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Summary

Computational modeling of the human heart allows us to predict how chemical, electrical, and 

mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac 

disease has advanced significantly over the past decades, yet it remains unclear how the local 

biochemistry of an individual heart cell translates into global cardiac function. Here we propose a 

novel, unified strategy to simulate excitable biological systems across three biological scales. To 

discretize the governing chemical, electrical, and mechanical equations in space, we propose a 

monolithic finite element scheme. We apply a highly efficient and inherently modular global-local 

split, in which the deformation and the transmembrane potential are introduced globally as nodal 

degrees of freedom, while the chemical state variables are treated locally as internal variables. To 

ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference 

scheme to discretize the resulting system in time. To increase algorithmic robustness and 

guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson 

scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and 

mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and 

stable, with calculation times on the order of four days on a standard desktop computer.
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1. Motivation

Pharmacological treatment has opened new avenues for managing various types of cardiac 

disease. On a daily basis, cardiologists now prescribe antiarrhythmic agents to control heart 

rhythm disorders such as atrial fibrillation, atrial flutter, ventricular tachycardia, and 

ventricular fibrillation [11]. While the pharmacological control of the electrical activity of 

the heart is reasonably well understood, the pharmacological manipulation of the mechanical 
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activity of the heart remains severely understudied. This is an important problem in heart 

failure [2], a disease associated with an annual health care cost of more than $30 billion in 

the United States alone [33]. To understand how a new drug affects the interaction between 

chemical, electrical, and mechanical fields, systematic drug testing is of incredible clinical 

importance [53]. Not surprisingly, it covers a huge market ranging from single cell testing 

using patch clamp electrophysiology [1, 29], via cell culture testing using microelectroarray 

recordings [13, 70], to large animal experiments [36, 71]. While the pharmacological 

manipulation of chemo-electro-mechanical coupling is relatively well understood on the 

single cell level [6, 7], little is known whether or not this knowledge translates into clinically 

relevant function on the organ level [54]. This knowledge gap presents a tremendous 

opportunity for quantitative, predictive computational modeling [20]. Most importantly, the 

nature of coupling between the underlying chemical, electrical, and mechanical fields is 

ideally tailored for finite element simulations, a circumstance that has been largely 

overlooked until today.

The first model to quantitatively characterize the electrical activity of excitable cells was the 

Nobel-price winning Hodgkin-Huxley model introduced more than half a century ago [31]. 

Initially designed for nerve cells [21, 47], the model was soon adopted for other cell types, 

such as pacemaker cells [51], Purkinje fiber cells [45], atrial cells [16], and ventricular cells 

[5, 43, 72] of the heart. Originally proposed for single cells, these approaches were 

generalized to multiple cells, tissues, and organs by adding a phenomenological flux term to 

characterize the propagation of the excitation wave. Traditionally, simulations of 

propagating electrical signals were dominated by biophysicists and electrical engineers [3, 

37]. Their models were based on simple straightforward algorithms, discretized in space 

using finite differences, discretized in time using explicit time stepping schemes [14]. To 

compensate for the lack of sophistication in algorithmic design, these initial models 

generally use a high spatial and temporal resolution, small grids and small time steps. Not 

surprisingly, these initial methods are extremely expensive from a computational point of 

view [41].

Within the past decade, physiological function has become a key focus in cardiac 

simulations [62], paving the way for mechanical models and finite element methods [9, 57]. 

However, progress was dampened by the finite difference nature of existing algorithms, 

making it virtually impossible to integrate mechanical deformation, in particular in the 

context of finite strains. The first generation of electro-mechanical heart models combined 

previously established finite difference based electrical algorithms with finite element based 

mechanical algorithms [38]. Most versions of these models are coupled unidirectionally, i.e., 

the algorithm first calculates the electrical field and then uses it as an input to calculate the 

mechanical field. The advantage of this approach is that it allows us to combine different 

spatial and temporal resolutions for both fields [42, 52]. For loosely coupled problems, these 

algorithms typically perform sufficiently well [69], although we can not really quantify the 

loss of information and the possible energy blow-up associated with the explicit 

discretization of the coupling terms. For strongly coupled problems, these algorithms require 

an extremely fine spatial and temporal resolution, especially during the rapid upstroke phase 

when all fields undergo rapid changes. To eliminate potential algorithmic instabilities, 

revised versions of these models are coupled bidirectionally, i.e., they iterate between 
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electrical and mechanical fields. It is not surprising that those algorithms, which integrate 

more information about the nature of coupling upfront have enhanced stability and 

performance properties [49].

Here we challenge existing excitation-contraction algorithms and propose a second 

generation of chemo-electro-mechanical heart models, algorithmically redesigned from 

scratch. We propose a novel unified algorithm, which is entirely finite element based, fully 

coupled, monolithic, implicitly time-integrated, and consistently linearized [66]. This allows 

us to use existing finite element infrastructures, such as simple, ad hoc adaptive time 

stepping schemes [68]. In designing our new algorithm, we take advantage of the multiscale 

nature of the underlying problem illustrated in Figure 1, and discretize all chemical 

unknowns locally on the integration point level and all electrical and mechanical unknowns 

globally on the node point level [22, 60, 76]. In Section 2, we summarize the underlying 

kinematic, balance, and constitutive equations for chemo-electro-mechanical problems. In 

Section 3, we then illustrate their temporal and spatial discretizations. We introduce the 

global system of equations, which we solve using an incremental iterative Newton Raphson 

strategy. In Section 4, we specify the constitutive equations for the electrical and mechanical 

source and flux terms, which naturally introduce the coupling between the underlying 

chemical, electrical, and mechanical fields. In Section 5, we illustrate the features of the 

proposed model, first locally at the single cell level, then globally for the model problem of 

a flat square panel, and then globally at the whole heart level. We conclude with a 

discussion and a brief outlook in Section 6.

2. Continuous Problem of Chemo-Electro-Mechanics

In this section, we summarize the generic continuous equations of chemo-electro-

mechanical coupling characterized through a set of partial differential equations for the 

electrical and mechanical problems and through a system of ordinary differential equations 

for the chemical problem. The primary unknowns of the electrical and mechanical problems 

are the transmembrane potential ϕ and the deformation φ. The unknowns of the chemical 

problem are the local state variables which we collectively summarize in the vector q. For 

simple two-parameter models, q would only contain a single variable, the phenomenological 

recovery variable r. For more sophisticated ionic models, q contains a set of gating variables 

ggate and a set of ion concentrations cion, which, at any point in time, characterize the local 

ionic currents Icrt.

2.1. Kinematic equations

To characterize the kinematic state of the body under consideration, we introduce the 

nonlinear deformation φ that maps particles from the undeformed reference configuration 

ℬ0 at time t0 to the deformed current configuration ℬt at time t ∈ ℝ,

(1)

In what follows, {○̇} = dt{○}|X and ∇{○} =dX{○}|t denote the material time derivative and 

the material gradient of a quantity {○}. Accordingly, Div{○} = ∇{○} : I denotes the 
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material divergence, where I is the second-order identity tensor. With these definitions, we 

can introduce the deformation gradient F as the linear tangent map from the material tangent 

space Tℬ0 to the spatial tangent space Tℬt,

(2)

We will utilize the right Cauchy-Green deformation tensor and its inverse

(3)

to define relevant strain measures. In particular, we introduce the Jacobian J and the trace I1 

as characteristic isotropic invariants,

(4)

and Iff, Iss, and Ifs as characteristic anisotropic invariants,

(5)

where  extracts the symmetric part of a second order tensor [○]. 

Here, Iff and Iss are the stretches squared along the myocardial fiber and sheet directions, 

which we denote by f0 and s0 in the reference configuration ℬ0 and by f = F · f0 and s = F · 

s0 in the current configuration ℬt.

2.2. Balance equations

The balance equation of the electrical problem balances the rate of change of the 

transmembrane potential ϕ with the divergence of the electrical flux, Div Q, and the 

electrical source, Fϕ,

(6)

The balance equation of the mechanical problem balances the rate of change of the linear 

momentum with the divergence of the momentum flux, Div P, where P is the first Piola 

Kirchhoff stress tensor, and the momentum source, Fφ,

(7)

Here, the divergences Div Q and Div P of the electrical and mechanical fluxes refer to the 

undeformed reference configuration. For the sake of simplicity, we model the electrical 

problem (6) using the classical monodomain equation and model the mechanical problem 

(7) as quasi-static, such that the rate of change of the linear momentum vanishes identically. 
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The balance of angular momentum is identically satisfied through the symmetry of the 

Cauchy stress σ =1/J P · Ft = σt.

2.3. Constitutive equations

The electrical and mechanical problems (6) and (7) are coupled constitutively through the 

corresponding flux and source terms. The electrical flux Q is typically introduced 

phenomenologically and characterizes the propagation speed of the electrical signal. It is 

usually proportional to the potential gradient ∇ϕ and can potentially be coupled to the 

mechanical problem through the deformation gradient ∇φ to account for stretch-induced 

changes in the propagation speed,

(8)

The electrical source Fϕ characterizes the electrophysiology of the individuals cells on the 

local level. Through voltage-gated ion channels, Fϕ depends on the electrical potential ϕ. 

Through possible stretch-activated ion-channels, Fϕ may depend on the deformation 

gradient ∇φ. Through the cell's biochemistry, Fϕ also depends on the set of internal 

variables collectively summarized in the vector q, which, in our case, contains a set of gating 

variables ggate and a set of ion concentrations cion [76],

(9)

The momentum flux P is simply the Piola stress, which we can additively decompose into a 

passive and an active part according to Hill's classical muscle model [30]. The passive stress 

Ppas depends on the deformation gradient ∇φ and characterizes the passive myocardium. 

The active stress Pact either depends on the electrical potential ϕ [23] or on the set of 

internal variables q [69], as proposed here, and introduces coupling to the electro-chemical 

problem. The two-field nature of the Piola stress introduces an additional dependance on the 

deformation gradient ∇φ,

(10)

The momentum source Fφ characterizes volume forces such as gravity, which we assume to 

be negligibly small in the subsequent analyses,

(11)

We will now illustrate the computational solution of the coupled chemo-electro-mechanical 

problem using a weighted-residual based finite element approach.

3. Discrete Problem of Chemo-Electro-Mechanics

To discretize the continuous chemo-electro-mechanical problem, we rephrase the electrical 

and mechanical balance equations (6) and (7) in their residual formats,
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(12)

where both are valid in the entire domain ℬ0. We then partition the boundary ∂ℬ0 into 

disjoint parts  and  for the electrical problem and equivalently into  and 

for the mechanical problem and prescribe the corresponding Dirichlet and Neumann 

boundary conditions,

(13)

where N denotes the outward normal to ∂ℬ0. To derive the weak forms of the electrical and 

mechanical problems Gϕ and Gφ, we integrate the the residual statements (12) over the 

domain ℬ0, multiply both with the scalar- and vector-valued test functions δϕ in 

and δφ in , integrate them by parts, and apply the corresponding Neumann boundary 

conditions (13.2) and (13.4),

(14)

3.1. Temporal discretization

For the temporal discretiation, we partition the time interval of interest  into nstep 

subintervals [tn, t] as  and focus on a typical time slab [tn, t]. Here and 

from now on we omit the index n+1 associated with the current time step. We assume, that 

the primary unknowns ϕn and φn and all derivable flux terms, source terms, and state 

variables are known at the beginning of the current interval. To approximate the material 

time derivative of the transmembrane potential ϕ, we apply a first order finite difference 

scheme,

(15)

where Δt := t – tn > 0 denotes the current time increment. To solve for the unknowns ϕ and 

φ, we then apply a classical backward Euler time integration scheme and evaluate the 

discrete set of governing equations (14) at the current time point t.

3.2. Spatial discretization

For the spatial discretization, we apply a 0-continuous interpolation of the transmembrane 

potential ϕ and of the deformation φ and introduce both ϕ and φ as global degrees of 

freedom at the node point level. We partition the domain of interest ℬ0 into nel elements 

as . Using the isoparametric concept, we interpolate the trial functions ϕh, φh ∈ 

Wong et al. Page 6

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H1 (ℬ0) on the element level with the same basis function Nϕ and Nφ as the element 

geometry. Using the Bubnov-Galerkin approach, we interpolate the test functions δϕh, 

 on the element level with the same basis function Nϕ and Nφ as the trial 

functions,

(16)

We then rephrase the residuals of the electrical and the mechanical problem (12) in their 

discrete forms,

(17)

Here the operator A symbolizes the assembly of all element contributions at the local 

electrical and mechanical element nodes i = 1, …, neϕ and j = 1, …, neφ to the overall 

residuals at the global electrical and mechanical nodes I = 1, …, nnϕ and J = 1,…, nnφ.

3.3. Linearization

To solve the resulting coupled nonlinear system of equations (17), we propose a monolithic 

incremental iterative Newton-Raphson solution strategy based on consistent linearization of 

the governing equations [66],

(18)

in terms of the following iteration matrices,

(19)

The solution of the system of equations (18) renders the iterative update for the increments 

of the global unknowns ϕI ← ϕI + dϕI and φJ ← φJ + dφJ.

4. Model Problem of Chemo-Electro-Mechanics

In this section, we briefly summarize the constitutive equations of the electrical flux, the 

electrical source, and the mechanical flux. In the discrete setting, we evaluate these 
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equations on the integration point level, where we store the set of internal variables q once 

the global Newton-Raphson iteration (18) has converged [23].

4.1. Electrical flux

The electrical flux Q in equation (17.1) is typically assumed to depend on both the potential 

gradient ∇ϕ and the deformation gradient ∇φ. We now specify this dependency to be 

multiplicative. In analogy to Fick's law of diffusion and Fourier's law of heat conduction, we 

apply Ohm's law and assume that the electrical flux Q is proportional to the gradient of the 

electrical potential ∇ϕ,

(20)

The second order conductivity tensor D can account for both isotropic propagation diso and 

anisotropic propagation dani along preferred directions f0. Stretch-induced changes in the 

propagation speed are incorporated indirectly through the inverse left Cauchy-Green tensor 

C−1 = F−1 · F−t motivated by the assumption of a spatial rather than material isotropy [23], 

for which the isotropic term would simply scale with the second order identity tensor I. To 

evaluate the iteration matrices (19.1) and (19.2), we perform the consistent linearization of 

the electrical flux Q with respect to the electrical gradient d∇ϕQ and with respect to the 

deformation gradient dFQ, where the former is nothing but the conductivity tensor D and the 

latter reflects the above-discussed stretch-induced change in the propagation speed, see [23] 

for details.

4.2. Electrical source

The electrical source Fϕ in equation (17.1) is a result of the local electrophysiology on the 

cellular level. As such, it is a function of the electrical potential ϕ, the deformation gradient 

∇φ, and a set of internal variables q, which characterize the electrochemical behavior of the 

cell. For the simplest possible models, q only contains a single variable, the 

phenomenological recovery variable r [18, 22]. For the particular ventricular 

cardiomyocytes we consider here [43, 44, 72], q contains a total of 17 variables, i.e., ngate = 

13 gating variables ggate = [gm, gh, gj, gxr1, gxr2, gxs, gr, gs, gd, gf, gxK1∞, gfCa, gg] and nion 

= 4 ion concentrations . These state variables define ncrt = 15 ionic 

currents Icrt = [INa, IbNa, INaK, INaCa, IK1, IKr, IKs, IpK, It0, ICaL, IbCa, IpCa, Ileak, Iup, Irel], as 

illustrated in Figure 2. The electrical source Fϕ is directly related to the negative sum of all 

these currents Icrt across the cell membrane due to the outward positive convention 

established in experiments,

(21)

Here, INa is the fast sodium current, IbNa is the background sodium current, INaK is the 

sodium potassium pump current, INaCa is the sodium calcium exchanger current, IK1 is the 

inward rectifier current, IKr and IKs are the rapid and slow delayed rectifier currents, IpK is 

the plateau potassium current, ICaL is the long-lasting L-type calcium current, IbCa is the 

Wong et al. Page 8

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



background calcium current, and IpCa is the plateau calcium current. In addition, we also 

have three intracellular currents, Ileak is the leakage current, Iup is the sarcoplasmic 

reticulum uptake current, and Irel is the sarcoplasmic reticulum release current. For our 

particular cell model, none of the channels are mechanically gated, i.e., all currents are 

independent of the deformation gradient ∇φ. Instead, all channels are voltage gated and 

their currents depend on the electrical potential ϕ. In addition, the currents depend on the set 

of internal variables q consisting of the chemical state variables, i.e., the gating variables 

ggate and the ion concentrations cion. We can characterize all ionic currents through generic 

equations of the following generic form,

(22)

which we specify in detail in the Appendix. From a mathematical point of view, the 

chemical problem is defined in terms of two sets of state variables, the ngate gating variables 

ggate and the nion ion concentrations cion. Both are governed through ordinary differential 

equations depending on the transmembrane potential ϕ, on the gating variables ggate, and on 

the ion concentrations cion,

(23)

The gating variables ggate characterize the states of the individual ion channels, either open 

or closed. They are defined through a set of ordinary differential equations of Hodgkin-

Huxley type,

(24)

which we specify in detail in the Appendix. Here,  is a steady-state value and τgate is the 

time constant for reaching this steady state. Both are usually exponential functions of the 

membrane potential ϕ. The ion concentrations inside the cell cion change in response to the 

transmembrane currents Icrt. For our particular cardiomyocyte model, the relevant ion 

concentrations are the sodium concentration cNa, the potassium concentration cK, the 

calcium concentration cCa, and the calcium concentration in the sarcoplasmic reticulum . 

Collectively, these ion concentrations cion are defined through a set of ordinary differential 

equations,

(25)

Here C is the membrane capacitance per unit surface area, V is the cytoplasmic volume, Vsr 

is the volume of the sarcoplasmic reticulum, F is the Faraday constant, and γCa and  are 

Wong et al. Page 9

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scaling coefficients. While the electrical and mechanical problems are global in nature, the 

chemical problem remains strictly local. When using a finite element discretization, this 

allows us to store the chemical state variables ggate and cion locally as internal variables on 

the integration point level. It is obvious that their complex, nonlinear coupled system of 

ordinary differential equations (24) and (25) cannot be solved analytically. Here, we apply a 

numerical solution using an implicit Euler backward time stepping scheme embedded in a 

local Newton iteration. To evaluate the iteration matrices (19.1) and (19.2), we perform the 

consistent linearization of the electrical source Fϕ with respect to the transmembrane 

potential dϕFϕ related to voltage-gated ion channels and with respect to the deformation 

gradient dFFϕ related to stretch-activated ion channels [76]. For our particular cell model, in 

the absence of stretch-activated ion channels, the second term vanishes identically.

4.3. Mechanical flux

The momentum flux P in equation (17.2) depends on both the electrical potential ϕ and the 

deformation gradient φ. We adopt the common assumption to decompose the overall stress 

additively into a passive mechanically-induced part Ppas and an active electrically-induced 

part Pact, such that P = Ppas + Pact. For the passive Piola stress, we select a compressible 

orthotropic model [25, 32],

(26)

parameterized in terms of the isotropic invariants J and I1, and the anisotropic invariants Iff, 

Iss, and Ifs, weighted by the bulk modulus κ and the four sets of parameters a and b [63, 75]. 

Here, rather than using the original quasi-incompressible formulation proposed in the 

literature [32], for conceptual simplicity, we assume that the myocardial tissue is decently 

compressible due to its vascular network [79]. More recent cardiac models additionally even 

account for tissue porosity and model the myocardium as porous medium [15], an approach 

that we do not pursue here. For the active Piola stress Pact, we assume that an increase in the 

intracellular calcium concentration cCa above a critical level  induces an active 

cardiomyocyte contraction Fact [28,61], which is acting along the fiber direction f0 [12,23]. 

The contractile force Fact displays a twitch-type behavior [48], with a smooth off-on 

transition characterized through the twitch-function ε.
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(27)

Here, η controls the saturation of the active contractile force Fact,  is the resting 

concentration, ε0 and ε∞ are the minimum and maximum values of ε,  is the limit value 

above which contraction is initiated, and ξ is the transition rate from ε0 to ε∞ at  [23]. 

More sophisticated constitutive models for active stress generation additionally include a 

velocity dependence [34, 49] and fully three-dimensional effects [71]. Alternatively, recent 

approaches suggest to model active contraction kinematically through the multiplicative 

decomposition of the deformation gradient [4, 26]. To evaluate the iteration matrices (19.3) 

and (19.4), we perform the consistent linearization of the Piola stress P with respect to the 

transmembrane potential dϕP related to the active stress and with respect to the deformation 

gradient dF P related mainly to the passive stress [25].

5. Examples

5.1. Chemo-electro-mechanical coupling in a single cell

To illustrate the local features of our chemo-electrical-mechanical model, we simulate the 

electrophysiology of an epicardial human ventricular cardiomyocyte throughout a 

representative excitation cycle. For the chemical parameters, we use the values summarized 

in Table I. For the electro-mechanical coupling parameters, we choose the saturation of 

cardiomyocyte contraction to η = 12.5kPa/μM, the resting concentration of calcium to 

, the minimum and maximum values scaling fiber contraction to ε0 = 0.1/ms 

and ε∞ = 1.0/ms, the critical calcium concentration above which contraction is initiated to 

, and the transition rate to ξ = 4.0/μM. We initialize the global membrane 

potential with ϕ = − 86 mV, and the local ion concentrations with cNa = 11.6mM, cK = 

138.3mM, and cCa = 0.08μM, mimicking the resting state. For the gating variables, we 

choose the following initial conditions gm = 0, gh = 0.75, gj = 0.75, gd = 0, gf = 1, gfCa = 1, 

gr = 0, gs = 1, gxs = 0, gxr1 = 0, gxr2 = 0, gxK1∞ = 0.05, and gg = 1. To initiate a 

characteristic action potential, we apply an initial electrical stimulus slightly above the 

critical stimulation threshold [76].

Figure 3, top left, illustrates the evolution of the transmembrane potential ϕ. In cardiac cells 

at rest, the transmembrane potential is -86 mV, which implies that the intracellular domain is 

negatively charged in comparison to the extracellular domain. The application of an external 

stimulus generates an initial depolarization across the cell membrane. Once the stimulus 

exceeds the critical threshold, the transmembrane potential increases rapidly from its resting 

state of -86 mV via an overshoot of +38 mV to its excited state of +20 mV. After a brief 

period of partial initial repolarization, the transmembrane potential experiences a 

characteristic plateau of 0.2 ms, before the cell gradually repolarizes to return to its initial 

resting state.
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Figure 3, top right, illustrates the evolution of the intracellular sodium concentration cNa, 

which rises sharply at the beginning of the cycle to create the rapid upstroke of the 

transmembrane potential. The sodium concentration then decays slowly towards the end of 

the repolarization phase and increases gradually during the resting phase to return to its 

initial value. Figure 3, bottom left, illustrates the evolution of the intracellular potassium 

concentration cK. After a rapid increase, cK decreases in a stepwise fashion, regulated by the 

sequential activation of the individual potassium channels. At the end of the repolarization 

phase, cK increases gradually to smoothly return to its initial value. Figure 3, bottom right, 

illustrates the evolution of the intracellular calcium concentration cCa. Slightly after the 

upstroke of the transmembrane potential, the calcium concentration increases to its peak 

value and then decays smoothly to its original value throughout the remaining phases of the 

cycle. In the following section, we will demonstrate how an increase in the intracellular 

calcium concentration can initiate mechanical contraction. In summary, the model 

reproduces all characteristic features of human ventricular cardiomyocytes [72, 73, 76]: an 

initial increase in sodium to create a rapid upstroke in the transmembrane potential, a 

combined decrease in potassium and increase in calcium to generate the characteristic 

plateau, and an increase in potassium during the recovery phase to bring the cell back to its 

resting state. Despite drastic changes in the membrane potential from -86 mV to +20 mV, 

changes in the individual ion concentrations remain remarkably small, typically in the order 

of less than one percent.

Figure 4 illustrates the evolution of the active contractile force Fact throughout an excitation 

cycle. The rapid increase in the intracellular calcium concentration cCa initiates a rapid 

increase in the active force. After reaching its peak value, the force gradually returns to zero.

5.2. Chemo-electro-mechanical coupling in a square panel

To demonstrate the convergence of our chemo-electrical-mechanical model, we simulate the 

wave propagation in a square flat panel, and compare the activation times for different 

spatial and temporal discretizations. In particular, we discretize the 8 mm×8 mm panel with 

epicardial human ventricular cardiomyocytes using the material parameters summarized in 

Tables I and II. We initialize the panel with homogeneous initial conditions for the local ion 

concentrations and the local gating variables using the same parameter values as described 

in Section 5.1 to mimic the initial resting state. We initialize the global membrane potential 

with a resting value of ϕ = −86 mV, and perturb its value at the upper edge of the panel with 

a value of ϕ = +40 mV to initiate a downward traveling wave. For the spatial convergence 

study, we discretize the panel in space with n×n×12 linear tetrahedral elements, (n+1)×(n+1)

×3 nodes, and (n+1)×(n+1)× 12 degrees of freedom, where we systematically increase n 

from 8 to 44 in steps of four. Accordingly, our finest mesh thus consists of 23,232 elements, 

6,075 nodes, and 24,300 degrees of freedom. For this study, we fix the temporal 

discretization at a constant time step size of Δt = 0.125 ms. For the temporal convergence 

study, we discretize the travel time with 40 to 975 equidistant finite difference steps and fix 

the spatial discretization at a constant mesh size parameterized with n=12.

Figure 5, top, illustrates five representative spatial discretizations parameterized with n=12, 

20, 28, 36, and 44. Red colors indicate tissue regions that are already excited, grey regions 
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indicate tissue still at the resting state. All five snap shots correspond to t = 2.00 ms, the time 

at which the wave front has reached the centerline of the panel for the finest discretization, 

shown on the right. For the coarsest discretization, shown on the left, the wave has already 

passed the centerline, indicating that the wave speed is slightly higher for coarser meshes.

Figure 5, bottom, illustrates the algorithmic convergence upon spatial refinement, left, and 

temporal refinement, right. As a global metric for the traveling wave, we plot the activation 

time of the lower panel edge for different spatial and temporal discretizations. In agreement 

with the color-coded panels in the top row, both activation graphs reveal that the wave 

travels slightly faster for coarser spatial and temporal discretizations. However, upon spatial 

and temporal refinement, both solutions converge smoothly towards a finite activation time.

5.3. Chemo-electro-mechanical coupling in the human heart

To illustrate the global features of our chemo-electrical-mechanical model, we simulate 

excitation-contraction coupling in a human heart throughout a representative cardiac cycle. 

We reconstruct a patient-specific human heart model from magnetic resonance images [39], 

see Figure 6. Figure 6, middle, illustrates the finite element discretization consisting of 

46,896 linear tetrahedral elements, 13,831 nodes, and 55,324 degrees of freedom. To 

account for the characteristic microstructure of the heart, we assign locally varying fiber 

vectors f0 and sheet vectors s0 created from a feature-based Poisson interpolation [78]. 

Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear 

finite element algorithm for scalar-valued second-order boundary value problems. We 

introduce fiber and sheet angles as a global unknowns and enforce their epicardial and 

endocaridal values in the strong sense as Dirichlet boundary conditions. We have previously 

demonstrated that this concept is capable of generating smoothly varying fibre orientations, 

quickly, efficiently and robustly, both in a generic bi-ventricular model and in a patient-

specific human heart [78]. Figure 6, right, illustrates the resulting fiber distribution across 

the left and right ventricles. Fiber directions vary gradually from -70° in the epicardium, the 

outer wall shown in blue, to +80° in the endocardium, the inner wall shown in red. Sheet 

directions are outward-pointing with respect to the epicardial surface.

Similar to the single cell example in Section 5.1, we apply initial conditions which mimic 

the resting state, with a global membrane potential of ϕ = −86 mV, and the local ion 

concentrations of cNa = 11.6mM, cK = 138.3 mM, cCa = 0.08 μM, and , and 

gating variables of gm = 0, gh = 0.75, gj = 0.75, gd = 0, gf = 1, gfCa = 1, gr = 0, gs = 1, gxs = 

0, gxr1 = 0, gxr2 = 0, gxK1∞ = 0.05, and gg = 1. Tables I summarizes the chemo-electrical 

parameters which are similar to single cell example in Section 5.1. To account for regionally 

varying action potential durations, we divide the heart in five regions, basal septum, apical 

septum, apex, mid-ventricular wall, and lateral ventricular wall [35]. We systematically 

increase the bulk ion channel conductances , , and  from upper septum to 

lateral wall by ±30%. The electro-mechanical coupling parameters are the saturation of 

cardiomyocyte contraction η = 12.5kPa/μM, the resting concentration of calcium 

, the minimum and maximum values scaling fiber contraction ε0 = 0.1/ms and 

ε∞ = 1.0/ms, the critical calcium concentration above which contraction is initiated 
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, and the transition rate ξ = 4.0/μM. These are the same values as in the single 

cell example in Section 5.1, which have been calibrated such that the maximum fiber 

contraction λff is approximately 15% [71]. The electrical parameters are the isotropic and 

anisotropic conduction diso = 5mm2/ms and dani = 10mm2/ms in the Purkinje fiber rich 

septal region, and diso = 0.1mm2/ms and dani = 0.2mm2/ms in the lateral ventricular walls. 

We would like to point out though that the degree of anisotropy chosen here is relatively low 

as compared to physiological anisotropy ratios of 1:5 or even 1:10 [18]. Moreover, in reality, 

the Purkinje fibers are isolated from the septum and activate the heart from the endocardium 

of the left and right ventricular walls from the apex, to about three fourth of the total 

ventricular length. A discrete representation of the Purkinje fiber network [39] would 

therefore provide a more accurate reflection of the excitation pattern with a more realistic 

representation of transmural activation gradients [71]. The mechanical parameters are the 

isotropic elastic bulk modulus κ = 100.0 kPa, the isotropic elastic tissue parameters a = 

0.496 kPa and b = 7.209, the anisotropic elastic parameters, aff = 15.193 kPa and bff = 

20.417, ass = 3.283 kPa and bss = 11.176, and afs = 0.662 kPa and bfs = 9.466, which we 

have identified [25] using simple shear experiments from the literature [19, 32]. Table II 

summarizes the electro-mechanical parameters.

For the electrical problem, we apply the common assumption of homogeneous Neumann 

boundary conditions. For the mechanical problem, we apply homogeneous Dirichlet 

boundary conditions throughout the basal plane [24]. We excite the heart through an 

external stimulus in the region of the atrioventricular node located in the center of the basal 

septum. We apply an adaptive time stepping scheme, for which we select the convergence 

tolerance to 1.0E-09 and the optimal number of iterations to four [76]. For a larger number 

of iterations, the adaptive scheme automatically decreases the time step size; for a smaller 

number of iterations, the adaptive scheme increases the time step size [68].

Figures 7 and 8 illustrate the evolution of the fiber contraction λff, of the transmembrane 

potential ϕ, and of the individual ion concentrations cNa, cK, cCa, and  during the 

depolarization and repolarization phases, respectively. Figure 7 shows how depolarization is 

initiated through changes in the intracellular sodium concentration cCa, which increases 

rapidly within the first milliseconds of the cardiac cycle, third row. This increase is 

associated with a rapid increase in the membrane potential ϕ, second row, which, in turn, 

affects the voltage-gated calcium and potassium channels within the cell membrane. The 

intracellular calcium concentration cCa increases, fifth row. The intracellular potassium 

concentration cK follows with a slight time delay of 15 ms, fourth row. The intracellular 

calcium concentration cCa increases further as calcium is released from the sarcoplasmic 

reticulum , sixth row. The increase in the intracellular calcium concentration directly 

initiates cardiomyocyte contraction λff, first row. The contraction varies regionally and 

transmurally with maximum values of 10% and more, corresponding to λff = 0.90 and less. 

As the heart contracts, the apex moves markedly upward towards the fixed base, columns 

four and five. After 50 ms, the heart is entirely depolarized. The transmembrane potential ϕ 

has reached its peak value of 20 mV throughout both ventricles, and the heart is maximally 

contracted.
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Figure 8 displays the repolarization phase characterized through a smooth decrease of the 

transmembrane potential ϕ and the mechanical contraction λff back to their resting values, 

first and second row. Decrease in mechanical contraction is caused by a gradual decrease of 

the intracellular calcium cCa concentration back to its resting value, fifth row. The 

sarcoplasmic reticulum takes up the intracellular calcium, and  returns back to its resting 

value, sixth row. At the same time, the intracellular sodium concentration cNa, which has 

initially increased, now dips even below its initial value and reaches a minimum after 260 

ms, third row. The intracellular potassium concentration cK reaches its minimum 

approximately at the same time, fourth row. In the course of time, both sodium and 

potassium then slowly return to their resting values as their concentrations increase 

gradually. The temporal evolution of the mechanical, electrical, and chemical fields is in 

excellent qualitatively and quantitatively agreement with the single cardiomyocyte transients 

documented in Figures 3 and 4. However, because of the heterogeneous character of the 

whole heart simulation, the intracellular sodium and potassium concentrations cNa and cK 

still display small local deviations from the complete resting state 1000 ms after the onset of 

excitation, see Figures 8, third and fourth row, last column.

Figure 9 illustrates the global performance of the heart in dry pumping in terms of two 

characteristic clinical metrics of cardiac function, apical lift δ and of ventricular torsion ϑ. 

Figure 9, left, shows the apical lift, i.e., the vertical movement of the apex along the heart's 

long axis towards the fixed base. Shortly after the onset of excitation, the apex lifts rapidly 

towards the base moving upward by approximately 8mm. Figure 9, right, shows the 

ventricular torsion, i.e., the rotation of two marked locations in the lateral left ventricular 

wall, at approximately 1/3 and 2/3 height, around the heart's long axis. Shortly after the 

onset of excitation, the heart undergoes a rapid twist, rotating clockwise by approximately 6° 

and 13°, with the amount of torsion increasing from the fixed base to the free apex. Both 

apical lift and ventricular torsion then decrease gradually to zero as the heart returns to its 

original position. These characteristics of apical lift and ventricular torsion are in excellent 

qualitative agreement with clinical observations [46].

Figure 10 demonstrates the performance of our fully implicit monolithic finite-element 

based algorithm. Figure 10, left, shows the variation of the time step size and Figure 10, 

right, shows the corresponding number of Newton iterations within the adaptive time 

stepping scheme. The algorithm typically converges within four Newton-Raphson iterations. 

For more required iterations, the adaptive algorithm automatically decreases the time step 

size, for example, during the rapid upstroke phase before t = 0.05 s where the time step size 

becomes as small as Δt = 0.03 ms and during the repolarization phase between t = 0.25 s and 

t = 0.32 s where the time step size becomes as small as Δt = 0.31 ms. For less required 

iterations, the adaptive algorithm automatically increases the time step size, for example 

during the plateau phase, between t = 0.05 s and t = 0.25 s where the time step size becomes 

as large as Δt = 1.25 ms and during the resting phase after t = 0.32 s where the time step size 

becomes as large as Δt = 7.89 ms.

Table III confirms these observations. During the rapid upstroke phase, at t = 0.0125 s, the 

algorithm requires six Newton iterations to fully converge with the given convergence 

tolerance of 1.0E-09. During the early repolarization phase, at t = 0.050 s, during the plateau 

Wong et al. Page 15

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phase, at t = 0.125 s, and during the resting phase, at t = 0.750 s, the algorithm requires only 

three Newton iterations. During the final repolarization phase, at t = 0.250 s, the algorithm 

requires four Newton iterations. Overall, Table III confirms the consistent linearization of 

our algorithm through the quadratic convergence of the global Newton iteration during all 

five phases of the cardiac cycle.

We do not observe stability issues, which we attribute to the implicit nature of the 

underlying time integration scheme. The simulation run of an entire cardiac cycle finishes 

after a total number of time increments of 1,288. The overall run time is 51.97 hours, 

calculated on a single core of an i7-950 3.06 GHz desktop with 12GB of memory.

6. Discussion

We have presented a unified, fully coupled finite element formulation for chemo-electro-

mechanical phenomena in living biological systems and demonstrated its potential to 

simulate excitation-contraction coupling in a patient-specific human heart. The novel aspect 

of this work is that all chemical, electrical, and mechanical fields are solved monolithically 

using an implicit time integration scheme, consistently linearized, embedded in a Newton-

Raphson solution strategy. In contrast to most existing algorithms, the proposed 

discretization scheme is unconditionally stable, computationally efficient, highly modular, 

geometrically flexible, and easily expandable.

Unconditional stability is guaranteed by a using a fully coupled, implicitly integrated, 

consistently linearized finite element approach. Existing algorithms are typically based on 

sequential, staggered solution techniques [69] and utilize explicit time marching schemes 

[38, 41]. They are inherently unstable and limited in time step size [55], which might make 

them less robust and less efficient. Especially during the rapid upstroke phase, steep spatial 

and temporal gradients in the unknown fields might initiate spurious instabilities when using 

explicit time stepping schemes [49]. To avoid these potential limitations, we have applied an 

implicit backward Euler time integration scheme [23, 76]. We have shown that this scheme 

is capable of handling sharp chemical, electrical, and mechanical profiles associated with 

rapid changes in the local and global unknowns. Since our algorithm follows the classical 

layout of nonlinear finite element schemes, we can utilize readily available adaptive time 

stepping schemes at no extra cost or effort [68]. We have demonstrated that a simple, ad-

hoc, iteration-counter based time adaptive scheme automatically decreases the time step size 

during phases with steep temporal gradients and, conversely, increases the time size when 

all unknowns evolve smoothly.

Efficiency is not only increased by using time adaptive schemes, but also by using a classical 

finite-element specific global-local split [22, 60]. While most existing algorithms discretize 

all unknowns globally, we only introduce four global degrees of freedom at the node point 

level, i.e., the vector-valued mechanical deformation and the scalar-valued electrical 

potential. We introduce, update, and store all other state variables locally on the integration 

point level [24, 57, 65], i.e., the thirteen chemical gating variables and the four ion 

concentrations for our particular cardiomyocyte model. Accordingly, our global system 

matrix remains small and efficiently to invert during the solution procedure.
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Modularity originates from the nature of the underlying finite element discretization, which 

introduces all cell-specific unknowns as local internal variables on the integration point 

level. This allows us to modularly integrate the proposed algorithm into any commercial 

finite element package that can handle a coupled nonlinear system of vector- and scalar-

valued governing equations [68]. The simplest strategy would be to use an existing thermo-

mechanical element formulation and re-interpret the temperature field as the transmembrane 

potential. Algorithmic modifications are then restricted exclusively to the constitutive 

subroutine, in which we would solve the chemical problem and store the ion concentrations 

and gating variables as internal variables at each integration point [76]. Another natural 

benefit of using finite element schemes is that the modular treatment of the constitutive 

equations allows us to combine arbitrary cell types, e.g., epicardial and endocardial 

ventricular cells [43, 72], Purkinje fiber cells [45], atrial cells [16], and pacemaker cells [51], 

to effortlessly account for microstructural inhomogeneities. We have successfully combined 

excitable and non-excitable cells [13], self-excitable pacemaker cells and stable ventricular 

cells [22], ventricular cells and Purkinje fiber cells with different conductivities [39], and 

ventricular cells with different action potential durations [35] to seamlessly incorporate the 

structural inhomogeneities of cardiac tissue.

Geometrical flexibility is probably the most advantageous feature of finite element 

techniques when compared to finite difference schemes or finite volume methods. Unlike 

existing schemes which are most powerful on regular grids, the proposed algorithm can be 

applied to arbitrary geometries with arbitrary initial and boundary conditions [64]. Finite 

element algorithms can easily handle medical-image based patient-specific geometries [8, 

39, 67]. In a simple pre-processing step, we could even utilize finite element algorithms to 

create fiber orientations on arbitrary patient-specific meshes using Lagrangian feature-based 

interpolation as illustrated in Figure 6. The key advantage of finite element algorithms, 

however, is that they allow us to simulate finite deformations throughout the cardiac cycle in 

a straightforward and natural way [23]. Finite element models inherently allow for global or 

local, adaptive mesh refinement to increase the accuracy of the solution [69], e.g., to 

accurately resolve transmural gradients of the underlying activation and deactivation 

patterns [71].

Ease of expandability is attributed to the fact that we use a single unified discretization 

technique. Being finite-element based and transparent in nature, our approach lays the 

groundwork for a robust and stable whole heart model of excitation-contraction coupling. 

Through the incorporation of an additional scalar-valued global unknown, e.g., to 

characterize the extracellular potential field, we could easily expand the proposed 

monodomain formulation into a more accurate bidomain formulation [17,18,56]. Through 

the incorporation of additional gating variables as local unknowns, e.g., to characterize the 

optical manipulation of cardiac cells [1], we could easily expand the proposed formulation 

into a photo-electro-chemical formulation [77].

In the future, we will further calibrate and validate our model across the different scales. On 

the cellular level, we will perform local patch clamp electrophysiology [1], on the cell 

culture level, we will analyze microelectroarray recordings [13], on the tissue level, we will 

perform heart slice force measurements [9]. On the organ level, we will consult large animal 
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experiments [71] and patient-specific clinical data [39, 40]. A current trend in cardiac 

electromechanics is to establish valuable libraries of benchmark solutions [50, 58], against 

which we will compare our model both qualitatively and quantitatively in the near future. 

We have already validated the electrical module of our model using a patient-specific 

electrocardiogram extracted from the electrical flux vector Q integrated over the cardiac 

domain [35, 39]. We have also validated the mechanical module in terms of the maximum 

fiber contraction λff of approximately 10%, which agrees nicely with an earlier study in an 

ovine model where the maximum fiber contraction was found to lie within 8% and 10%. We 

plan to further validate the mechanical module in terms of the apical lift and ventricular 

torsion extracted from Figure 9, and, ultimately, in terms of pressure-volume loops.

In summary, we believe that there are compelling reasons to consider the use of fully 

coupled, implicitly integrated, consistently linearized discretization strategies that enjoy the 

advantages inherent to finite element schemes. Initially, it may seem tedious to transition 

existing chemical, electrical, and mechanical algorithms into a single unified chemo-electro-

mechanical algorithm. However, we are convinced that these efforts will pay off when it 

comes to truly predicting the impact of pharmacological, interventional, and surgical 

treatment options to systematically manipulate chemical, electrical, and mechanical fields in 

the human heart.
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Appendix

In this section, we specify the constitutive equations of the chemo-electrical problem for a 

ventricular cardiomyocyte [76]. The cell model draws on the classical Luo-Rudy model [43, 

44], enhanced by several recent modifications [27, 59, 72, 74] and accounts for nion = 4 ion 

concentrations, , where cNa, cK, and cCa are the intracellular sodium, 

potassium, and calcium concentration, and  is the calcium concentration in the 

sarcoplasmic reticulum. The model contains ncrt = 15 ionic currents, Icrt = [INa, IbNa, INaK, 

INaCa, IK1, IKr, IKs, IpK, It0, ICaL, IbCa, IpCa, Ileak, Iup, Irel], as illustrated in Figure 2. The 

states of the channels associated with these currents are gated by ngate = 13 gating variables, 

ggate = [gm, gh, gj, gxr1, gxr2, gxs, gr, gs, gd, gf, gxK1∞, gfCa, gg]. For each ion, sodium, 

potassium, and calcium, we evaluate the classical Nernst equation,

(28)

to determine the concentration-dependent reversal potential ϕion, i.e., the potential difference 

across the cell membrane, which would be generated by this particular ion if no other ions 

were present. In that case, if the membrane were permeable to this specific ion, its 

transmembrane potential ϕ would approach this ion's equilibrium potential ϕion. Here, R = 
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8.3143 JK−1mol−1 is the gas constant, T = 310 K is the absolute temperature, and F = 

96.4867 C/mmol is the Faraday constant. The constant zion is the elementary charge per ion. 

For singly-charged sodium and potassium ions zNa=1 and zK=1, and for doubly-charged 

calcium ions zCa=2. The extracellular sodium, potassium, and calcium concentrations are 

cNa0 = 140 mM, cK0 = 5.4 mM, and cCa0 = 2mM. We now specify the individual 

concentrations, currents, and gating variables for sodium, potassium, and calcium to define 

the source term Fϕ for the electrical problem (21). In what follows, we use the units 

milliseconds for time t, millivolts for voltage ϕ, picoamperes per picofarad for ionic currents 

across the cell membrane, millimolar per millisecond for ionic currents across the membrane 

of the sarcoplasmic reticulum, nanosiemens per picofarad for conductances Ccrt, and 

millimoles per liter for intracellular and extracellular ion concentrations cion. Table I 

summarizes all local chemo-electrical parameters of our human ventricular cardiomyocyte 

model.

6.1. Sodium concentration, currents, and gating variables

Sodium plays a crucial role in generating the fast upstroke in the initial phase of the action 

potential. At rest, the intracellular sodium concentration is approximately cNa = 11.6mM. 

This implies that, according to equation (28), the sodium equilibrium potential is ϕNa = 

+66.5 mV. Accordingly, both electrical forces and chemical gradients draw extracellular 

sodium ions into the cell. At rest, the influx of sodium ions is low since the membrane is 

relatively impermeable to sodium. An external stimulus above a critical threshold value 

causes the fast sodium channel to open and initiates a rapid inflow of sodium ions associated 

with the rapid depolarization of the cell membrane. The transmembrane potential increases 

rapidly by more than 100 mV in less than 2ms, see Figure 3. At the end of the upstroke, the 

cell membrane is positively charged, and the fast sodium channels return to their closed 

state. In our specific cell model, the sodium concentration

(29)

is evolving in response to the fast sodium current INa, the background sodium current IbNa, 

the sodium potassium pump current INaK, and the sodium calcium exchanger current INaCa 

according to Faraday's law of electrolysis. The membrane capacitance per unit surface area 

is C = 185 pF, the cytoplasmic volume is V = 16404 μm3, and the Faraday constant is F = 

96.4867 C/mmol. Both the sodium potassium pump and the sodium calcium exchanger 

operate at a three-to-two ratio as indicated by the scaling factor of three. The sodium related 

currents are functions of the transmembrane potential ϕ, the gating variables ggate and the 

ion concentrations cion,

(30)

Wong et al. Page 19

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here the scaling factors are the maximum fast sodium conductance , 

the maximum background sodium conductance , the maximum 

sodium potassium pump current , and the maximum sodium calcium 

exchanger current . The rapid upstroke in the membrane potential is 

generated by the fast sodium current INa, characterized through a three-gate formulation of 

Beeler-Reuter type [5] in terms of the sodium activation gate gm, the fast sodium 

inactivation gate gh, and the slow sodium inactivation gate gj. The gating variables follow 

classical Hodgkin-Huxley type equations (24) of the format . 

Here  characterizes the steady state value and τgate denotes the time constant associated 

with reaching the steady state. For the sodium activation gate , which 

initiates the rapid upstroke, they take the following explicit representations

(31)

For the fast sodium inactivation gate , which initiates a fast inactivation of 

the sodium channel almost instantaneously after the rapid upstroke, the steady state value 

and the corresponding time constant take the following forms,

(32)

For the slow sodium inactivation gate , which gradually inactivates the fast 

sodium channel over a time span of 100 to 200 ms, the Hudgkin Huxley constants take the 

following form,

(33)

The sodium ions that enter the cell rapidly during the fast upstroke are removed from the 

cell by the sodium potassium pump INaK, a metabolic pump that continuously expels sodium 

ions from the cell interior and pumps in potassium ions. The intracellular sodium 

concentration is further affected by expulsion of intracellular calcium ions through sodium 

calcium exchange INaCa. The additional parameters for the sodium potassium pump current 

INaK and for the sodium calcium exchanger current INaCa are the extracellular sodium, 

potassium, and calcium concentrations cNa0 = 140 mM, cK0 = 5.4 mM, and cCa0 = 2mM, the 

half saturation constants cCaNa = 1.38 mM, cNaCa = 87.5mM, cKNa = 1mM, cNaK = 40mM, 
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the sodium calcium saturation factor , the outward sodium calcium pump current 

enhancing factor γNaCa = 2.5, and the voltage dependent sodium calcium parameter γ = 0.35.

6.2. Potassium concentration, currents, and gating variables

Potassium plays an important role in maintaining the appropriate action potential profile in 

all four phases after the rapid upstroke. At rest, the intracellular potassium concentration is 

typically about cK = 138.3 mM, and the related equilibrium potential is ϕK = −86.6mV 

according to equation (28). This value is very close to, but slightly more negative than, the 

resting potential of ϕ = −86 mV actually measured in ventricular cardiomyocytes. Unlike for 

sodium, the electrical force that pulls potassium ions inward is slightly weaker than the 

chemical force of diffusion pulling potassium ions outward. This implies that potassium 

tends to leave the resting cell. At the end of the rapid upstroke, before the beginning of the 

plateau, we observe an early, brief period of limited repolarization governed by the voltage-

activated transient outward current It0. The following plateau phase is dominated by an 

influx of calcium ions which is balanced by the efflux of an equal amount of positively 

charged potassium ions, mainly regulated by the rapid and slow delayed rectifier currents IKr 

and IKs. The final repolarization phase can almost exclusive be attributed to potassium ions 

leaving the cell such that the membrane potential can return to its resting state, see Figure 3. 

In summary, the evolution of the potassium concentration

(34)

is mainly controlled by four currents, the inward rectifier current IK1, the rapid delayed 

rectifier current IKr, the slow delayed rectifier current IKs, and the transient outward current 

It0. Moreover, it is affected by the sodium potassium pump current INaK, and the plateau 

potassium current IpK. Currents are scaled by the membrane capacitance per unit surface 

area C = 185 pF, the cytoplasmic volume V = 16404 μm3, and the Faraday constant F = 

96.4867 C/mmol. The individual potassium related currents take the following forms,

(35)

where the individual scaling factors are the maximum inward rectifier conductance 

, the maximum rapid delayed rectifier conductance , 

the maximum slow delayed rectifier conductance for epicardial and endocardial cells 

 and for M cells , the maximum sodium 

potassium pump current , the maximum potassium pump conductance 

, and the maximum transient outward conductance for epicardial and M 
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cells  and for endocardial cells . The 

maximum inward rectifier current IK1, which is most active during the later phases of the 

action potential, depends explicitly on the extracellular potassium concentration cK0 = 5.4 

mM. It further depends on the time-independent inward recrification factor 

parameterized in terms of the potential equilibrium potential ϕK given in equation (28),

(36)

The plateau of the transmembrane potential is generated by an influx of charged calcium 

ions balanced by the efflux of potassium ions. The latter is governed by the rapid and slow 

delayed rectifier current IKr and IKs. The channel for the rapid delayed rectifier current IKr is 

gated by an activation gate  with the steady state value and time 

constant given as

(37)

and by an inactivation gate , with the following steady state value and 

time constant.

(38)

The channel for the slow delayed rectifier current IKs is a function of the reversal potential 

ϕKs = RT/F log([cK0 +pKNa cNa0][cK + pKNa cNa]−1) parameterized in terms of its 

permeability to sodium ions pKNa = 0.03. It is gated by an activation gate 

 in terms of the following parameterization,

(39)

The transient potassium outward current It0 is responsible for the transition between the 

rapid upstroke and the plateau phase, where it generates an early short period of limited 

repolarization. It is gated by a voltage-dependent activation gate gr with 

defined through the following steady state value and time constant,

(40)
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and by the voltage-dependent inactivation gate gs with  with the steady 

state value and time constant given as follows,

(41)

This voltage dependent potassium inactivation gate displays a significantly different 

behavior for epicardial and endocardial cells and is therefore characterized differently for 

the individual cell types. Similar to the previous subsection, we have introduced the 

extracellular sodium and potassium concentrations cNa0 = 140 mM and cK0 = 5.4 mM, and 

the half saturation constants cKNa = 1 mM and cNaK = 40 mM.

6.3. Calcium concentration, currents, and gating variables

Calcium is the key player to translate electrical excitation into mechanical contraction. With 

a typical intracellular resting concentrations of cCa = 0.08 μM, its equilibrium potential of 

ϕCa = +135.3 mV is much larger than the resting potential. During the plateau of the action 

potential, calcium ions enter the cell through calcium channels that typically activate and 

inactivate much more slowly than the fast sodium channels. The influx of positively charged 

calcium ions through the L-type calcium channel ICaL is balanced by an efflux of positively 

charged potassium ions. The letter L is meant to indicate the long lasting nature of the 

inward calcium current. Overall, changes in the intracellular calcium concentration

(42)

are affected by the L-type calcium current ICaL, the background calcium current IbCa, the 

plateau calcium current IpCa, and the sodium calcium pump current INaCa, weighted by the 

membrane capacitance per unit surface area C = 185 pF, the cytoplasmic volume V = 16404 

μm3, and the Faraday constant F = 96.4867 C/mmol. In addition, the intracellular calcium 

concentration is affected by a calcium loss to the sarcoplasmic reticulum characterized 

through the leakage current Ileak, the sarcoplasmic reticulum uptake current Iup, and the 

sarcoplasmic reticulum release current Irel. The individual calcium related currents are 

defined as follows,

(43)
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where the individual scaling factors are the maximum calcium conductance 

, the maximum background calcium conductance 

, the maximum plateau calcium conductance , the 

maximum sodium calcium pump current , the maximum leakage current 

, the maximum sarcoplasmic reticulum calcium uptake current 

, and the maximum sarcoplasmic reticulum calcium release current 

. The major calcium channel, the long-lasting L-type calcium channel 

ICaL, is controlled by the voltage-dependent activation gate  characterized 

through the following steady state value and time constant

(44)

by the voltage-dependent inactivate gate  characterized through

(45)

and by the intracellular calcium dependent inactivation gate 

characterized through

(46)

Accordingly, the steady state response  has a switchlike shape when going from no 

inactivation to considerable but incomplete inactivation, depending mildly on the calcium 

concentration cCa for suprathreshold concentrations. Last, the calcium-induced calcium 

release current Irel is characterized through the activation gate gd, the same gate that is also 

activating the L-type calcium channel of ICaL, and through the calcium-dependent 

inactivation gate  characterized through the following steady state value 

and time constant,

(47)

The remaining parameters governing the response of the plateau calcium current IpCa, the 

calcium uptake current Iup, and the sarcoplasmic reticulum calcium release current Irel are 

the half saturation constants for the plateau calcium concentration cpCa = 0.0005 mM, for the 
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sarcoplasmic reticulum calcium uptake cup = 0.00025 mM, and for the sarcoplasmic 

reticulum calcium release crel = 0.25 mM, respectively. The parameter γNaCa = 2.5 has been 

introduced to enhance the outward nature of the sodium calcium pump current INaCa. The 

additional parameter γrel = 2 weighs the relative influence of the sarcoplasmic reticulum 

calcium concentration on sarcoplasmic reticulum calcium release Irel. Finally, we take into 

account that the total intracellular calcium concentration  in the cytoplasm is 

the sum of the free intracellular calcium concentration cCa and the buffered calcium 

concentration . The definition of the free intracellular 

calcium concentration in equation (42) is therefore weighted by the parameter γCa = [1 + 

[ctot cbuf][cCa + cbuf]−2]−1, where ctot = 0.15 mM and cbuf = 0.001 mM are the total and half 

saturation cytoplasmic calcium buffer concentrations, respectively.

6.4. Sarcoplasmic reticulum calcium concentration, currents, and gating 

variables

The specification of the sarcoplasmic reticulum calcium concentration

(48)

is now relatively straightforward since it mimics the corresponding loss of intracellular 

calcium characterized. However, now we scale it by the ratio between the volume of the 

cytoplasm V = 16404 μm3 and the volume of the sarcoplasmic reticulum Vsr = 1094 μm3 to 

account for differences in chemical concentrations due to ionic flux. The leakage current 

Ileak, the sarcoplasmic reticulum uptake current Iup, and the sarcoplasmic reticulum release 

current Irel are defined as before,

(49)

The maximum leakage current , the maximum sarcoplasmic reticulum 

calcium uptake current , and the maximum sarcoplasmic reticulum 

calcium release current , the half saturation constants for the calcium 

uptake cup = 0.00025 mM, and for the calcium release crel = 0.25 mM, and the weighting 

coefficient γrel = 2 have already been introduced in the previous subsection. Similar to the 

previous subsection, we need to take into account that the total calcium concentration in the 

sarcoplasmic reticulum  is the sum of the free sarcoplasmic reticulum 

calcium concentration  and the buffered sarcoplasmic reticulum calcium concentration 

. The definition of the free sarcoplasmic reticulum calcium 

concentration in equation (48) is therefore weighted by the parameter 
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, where  and  are the total and 

half saturation sarcoplasmic reticulum calcium buffer concentrations, respectively.
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Figure 1. 
Multiscale model of the human heart. At the molecular level, gating variables ggate and ion 

concentrations cion characterize the bio-chemical response. At the cellular level, ionic 

currents Icrt and the transmembrane potential ϕ characterize the chemo-electrical response. 

At the organ level, the propagation of the electrical potential ϕ and the deformation φ 

characterize the electro-mechanical response.
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Figure 2. 
Human ventricular cardiomyocyte model with 15 ionic currents resulting from ten 

transmembrane channels, one exchanger, and one pump. Three additional currents 

characterize ionic changes inside the sarcoplasmic reticulum, shown in grey. Sodium 

currents are indicated in red, potassium currents in orange, and calcium currents in green.
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Figure 3. 
Electrochemistry in a human ventricular cardiomyocyte. Temporal evolution of the 

transmembrane potential ϕ and of the intracellular sodium potassium and calcium 

concentrations cCa, cK, and cCa. The influx of positively charged sodium ions generates a 

rapid upstroke in the transmembrane potential. At peak, the efflux of positively charged 

potassium ions initiates an early, partial repolarization. During the plateau, the influx of 

positively charged calcium ions balances the efflux of positively charged potassium ions. 

Final repolarization begins when the efflux of potassium ions exceeds the influx of calcium 

ions. Throughout the interval between the end of repolarization and the beginning of the 

next cycle, the cell is at rest.
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Figure 4. 
Mechanical contraction in a human ventricular cardiomyocyte. Temporal evolution of the 

active force Fact throughout an excitation cycle. The rapid increase in the intracellular 

calcium concentration cCa initiates a rapid increase in the active force. After reaching its 

peak value, the force gradually returns to zero.
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Figure 5. 
Algorithmic convergence upon spatial and temporal refinement. The panel is discretized in 

space with n×n×12 tetrahedral elements, (n+1)×(n+1)×3 nodes, and (n+1)×(n+1)×12 

degrees of freedom, where n is increased from 8 to 44. The activation sequence is 

discretized in time with 40 to 975 equidistant finite difference steps. Both spatial and 

temporal discretization converge smoothly towards a finite activation time.
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Figure 6. 
Human heart model created from magnetic resonance images, left. The mesh consists of 

46,896 linear tetrahedral elements, 13,831 nodes, and 55,324 degrees of freedom, middle. 

The fiber orientation created from a feature-based Poisson interpolation varies gradually 

from -70° in the epicardium, the outer wall shown in blue, to +80° in the endocardium, the 

inner wall shown in red, right.

Wong et al. Page 35

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Chemo-electro-mechanical coupling in the human heart. Spatio-temporal evolution of the 

fiber contraction λff, the transmembrane potential ϕ, the intracellular sodium, potassium, and 

calcium concentrations cNa, cK, and cCa, and the calcium concentration in the sarcoplasmic 

reticulum  during the rapid depolarization phase of the cardiac cycle. Changes in the 

individual ion concentrations initiate an increase in the transmembrane potential ϕ from -86 

mV to +20 mV. Changes in the intracellular calcium concentration cCa initiate a mechanical 

contraction λff of up to 10-15%. During the contraction phase, the apex moves rapidly 

towards the base and the heart undergoes a clockwise rotation around its long axis.
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Figure 8. 
Chemo-electro-mechanical coupling in the human heart. Spatio-temporal evolution of the 

fiber contraction λff, the transmembrane potential ϕ, the intracellular sodium, potassium, and 

calcium concentrations cNa, cK, and cCa, and the calcium concentration in the sarcoplasmic 

reticulum  during the gradual repolarization phase of the cardiac cycle. Changes in the 

individual ion concentrations initiate a slow decrease in the transmembrane potential ϕ from 

+20 mV to -86 mV. A decrease in the intracellular calcium concentration cCa initiates 

mechanical relaxation with λff returning gradually to 0%. During the filling phase, the apex 

moves away from the base and the heart undergoes a counterclockwise rotation back to its 

original position.
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Figure 9. 
Mechanical contraction in the human heart. Temporal evolution of apical lift δ 

characterizing the vertical movement of the apex along the heart's long axis towards the 

fixed base, left. Temporal evolution of ventricular torsion ϑ characterizing the rotation of 

two locations in the lateral left ventricular wall around the heart's long axis, right. Shortly 

after the onset of excitation, the apex lifts rapidly towards the base moving upward by 

approximately 8mm. Simultaneously, the heart twists rapidly about its long axis rotating 

clockwise by approximately 6° and 13°, with the amount of torsion increasing from the 

fixed base to the free apex. Both apical lift and ventricular torsion then decrease gradually as 

the heart returns smoothly to its resting state.
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Figure 10. 
Algorithmic performance. Time step size and number of iterations for adaptive time 

stepping scheme. The algorithm typically convergences within four Newton Raphson 

iterations. For more iterations, the adaptive algorithm automatically decreases the time step 

size, for example, during the rapid upstroke phase before t =0.05 s and during the 

repolarization phase between t =0.25s and t =0.32s. For less iterations, the adaptive 

algorithm automatically increases the time step size, for example during the plateau phase, 

between t =0.05s and t =0.25 s and during the resting phase after t =0.32 s. The total number 

of time increments is 1,288, and the overall run time is 51.97 hours, calculated on a single 

core of an i7-950 3.06 GHz desktop with 12GB of memory.

Wong et al. Page 39

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wong et al. Page 40

Table I

Chemo-electrical material parameters of human ventricular cardiomyocyte.

sodium related potassium related calcium related calciumsr related

concentrations cNa0 = 140 mM cK0 = 5.4 mM cCa0 = 2 mM -

maximum currents

maximum conductances

half saturation constants cCaNa = 1.38 mM cCaNa= 1.38 mM

cCNa = 87.50 mM cNaCa = 87.50 mM

cKNa = 1.00 mM cKNa = 1.00 mM cpCa = 0.0005 mM

cNaK = 40.00 mM cNaK == 410.0.000mM cup = 0.00025 mM cup = 0.00025 mM

crel = 0.25 mM crel =0.25 mM

cbuf = 0.001 mM

other parameters pKNa = 0.03 γrel = 2 γrel = 2

γNaCa= 2.50 γtot = 0.15 mM

γ = 0.35

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wong et al. Page 41

sodium related potassium related calcium related calciumsr related

gas constant R =8.3143 J K−1 mol−1 temperature T =310 K cytoplasmic volume V =16404μm3

Faraday constant F =96.4867 C/mmol membrane capacitance C 
=185 pF

sarcoplasmic reticulum volume Vsr= 1094μm3

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 September 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wong et al. Page 42

Table II

Electro-mechanical material parameters of human cardiac tissue.

electrical parameters

isotropic conduction septum diso = 5 mm2/ms [23]

anisotropic conduction septum dani = 10mm2/ms [23]

isotropic conduction diso = 0.1mm2/ms [23]

anisotropic conduction dani = 0.2mm2/ms [23]

mechanical parameters

isotropic bulk κ = 100 kPa

isotropic myocardium a = 0.496 kPa, b = 7.209 [25]

anisotropic myocardium aff = 15.193 kPa, bff = 20.417 [25]

ass = 3.283 kPa, bss = 11.176 [25]

afs = 0.662 kPa, bfs = 9.466 [25]

electro-mechanical parameters

saturation of contraction η = 12.5 kPa/μM [23]

resting calcium concentration

 [76]

critical calcium concentration

minimum activation ε0 = 0.1/ms [23]

maximum activation ε∞ = 1.0/ms [23]

transition rate ξ = 4.00/μM [23]
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