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Abstract

There is a growing global prevalence of neurodegenerative diseases such as Alzheimer’s disease 

and dementia. Current treatment for neurodegenerative diseases is limited due to the blood brain 

barrier’s ability to restrict the entry of therapeutics to the brain. In that context, direct delivery of 

drugs from nose to brain has gained emerging interest as an important alternative to oral and 

parenteral routes of administration. Although there are considerable reports showing promising 

results after intranasal drug delivery in various disease-models and investigatory human clinical 

trials, there are very few studies showing a detailed pharmacokinetics with regard to the uptake 

and retention of intranasally delivered material(s) within specific brain regions, which are critical 

determining factors for dosing conditions and optimal treatment regimen. This investigation 

compared a time-dependent brain uptake and resident time of various radiolabeled candidate 

neurotherapeutics after a single bolus intranasal or intraperitoneal administration in mice. Results 

indicate that the brain uptake of intranasally delivered therapeutic(s) is > 5 times greater than that 

after intraperitoneal delivery. The peak uptake and resident time of all intranasally delivered test 

therapeutics for all brain regions is observed to be between 30min-12h, depending upon the 

distance of brain region from the site of administration, followed by gradual fading of radioactive 

counts by 24h post intranasal administration. Current study confirms the usefulness of intranasal 

administration as a non- invasive and efficient means of delivering therapeutics to the brain to 

treat neurodegenerative diseases including Alzheimer’s disease.
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Introduction

Growing world population with longer life expectancy has resulted in increased number of 

“aged” population with a greater prevalence of neurodegenerative diseases (ND) such as 
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Alzheimer’s disease (AD). Currently, there is no cure for ND/AD [1]. The greatest challenge 

in curing ND/AD is the accessibility and bioavailability of therapeutics to the brain. In that 

context, intranasal delivery of therapeutics to the central nervous system (CNS) has emerged 

as a prospective alternative to parenteral routes of administration in treating ND/AD [1–9]. 

Intranasal delivery bypasses blood brain barrier (BBB) and circumvents systemic extraction 

of drugs, targeting therapeutics to the brain via olfactory, rostromigratory stream (RMS) and 

trigeminal pathways [4–13]. PubMed Literature search from late 1990s-to date, indicates 

that there have been > 200 studies reported thus far showing the utility of intranasal route as 

an effective means of delivering therapeutics to the CNS, some of which include intranasal 

delivery of benzodiazepine(s)[14,15], glucocorticoids/steroids/hormones [16–19], 

neurotrophic growth factors [20–31], vaccine antigens [32,33], Aβ immunogens [34–37], 

insulin [38–45], insulinomimetics/incretins [46–48], acetyl cholinesterase (AChE) inhibitors 

(AChEI) [49–58], and other candidate therapeutics [59–64]. Out of all reported intranasal 

studies, only few have demonstrated delivery of therapeutic antibodies utilizing intranasal 

route [65–69] including our recently published work [11,70]. Among few studies showing 

brain transit and pharmacokinetic of intranasally delivered materials [15,56,57,71,72], only 

one study showed brain-region-specific time-dependent uptake of intranasally delivered 

materials [46]. This investigation compares brain-region-specific time-dependent uptake of 

intranasally versus intraperitoneally delivered selected neurotherapeutics in the mouse brain 

including human recombinant erythropoietin (rhEpo), Curcumin, glucagon-like peptide 1 

(GLP1) and anti- Aβ antibodies raised against specific amino acid (aa) epitopes of Aβ 

peptide.

Materials and Methods

Animals

Three month old mice (C57BL/6J), obtained from Jackson labs, Inc. (Bar Harbor, ME), are 

used in this study. This study compares the uptake of I-125 labeled test therapeutics in 

different brain regions of mice at different time points after intranasal (IN) or intraperitoneal 

(IP) administration. All experiments are approved and authorized by the local Institutional 

Animal Care and Use Committees at the Jesse Brown VA Medical Center and University of 

Illinois at Chicago. Animals are divided into nine major groups, analyzed at five different 

time points after IN and IP administration (N = 4/each time-point/group). Each group is 

studied and analyzed as an independent experiment and compared for IN vs IP delivery of 

all test materials at each time point for each group.

• Group 1: Mouse non-immune IgG (NG) (Abcam, Cat. #ab37355)

• Group 2: N-terminal anti- Aβ IgG2b MOAB-2 antibody raised against recombinant 

oligomeric Aβ 42 (not specific for Aβ42) (MOAB-2) (Abcam, ab126649)

• Group 3: N-terminal anti-Aβ IgG1 antibody (1-17aa Aβ epitopes) (N-anti-Aβ IgG1) 

(Abcam, ab11132)

• Group 4: N-terminal anti-Aβ IgG2a antibody (5-16aa Aβ epitopes) (N-anti-Aβ 

IgG2a) (Abcam, ab17250)
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• Group 5: N-terminal anti-Aβ IgG2b antibody (18-22aa Aβ epitopes) (N-anti-Aβ 

IgG2b) (Covance Research products, SIG-39200)

• Group 6: C-terminal anti-Aβ IgG1 antibody (38-43aa ofC-terminus Aβ1-43) (C-

anti-Aβ IgG1) (Abcam, ab22258)

• Group 7: GLP1 (Alpha Diagnostics International, RP-1506)

• Group 8: Curcumin (90% Pure, Cayman Chemical, Item #81025, CAS # 458-37-7)

• Group 9: Human recombinant Erythropoietin (rhEpo) (R&D Systems, 287-TC-500)

Treatment

Each group is administered with a single bolus IN (5μg/5μl/ nostril = total dose of 10μg/10μl 

per mouse) or IP (100μg/100μl per mouse) of I-125 labeled test neurotherapeutics listed 

above. The radio-labeling is performed at the institutional core facility by technical experts 

using “Iodobead” kit (Pierce) as per manufacturer’s instructions, which ensures ~90% 

efficiency of iodination. The samples from different brain regions including olfactory lobes 

(OL), cerebral cortex (CTX), hippocampus (HP), and cerebellum (CBM) are collected at 

different time-points (30 min, 4h, 8h, 12h, 24h) following a single bolus IN or IP 

administration. The brain regions are homogenized in sterile saline (μg brain tissue/μl sterile 

saline) and 100μl of homogenate equating 100μg of brain tissue is recorded in the gamma 

scintillation counter. Data are statistically analyzed using GraphPad Prism Program to obtain 

respective group means with standard deviation (SD), and expressed as Mean ± SD (cpm/

100μg) (Figures 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B). Means are analyzed by 2-tailed t-test to 

compare the brain-regional uptake of IN vs IP administration. A value of p < 0.05 is 

considered statistically significant. Means are used to derive the ratio of cerebral uptake 

after IN administration vs IP administration, and are represented as “fold-increase”. (Table 

1)

(Fold Increase = Brain-Region Uptake after IN Delivery / Brain- Region Uptake after IP 

Delivery)

Results

Results show that olfactory uptake of neurotherapeutics after IN delivery was ~7 ± 2 times 

greater than that after IP delivery. The olfactory uptake of all IN delivered neurotherapeutics 

is observed to peak at 30 min with a total resident time up to 12h which gradually is found to 

decrease by 24h post IN administration (Table 1, Figures 1A & 1B); while IP delivered 

neurotherapeutics, exhibit highest uptake in olfactory lobes at 4h post-delivery with gradual 

decrease by 24h. On the other hand, cortical uptake of IN delivered neurotherapeutics is 

observed to peak at 4h post-delivery with a total resident time up to 12h which is found to 

fade by 24h. Cortical uptake of IP delivered neurotherapeutics is observed to peak between 

4–8h post-delivery fading by 24h. Cortical uptake of neurotherapeutics after IN delivery is 

~6 ± 2 times greater than that after IP delivery (Table 1, Figures 2A & 2B). The 

hippocampal uptake of IN delivered neurotherapeutics is observed to peak at 8h post-

delivery with a total resident time up to 12h declining by 24h. IP delivery exhibits similar 

trend of hippocampal uptake. Hippocampal uptake of IN delivered neurotherapeutics is ~6 ± 
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2 times greater than that after IP delivery (Table 1, Figures 3A & 3B). The cerebellar uptake 

of IN delivered neurotherapeutics is found to peak at 12h rapidly declining by 24h. IP 

delivery does not exhibit peak cerebellar uptake at any particular time point, rather it is 

observed to be at the same level at all time-points. Cerebellar uptake of neurotherapeutics 

after IN delivery is ~5 ± 2 times greater than that after IP delivery (Table 1, Figures 4A & 

4B). In summary, current results show significant low uptake of IP delivered materials in all 

brain regions analyzed. Although the peak uptake of all IN delivered neurotherapeutics in 

different brain regions is spaced out according to the distance of brain region from the site of 

administration, all test therapeutics are retained up to 12h in all brain regions. The ratios of 

IN/IP delivery indicate peak uptake for olfactory lobes at 30 min, 4h for cerebral cortex, 8h 

for hippocampus and 12h for cerebellum (Table 1). All values for IN delivery are 

significantly higher than those for IP delivery for all brain regions, all time points (p < 

0.0001). Currently observed fading of IN/IP delivered materials by 24h is consistent with 

previously observed clearance of IN delivered horse radish peroxidase (HRP) labeled anti-

Aβ antibodies [11,70].

Discussion

Historically, intranasal drug delivery has been utilized for local treatments such as allergies, 

etc. Recently, the use of intranasal route as a means of delivering therapeutics to the CNS 

has gained tremendous interest and momentum [73]. The blood cerebrospinal fluid (CSF) 

barrier (BCSFB) and BBB protect the CNS by limiting the entry of toxic substances into the 

CNS, limiting the entry of therapeutics into the CNS [74–76]. In that regard, intranasal route 

holds a great potential as a non-invasive practical approach of delivering drugs to the CNS 

that circumvents systemic extraction/ alteration [73]. The major part of the nasal cavity both 

in human and rodents is covered by respiratory epithelium, across which drug absorption 

can be efficiently achieved. The unique anatomical and physiological characteristics of nasal 

mucosa such as the large surface area for drug absorption and close proximity to CNS and 

CSF [4,77–79] facilitate drug uptake despite minor limitations posed by nasal milieu itself, 

i.e. exo-/endo-peptidase(s)-mediated degradation of drugs or mucociliary clearance [77,79]. 

The olfactory epithelium is located just below the cribriform plate separating the nasal 

cavity from the cranial cavity. The olfactory epithelium (besides olfactory supporting cells 

and basal cells), contains olfactory sensory bipolar neurons (OSNs) with a single dendritic 

process bearing non-motile cilia, and with fine non- myelinated axons that connect with 

neighboring axons forming a bundle surrounded by glial cells penetrating into the cranial 

cavity through small holes in the cribriform plate which merge with the afferent axons 

connected to the olfactory tracts of the olfactory bulb [77]. Thus, OSNs congregate to 

connect with the CNS. Intranasal administration is known to utilize three potential pathways 

i.e. olfactory, trigeminal and RMS routes to reach CNS [11,80]. In addition, intranasally 

delivered materials also utilize extracellular diffusion along the open inter-olfactory clefts 

directly to the olfactory bulb/subarachnoid space/CSF [11,80]. IN route of administration 

has been exploited to deliver neurotrophic factors [80,81], cytokines [3], neuropeptides [82], 

and antibodies [11,83]. Despite considerable research in the field of intranasal 

administration targeted at nose to brain delivery of therapeutics, there are scant studies 

showing detailed brain-region-specific time-dependent uptake of intranasally delivered 
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therapeutics, which is a critical determining factor for dosing conditions and optimal 

treatment regimen. In that regard, current study has significantly contributed detailing the 

entry, uptake and resident- time of intranasally delivered neurotherapeutics in mouse brain 

in comparison with the intraperitoneally delivered materials reaching the brain. Intranasally 

delivered therapeutics certainly has advantages not only with regard to efficient delivery but 

also with regard to their availability as an unaltered material since it bypasses systemic/

hepatic extraction. Our observations that the intranasally delivered neurotherapeutics readily 

reach the brain with a resident time of 12h, provides a new direction for designing CNS-

targeting drugs for the treatment of neurological disorders including AD, Parkinson’s 

disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), Stroke and 

other NDs.
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Figure 1A. 
Uptake of I-125 labeled anti-Aß antibodies in the olfactory lobes at different time-points 

after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg brain 

tissue and presented as Mean ± SD.
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Figure 1B. 
Uptake of I-125 labeled different neurotherapeutics in the olfactory lobes at different time-

points after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg 

brain tissue and presented as Mean ± SD.
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Figure 2A. 
Uptake of I-125 labeled anti-Aß antibodies in the cerebral cortex at different time-points 

after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg brain 

tissue and presented as Mean ± SD.
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Figure 2B. 
Uptake of I-125 labeled different neurotherapeutics in the cerebral cortex at different time-

points after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg 

brain tissue and presented as Mean ± SD.
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Figure 3A. 
Uptake of I-125 labeled anti-Aß antibodies in the hippocampus at different time-points after 

intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg brain tissue 

and presented as Mean ± SD.
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Figure 3B. 
Uptake of I-125 labeled different neurotherapeutics in the hippocampus at different time-

points after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg 

brain tissue and presented as Mean ± SD.
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Figure 4A. 
Uptake of I-125 labeled anti-Aß antibodies in the cerebellum at different time-points after 

intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg brain tissue 

and presented as Mean ± SD.
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Figure 4B. 
Uptake of I-125 labeled different neurotherapeutics in the cerebellum at different time-

points after intranasal (IN) or intraperitoneal (IP) delivery in mice expressed as cpm/100 μg 

brain tissue and presented as Mean ± SD.
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