, …,c} to each of the children of v. For simplicity, we assume that 

ps(c) is the same for all t. In our experiments, it is given by a one-inflated Poisson 

distribution [25] that behaves as a Poisson distribution with rate λ at all values except 1:

In many physical trees, α ≫ Pois (1; λ) to account for the fact that extending a branch is 

much more common than stopping or splitting into two or more branches.

The vertex v is then removed from the frontier and the leaves of any of the stubs it has 

spawned are added to F(t + 1) and VT(t + 1).

To model stub geometry, every new leaf v in the frontier F(t) records information about its 

parent π(v) = u and about its growth increment, a three-dimensional random vector δv = v − 

π(v) that depends on the following factors:

1) The stub's growth inertia

2) The preferred branching angle

3) The force field(s) surrounding u.

Growth inertia refers to the tendency of a branch to continue to grow in a steady direction. 

Factors 2 and 3 depend on the type of arborescence being modeled. A preferred branching 

angle captures the tendency of angles between a parent and its (multiple) child branches to 

take on similar patterns for a given type of arborescence and number of children. The force 

field encapsulates environmental forces that affect growth, such as a gravitational or 

electromagnetic field or the density of the growth medium.

These terms are combined as follows. The location of vi, the i-th child of vertex u, is given 

by:

(3)
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The direction of the growth increment vector δvi is drawn from a von Mises-Fisher 

distribution [22] with concentration κ and its length is scaled by a parameter γ > 0, which 

can be either a constant or drawn from some distribution. The expected direction of growth 

 is given by a vector sum that incorporates the three factors outlined above:

(4)

where c is the number of children of u. Here,

• s(ρc(i), ϕc(i), zc(i)) is the expected direction of growth of the i-th child of u. We 

parameterize s using cylindrical coordinates with origin u and cylindrical axis 

along δu.2 Variables ρc(i) and zc(i) are the radius and height, respectively, and ϕc(i) 

is the azimuth relative to a random reference plane.

• The vector f(u) captures environmental forces at u.

5.2 Directed Tree Probability

The growth model M can be used to define the probability pM(T) of a directed tree T 

consistent with a projected graph G. This probability is a function of its topology (the 

number of children per vertex) and geometry (the angles between parent and child stubs).

Since there are an uncountably infinite number of arborescences consistent with a given T 

and G, we cannot enumerate the probability of every arborescence that could have projected 

to G. Instead, we approximate the probability of a directed tree as follows:

(5)

where uP is the projection of u and where π(uP) and c(uP) are the parent and number of 

children of uP, respectively. The probability ps is defined in Eq. 2, and pa is the probability 

of the angles between a parent stub and those of each of its children in the projection, rather 

than in the world:

(6)

Here, VM is the Von Mises distribution. The projected child viP has been assigned the i-th 

label, the unit vector  is the expected projected direction of growth of the i-th projected 

stub, and κiP is the concentration over the distribution of possible angles between the actual 

and expected projected stubs, as detailed further in [9].

6 Tree Estimation Complexity

In this section, we analyze the computational complexity of estimating the most likely tree 

for a class of local tree probability models, in which the probability of a tree is the product 

2If u is the root, then δu is chosen uniformly at random.
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of the probability of each set of incident edges at each vertex. This class includes our model 

M.

More specifically, let T = (VT, ET, rT) be a directed tree rooted at rT. We restrict ourselves to 

models in which the probability of each vertex is a function of its incident edges:

(7)

where l(T) is the log-probability of the directed tree, ET (v) is the set of edges in T that are 

incident to v, and ϴ are any additional model parameters, such as the force field at v's 

location. We refer to models that satisfy Eq. 7 as local models. It is easy to see that Eq. 5 

satisfies Eq. 7, so our growth model is local.

Assuming that calculating each vertex log-probability takes constant time, the overall 

probability of a tree can be computed in linear time by determining the probability of each 

of its vertices in turn. Given a flow-DAG Gd, we define its log-probability as

(8)

If ℓ(T) is defined in terms of a local model, we can efficiently maximize this probability over 

the set of directed trees consistent with Gd by considering each crossing x in Gd in turn, 

evaluating all of its valid partitions, and picking the maximum-likelihood partition. Since 

changing the partition of x does not change any of the edges that are incident to it, the choice 

of a most likely valid partition for x is local; that is, it affects no vertex other than x, nor does 

it depend on any other vertices.

Therefore, if a directed graph Gd is available, we can find the most likely directed tree 

consistent with it by examining each of the vertices of Gd in turn. Since the degree of the 

vertices in Gd is assumed to be bounded, the time complexity at each vertex is constant, and 

the overall complexity of estimating the most likely directed tree is linear in the number of 

vertices of Gd.

However, if only the undirected graph G is available, finding an optimal directed tree 

consistent with G in a local model is NP-hard. We prove this in the appendix by reducing 

the minimum vertex cover problem [13] to the problem of estimating a tree from an 

undirected graph.

7 Algorithms

Since finding an optimal directed tree given an undirected graph is NP-hard, we resort to 

approximate methods. Specifically, this section present a two-step method for estimating a 

highly likely tree from an undirected, rooted graph G. The first step finds an approximate 

solution greedily, and the second improves this solution via a heuristic search in the space of 

possible flow-DAG orientations of G. The first step uses the arrival time of a flow sent from 

the root to every other vertex as a simple way to find an initial, reasonable flow-DAG. The 

second step then makes use of the prior growth model defined in Section 5 to establish the 

Estrada et al. Page 12

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likelihood of each candidate tree. Intuitively, we heuristically search over possible 

topologies based on how likely their corresponding projected geometries (in terms of the 

prior growth model) are.

7.1 Greedy Directed Tree Search

Computing a directed tree from an undirected, rooted graph G = (VG, EG, rG) involves two 

choices: first assign a direction to each of the edges of G—which defines an orientation Gd 

over G—and then apply a valid partition to crossing of Gd, as defined in Section 3.2. If the 

resulting orientation is a flow-DAG, any choice of valid partitions will yield a directed tree, 

so we restrict our search to these acyclic orientations.

To estimate a high-probability directed tree, we first obtain a flow-DAG Gd by completing a 

shortest-path spanning tree of G rooted at rG. We then apply a valid partition to each vertex 

with in-degree ≥ 2 to convert Gd into a directed tree.

In more detail, a shortest-path tree S rooted at rG is a spanning tree of G such that for any 

vertex v, the shortest distance dist (rG, v) between rG and v is the same in G and in S [23]. 

When the cost of each edge is the Euclidean distance between its two endpoints, then S 

approximates the arrival time of a flow sent from rG to every other vertex in the graph. A 

(not necessarily unique) shortest-path tree S can be efficiently estimated in time O(|EG| + |

VG| log(|VG|)) using Dijkstra's shortest-path algorithm [8]. At each iteration, this algorithm 

extends the shortest-path tree by adding the unvisited vertex that is closest to the set of 

visited vertices,

A shortest-path tree induces a topological ordering of the vertices of G in which u < v if and 

only if dist (rG, u) ≤ dist (rG, v).3 Given S, we construct a flow-DAG Gd by orienting each 

edge in G according to this ordering. The resulting directed graph Gd is a flow-DAG: since it 

contains the spanning directed tree S as a sub-graph, it is a flow orientation and since its 

edges obey a topological ordering it is a DAG.

As noted in Section 6, we can determine a most likely directed tree from a flow-DAG in 

linear time by choosing a most likely valid partition independently at each crossing v ∈ VGd. 

The function

computes the optimal probability ℓ(v) in model M by first evaluating the likelihoods of all 

the valid partitions of v that can be obtained given the edge directions of Gd and then picking 

the partition with

Algorithm 1 Greedy directed tree search

3Ties are broken arbitrarily.
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the highest probability. The function partition also returns a structure

that describes the surgery necessary to implement the partition. This includes the vertex P.v 

to be replaced, the set P.V of new vertices that replace P.v, the set P.E of oriented edges that 

are incident to P.v, and a set P.J of indices that for each edge e in P.E tells what vertex of 

P.V the edge e connects to. See Figure 8. A procedure

transforms the graph G to implement the optimal partition P: It replaces P.v with the 

elements of P.V and replaces the P.v endpoint of each edge in P.E with the vertex in P.V 

indicated by P.J. Algorithm 1 summarizes this greedy search.

7.2 Heuristic Directed Tree Search

We now introduce a heuristic search algorithm that attempts to improve on the greedy 

solution by exploring variants of it that may increase its likelihood.

The expression in Eq. 8 in Section 6 defines a likelihood for every node of the flow-DAG 

meta-graph defined in Section 4.1. To efficiently explore this meta-graph, we make use of a 

heuristic that encourages moving towards an orientation of the input graph G that is not 

necessarily a flow orientation but has high probability and is easy to compute. This 

orientation GL is called an anchor, because it is used as a reference point in the heuristic 

search. The idea is that although

Algorithm 2 Heuristic directed tree search

GL is typically outside the flow-DAG meta-graph, any region of the meta-graph in the 

vicinity of GL is worth exploring.
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The anchor orientation GL is defined as follows. For each crossing of G, find edge 

orientations that yield the best valid partition. Since these choices are made independently at 

each crossing, edges that connect two crossings may end up with conflicting orientations. In 

those cases, assign to that edge the direction of flow that is more likely given the force field 

at that location. Specifically, let pu = VM((u, v); μfP (u), κfP (u)) and pv = VM((v, u); μfP (v), 

κfP (v)) be the probabilities of two conflicting orientations (u, v) and (v, u) for an edge. Here, 

VM again denotes the Von Mises distributions, and μfP (v) and κfP (v) are the mean 

direction and concentration of the projections of the force field vectors whose origins lie 

along v's line of projection [9]. Then, the orientation with higher probability is chosen for 

that edge.4 The resulting anchor orientation GL is generally not a flow orientation, but flow-

DAGs that differ from it by a few edge flips are likely to be good.

Our search algorithm encourages exploring flow-DAGs that are near GL. To this end, the 

heuristic value of exploring a flow-DAG  from its neighbor Gd on the flow-DAG meta-

graph is defined as follows:

where λ is a parameter between 0 and 1 and ∥∥f is the number of flips between the two 

orientations divided by the number of edges in  (note that ). The first term 

is the likelihood of  and the second term estimates its nearness to the anchor.

Using this heuristic in a best-first search of the meta-graph leads to Algorithm 2, which 

starts from the graph orientation for the tree found by Algorithm 1 and implement best-first 

traversal of the flow-DAG meta-graph with a priority queue. Using best-first ensures that 

this Algorithm is more likely to quickly find locally optimal orientations.

8 Experiments

We analyzed three datasets to validate the effectiveness of our algorithms: retinal vessel 

systems, roots of rice plants, and a synthetic leafy tree dataset. These datasets allowed us to 

test our algorithms on three very different types of trees. For each dataset, we constructed a 

set of planar graphs and obtained their ground-truth trees. We then quantified the similarity 

between the best trees obtained by our algorithms and the ground-truth trees, as explained 

below.

8.1 Materials

We constructed a new retinal vessel dataset (WIDE) of 15 high-resolution, wide-field, RGB 

images using an Optos 200Tx ultra-wide-field device (Optos plc, Dunfermline, Scotland, 

UK). All images were acquired at the Duke University Medical Center between August 

2010 and October 2012. Each retinal image was taken from a different individual and 

captured as an un-compressed TIFF file at the widest setting available for the Optos device 

4Ties are broken arbitrarily.
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(3900×3072 pixels). We manually cropped out eyelashes and other non-retinal regions of the 

image. We downsampled each cropped image by a factor of 2 to obtain the final images 

(~900×1400 pixels).

We also constructed an 18-image rice-root dataset (RICE) by randomly selecting a subset of 

images from an earlier dataset [45], [20]. In the original dataset, 40 rice plants roots were 

grown in a transparent medium and imaged in Prof. Philip Benfey's lab at Duke University. 

Each plant was rotated around its center axis and imaged from 40 different angles and a 

three-dimensional tomographic model of each plant was then obtained from the images. To 

construct our RICE dataset, we first obtained 18 of the three-dimensional model/40 image 

sets corresponding to 13 different plants. Five plants were imaged twice, at 7 and 10 days of 

growth. For each volume, we randomly selected one of the ~1300×900 pixel RGB source 

images.

Finally, we constructed a synthetic leafy tree dataset (SKETCH) of 18 arborescences. Each 

arborescence was drawn by the first author on the tree modeling software developed by 

Chen et al. [6] using a Wacom Intuous 3 graphics tablet (Wacom Co. Ltd, Kazoshi, Saitama, 

Japan). This software estimates a three-dimensional arborescence given a set of input strokes 

that represent the tree's branches. Each vertex in the resulting graph is assigned a depth 

based on the chosen tree template. We used a maple tree template for all graphs. We then 

projected each arborescence at five different angles to obtain 90 planar graphs.

8.2 Methods

8.2.1 Planar graph estimation—For the WIDE and RICE datasets, we obtained each 

planar graph semi-automatically: we first computed a Gabor-enhanced image [11] and then 

extracted a noisy graph from it by building a set of tracks over the tree's branches [9]. We 

manually edited each graph using a graph editing software that we developed to correct any 

errors, such as missing or spurious edges due to low image quality or image artifacts.

For the SKETCH dataset, we first aligned the trunk of every arborescence with the z-axis. 

We then defined each vertex in the arborescence in terms of a cylindrical coordinate system. 

We obtained each planar graph by rotating an arborescence by a given angle of rotation ϕ 

and then collapsing the y-axis. We used five evenly spaced angles (0, 72, 144, 216, 288 

degrees) per arborescence to obtain 90 planar graphs in total. To simulate the limited 

resolution of an imaging system, we defined a minimum separation radius r of 5 pixels. Any 

cluster of vertices that lied within a circle of radius r were merged into a single vertex. Then, 

for every vertex we determined the Euclidean distance d to the closest non-adjacent edge. If 

d < r, we shifted the vertex to lie directly over the edge with probability ; that is, the 

closer the vertex, the higher the probability that it would be merged.

8.2.2 Error quantification—There is no single metric that captures how similar two trees 

are because trees have properties at multiple scales. Thus, we determined the similarity 

between each estimated tree and the ground-truth tree using four weighted scores: the first 

two measure local errors in connectivity, while the latter two capture more global 

differences.
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More specifically, the local similarities are defined as follows. Let T and T′ be two directed 

trees consistent with G and let dc be the sum of the costs of the edges that are part of an 

undirected circuit.5 Then, let dp be the sum of the costs of these circuit edges that have the 

same parent edge in both T and T′. Similarly, let df be the sum of the costs of the circuit 

edges that have the same orientation in the two trees. Then, the parent sp and flow sf 

similarities are given by:

The global similarities are defined in terms of the paths from the root. In a tree, there is a 

unique path from the root to every one of its edges. Thus, let dt be the sum of the costs of all 

the paths from the root to the circuit edges and let da be the sum of the subset of these paths 

that are identical in the two trees. Also, let r(e) be the sum of the costs of the edges in the 

path to edge e in T that are also part of the path to e in T′; intuitively r(e) is the percentage of 

the path to e that is shared by the two trees. Finally, let dr be the sum of each r(e) for every 

circuit edge e. Then, the absolute sa and relative sr similarities are:

8.2.3 Ground truth estimation—The SKETCH dataset already includes the ground truth 

trees. For the WIDE and RICE datasets, we manually obtained the ground truth trees using 

the aforementioned graph editing software. Our software allows a user to partition a vertex 

or undo an existing partition. To simplify the above process, we first obtained a non-

optimized solution using our heuristic search algorithm and then replaced the invalid 

partitions with the correct ones. For the RICE dataset, we used the additional images and the 

three-dimensional volume to determine the correct topology.

For the WIDE dataset, on the other hand, our ground truth trees are based solely on human 

analysis. Since even human experts differ on their assessment of vessel topology, we 

quantified the degree of inter-observer variability or uncertainty in our ground truth by 

comparing the trees produced by two human raters (the first and last authors) using the two 

similarities defined above. We set the first rater's trees as ground truth. The similarity values 

of the second rater's trees in the test set of the WIDE dataset are listed in Table 1.

8.2.4 Directed tree estimation—We randomly split each dataset in half into a training 

and a testing set. We approximated the force field at each location using either a radially 

symmetric vector field centered at the root (WIDE) or a vector field in which every vector 

was parallel to the z-axis (RICE, SKETCH). Both vectors fields had constant magnitude. 

We then estimated the distributions of angles pa and of numbers of children ps of Section 

5.2, as follows. For each vertex in each tree in the training set, we calculated the projected 

angles between its outgoing edges, as well as its out-degree (number of children). Given the 

5We exclude edges with no circuit neighbors because their respective parents will be the same for all solutions.
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empirical distributions of angles, we determined the means and concentration parameters of 

each von-Mises distribution defined in Eq. 6 to obtain pa. We then determined ps by fitting a 

one-inflated Poisson distribution to the empirical distribution of the out-degrees of all the 

vertices.

We then applied our greedy algorithm and our heuristic search algorithms to each planar 

graph. The number of possible solutions for a planar graph is an exponential function of the 

number F of its faces [5]. Accordingly, for each graph we adjusted our search algorithm to 

explore 100F trees.6 As we ran our search algorithm, we also recorded the best tree found 

after exploring 10F and 50F trees, and the mean running time in minutes for each method 

for each dataset. We ran our two algorithms on a Toshiba Satellite X870 laptop with a 

2.4Ghz Intel I7 quad-core processor and 32GB of RAM.

8.3 Results

The results for each dataset are summarized in Tables 1–3 and two example results from 

each dataset are shown in Figures 9 and 10. In each table, n is the number of planar graphs 

in the test set and μ(F) and σ(F) are the mean and standard deviation of the number of faces 

per graph, respectively.

Our proposed methods accurately estimate a highly likely tree for each of the different input 

graphs in the three datasets. The estimated trees have over 95% of the same parent-child 

relationships and edge orientations as the correct trees. Our proposed approach is versatile 

and robust. The three different datasets represent three very different types of trees that vary 

in their branching behavior, the expected angles between their offspring, and how strongly 

they are influenced by surrounding forces. Also, the arborescences in the three datasets vary 

significantly in how close they are to being planar. Intuitively, an arborescence is close to 

being planar if it is very narrow along one of its axes; in contrast, a radially symmetric tree 

is very far from planar. In our case, the retinal vessels were the most planar, since the retina 

consists of a series of flat layers. The synthetic trees, on the other hand, were the least planar 

since the parameters of the tree modeling software favored radially symmetric trees. In spite 

of these structural differences between datasets, after properly tuning our model's 

parameters, our methods were generally able to accurately approximate the correct solution. 

We now discuss results on each dataset in more detail.

8.3.1 WIDE dataset—In this dataset, our algorithm was able to closely approximate the 

performance of an expert human rater on a set of challenging retinal images and with 

minimal specialized domain knowledge. That is, aside from the branching factor and 

expected angle statistics that we obtained from the training set, we did not exploit any other 

image features, such as vessel dilation or color. We expect that incorporating these 

additional features should further improve our results on traditional fundus images.

However, some novel imaging systems, such as the optical coherence tomography method 

described in [18], are able to capture retinal vasculature images at a higher resolution that 

conventional fundus cameras. The vessels in these higher resolution images often have no 

6Preliminary experiments indicated that searching beyond 100F had minimal impact on the results.
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color and the smaller vessels in them have uniform dilation due to the imaging system's 

diffraction limit. Thus, the features described above are no longer informative. Since our 

method does not rely on conventional vessel features, we expect that we should also obtain 

good results with images from these next-generation imaging systems.

Furthermore, although the WIDE dataset had the highest mean number of faces, our 

algorithm obtained better parent similarity results for this dataset than for the SKETCH 

dataset. We speculate that this is because retinal vessels are very close to being planar. Thus, 

there is often very little difference between the original and the projected angles, which 

makes the prior on the angles between siblings very informative.

8.3.2 RICE dataset—We obtained the best results on this dataset relative to the other two. 

We speculate that these stronger results were primarily due to two factors: first, the graphs 

corresponding to the rice plants had fewer faces than the other datasets, particularly 

compared to the retinal graphs. Furthermore, although the rice roots were quite radially 

symmetric, they also had a strong tendency to grow downwards towards the ground, which 

made the projected angles between siblings less variable than in the SKETCH dataset.

8.3.3 SKETCH dataset—In this dataset, the difference between the parent and flow 

similarities was more pronounced than in the other two datasets. We speculate that this is 

because the graphs in this dataset had more instances of vertices of degree five or higher 

than the other two, due to the simulated limited resolution we imposed on the projections. 

For these vertices, it is often easy to determine the orientation of their adjacent edges if the 

edges are well aligned with the expected direction of growth. However, determining which 

of the incoming edges is the parent of which of the outgoing edges is generally more 

challenging, because there is often little difference in the projected angles between edges 

that are adjacent in the original tree compared to edges that are not.

9 Conclusions

In this work, we formalized the problem of estimating the topology of a three-dimensional 

tree from a single, two-dimensional image of it and presented a prior tree-growth model to 

regularize this ill-posed problem. We showed that estimating the most likely tree consistent 

with an undirected graph is NP-hard even when each tree's likelihood is defined by a local 

growth model. We then presented a heuristic search method to explore the space of possible 

trees and empirically showed that it effectively and efficiently approximates the most likely 

tree for various types of trees.

In our future work, we plan to analyze and compare alternative search methods for finding 

the most likely tree, including Markov Chain Monte Carlo, iterated local search, and 

stochastic gradient ascent. We also intend to refine our image formation model to enable our 

tree estimation methods to correct small errors in the estimated graph, including missing or 

spurious edges. Finally, we seek to extend our methodology to images that include 

incomplete trees.
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Appendix

Optimal Estimation from Undirected Graphs is NP-Hard

We show that finding an optimal directed tree  is NP-hard by reducing the 

minimum vertex cover (MVC, [14]) problem to a directed-tree estimation (DTE) problem. 

MVC is NP-complete even for graphs with bounded degree [2].

A vertex cover of a graph H = (VH, EH) is a subset C ⊆ VH such that every edge of EH is 

incident to at least one vertex in C. The bounded-degree version of MVC is defined as 

follows: Given a connected graph H with bounded degree, find a vertex cover of smallest 

possible size.

Let G be an undirected graph with root rG. DTE is defined as follows: Find

where ℓ(T) is defined in terms of a local model (see Eq. 7), and  is the set of directed 

trees–for which every edge is directed away from the root–that project to G and P(rT) = rG. 

In this reduction, we assume, without loss of generality, that θ = ϕ; that is, a tree's 

probability does not depend on any additional model parameters.

In order to construct a polynomial-time transformation from MVC to DTE, we first give a 

way to interpret a graph orientation as a vertex cover. Let Hd be an orientation of the 

undirected graph H and define

(9)

where  is the out-degree of v in Hd. The set C is a vertex cover of H, because every 

edge starts at some vertex, and that vertex is in C by construction.

We now show a way to use DTE to find a minimum vertex cover for a given graph H, 

thereby reducing MVC to DTE. Let G = (VG, EG, rG) be the rooted graph obtained from H 

by adding a new root vertex rG and new edges to connect rG to every vertex in VH, and let 

 be the set of directed trees consistent with G.

We will now define a local model over . Let  be a directed tree consistent 

with G. Then, we define the log-probability of each of its vertices as follows:
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(10)

By definition of , the root rT of T has in-degree zero. In short, each vertex, other than 

the root, that has at least one child makes the tree less likely.

Every directed tree in  projects to a unique flow orientation of G rooted at rG. 

Conversely, given a flow orientation Gd of G rooted at rG, we can obtain the most likely tree 

consistent with it by maximizing Eq. 10 at each node as follows.

We divide the nodes of Gd into four types: the root rG, non-root nodes with out-degree zero, 

non-root nodes with positive out-degree and in-degree one, and non-root nodes with positive 

out-degree and in-degree greater than one. Nodes in the last category (and possibly some in 

the second) are crossings.

The maximum possible log-probability achievable at each node type is as follows. The root 

has in-degree zero because we do not allow roots to be crossings (see Section 3.2), and we 

show in [9] that under this assumption the root cannot have positive in-degree. Because of 

this, the root has a log-likelihood of zero by Eq. 10. Non-root nodes with out-degree zero 

can only be partitioned into tree leaves, and these have likelihood zero by Eq. 10 as well. 

Non-root nodes with positive out-degree and in-degree one are not split, and they get log-

likelihood −1 by Eq. 10. Finally, any crossing v with positive out-degree in Gd must be split 

into a number of nodes equal to its in-degree in Gd. Since the out-degree of v is positive, its 

outgoing edges must be assigned to at least one of the nodes in the partition. Each such 

assignment results into a log-probability term of −1 by Eq. 10. As a consequence, the overall 

log-probability at this node is at most −1, because log-probabilities add up according to Eq. 

7. This upper bound on the log-probability can be made tight by assigning all the outgoing 

edges of v to the same node of the partition.

To summarize, the maximum possible log-probability at each node of Gd given Eq. 10 is 

given by:

Every possible orientation Hd of H corresponds to a unique flow orientation Gd of G rooted 

at rG, because every vertex in VH is reachable from rG through at least one directed path in 

Gd. Furthermore, each vertex in VH which has an outgoing edge in EHd (and consequently in 

EGd) makes the flow orientation less likely. Therefore, a flow orientation of G with 

maximum probability has a minimal number of vertices in VH with non-zero out-degree in 

EHd. The set C resulting from the interpretation in Eq. 9 of Hd is a minimum vertex cover of 

H, so MVC reduces to DTE.

The above result holds even if the orientations of G are restricted to be flow-dags because, 

for every minimum vertex cover C, there always exists at least one flow orientation of G, 
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rooted at rG, consistent with C that is acyclic. To construct a flow-dag given C, first assign a 

topological ordering to the vertices in G such that:

In other words, all the vertices in VH that are part of the vertex cover of H come before those 

not in the cover. Then, orient every edge in G according to the topological ordering. The 

resulting flow orientation is acyclic and a vertex in VH has at least one outgoing edge in EHd 
if and only if it is part of C.
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Fig. 1. 
Images of physical trees: (This Figure is best viewed on-screen). Different combinations of 

internal and external factors yield remarkably different trees. However, all these trees 

facilitate a hierarchical flow between a central node and a series of end-points. (a) and (b) 
are samples from our experimental datasets, while (c) and (d) are public domain images.
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Fig. 2. 
The projection P(A) of an arborescence A: (Best viewed in color.) The hollow circles are 

the roots of A and P(A). Both green and red dots project to crossings in P(A); that is, points 

in P(A) onto which distinct points in A project. Red dots are vertices of A and green dots, 

called refined vertices of A, are not. The red, green, and blue projection lines indicate vertex-

vertex, edge-edge, and vertex-edge crossings, respectively.
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Fig. 3. 
Edge subdivision: In (a), an edge subdivision replaces a single edge (u, v) with two new 

edges (u, w) and (w, v). In (b), the same subdivision in an embedded edge maintains the 

continuity of the embedding. Old vertices are highlighted in light blue, while the new vertex 

is shown in red.

Estrada et al. Page 28

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Some graph orientations cannot be transformed into connected directed trees by valid 

partitions. This directed graph has only one crossing v, which can only be partitioned in one 

way. Applying this valid partition yields two disconnected trees.
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Fig. 5. 
For crossings that are part of a directed circuit, only some of their valid partitions lead to 

trees. (a) A crossing v that is part of a directed circuit. (b) A valid partition of v into v1 and 

v2 that disconnects the graph and retains the circuit. Thus, the result is not a tree. (c) A 

different partition of v does yield a connected directed tree.
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Fig. 6. 
The flow-DAG meta-graph: (This Figure is best viewed in color.) The flow-DAG meta-

graph for a small graph G. Neighboring orientations differ by one valid flip. The meta-graph 

is in blue. Edges entering a crossing in each flow-DAG are in red.
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Fig. 7. 
Arborescence growth: At each step, the frontier FT (t) (highlighted in red) is updated. At 

depth t, a new vertex u is added to both FT (t) and VT (t). At depth t + 1, u is removed from 

FT (t) and its offspring the {v, w, x} are added to frontier. At depth t + 2, the three vertices 

are removed from the frontier; v is succeeded by a single child and w spawned three 

children, while x has none.
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Fig. 8. 
Valid partition formation: (This Figure is best viewed in color.) (a) A vertex u and its 

neighbors. In (b), the edges incident to u are assigned orientations. Since u has more than 

one incoming edge (red and green), it must be partitioned. In (c), u is split into two vertices v 

(red) and w (green), each with a single parent. The dashed oval indicates that v and w share 

the same location on the plane. Each of the outgoing edges of u is then assigned to one of 

the new vertices.
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Fig. 9. 
WIDE and RICE examples: (This Figure is best viewed on-screen). (a,e,i,m) Four sample 

test images. (b,f,j,n) The extracted graph for each image (in blue). (c,g,k,o) The ground-

truth tree for each image. Different subtrees are shown in different colors. (d,h,l,p) The best 

tree found by our method. The parent and flow similarities for each graph are listed in the 

corresponding subcaption. The white ellipses highlight differences between computed and 

ground-truth trees.
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Fig. 10. 
SKETCH examples: (This Figure is best viewed on-screen). (a,d) Two sample test graphs 

(in blue). (b,e) The ground-truth tree for each image. Different subtrees are shown in 

different colors. (c,f) The best tree found by our method. The parent and flow similarities for 

each graph are listed in the corresponding subcaption. The white ellipses highlight 

differences between computed and ground-truth trees.
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TABLE 1

WIDE dataset results

(n = 8, μ(F) = 92.7, σ(F) = 25.5)

Method sp sf Sa sr Time (min)

Human 0.9881 (± 0.01) 0.9911 (± 0.01) 0.8264 (± 0.13) 0.9398 (± 0.03) ~90

Heur. (100F) 0.9662 (± 0.02) 0.9719 (± 0.02) 0.7316 (± 0.15) 0.8599 (± 0.09) 1.4 (± 0.74)

Heur. (50F) 0.9518 (± 0.03) 0.9597 (± 0.03) 0.6996 (± 0.14) 0.8521 (± 0.07) 0.72 (± 0.37)

Heur. (10F) 0.9167 (± 0.03) 0.9292 (± 0.04) 0.5246 (± 0.20) 0.7730 (± 0.05) 0.18 (± 0.07)

Greedy 0.9059 (± 0.03) 0.9202 (± 0.03) 0.5071 (± 0.19) 0.7481 (± 0.06) 0.04 (± 0.02)
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TABLE 2

RICE dataset results

(n = 9, μ(F) = 30.0, σ(F) = 9.3)

Method sp sf Sa Sr Time (min)

Heur. (100F) 0.9831 (± 0.02) 0.9918 (± 0.01) 0.8984 (± 0.18) 0.9724 (± 0.05) 0.19 (± 0.08)

Heur. (50F) 0.9817 (± 0.02) 0.9905 (± 0.01) 0.8971 (± 0.18) 0.9717 (± 0.05) 0.10 (± 0.04)

Heur. (10F) 0.9649 (± 0.03) 0.9763 (± 0.03) 0.8625 (± 0.18) 0.9406 (± 0.07) 0.03 (± 0.01)

Greedy 0.9408 (± 0.04) 0.9583 (± 0.03) 0.7952 (± 0.17) 0.8945 (± 0.07) 0.01 (± 0.005)
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TABLE 3

SKETCH dataset results

(n = 45, μ(F) = 37.68, σ(F) = 24.37)

Method Sp sf Sa Sr Time (min)

Heur. (100F) 0.9551 (± 0.03) 0.9927 (± 0.01) 0.6837 (± 0.24) 0.9167 (± 0.07) 0.31 (± 0.24)

Heur. (50F) 0.9546 (± 0.03) 0.9920 (± 0.02) 0.6857 (± 0.24) 0.9170 (± 0.07) 0.17 (± 0.12)

Heur. (10F) 0.9516 (± 0.04) 0.9901 (± 0.02) 0.6793 (± 0.24) 0.9127 (± 0.08) 0.06 (± 0.02)

Greedy 0.9354 (± 0.04) 0.9823 (± 0.02) 0.6470 (± 0.24) 0.8736 (± 0.09) 0.03 (± 0.01)
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