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Abstract

Chronic exposure to drugs of abuse perturbs the endogenous opioid system, which plays a critical 

role in the development and maintenance of addictive disorders. Opioid genetics may therefore 

play an important modulatory role in the expression of substance use disorders, but these genes 

have not been extensively characterized, especially in humans. In the current imaging genetics 

study, we investigated a single nucleotide polymorphism (SNP) of the protein-coding 

proenkephalin gene (PENK: rs2609997, recently shown to be associated with cannabis 

dependence) in 55 individuals with cocaine use disorder and 37 healthy controls. Analyses tested 

for PENK associations with fMRI response to error (during a classical color-word Stroop task) and 

gray matter volume (voxel-based morphometry) as a function of Diagnosis (cocaine, control). 

Results revealed whole-brain Diagnosis × PENK interactions on the neural response to errors 

(fMRI error>correct contrast) in the right putamen, left rostral anterior cingulate cortex/medial 

orbitofrontal cortex, and right inferior frontal gyrus; there was also a significant Diagnosis × 

PENK interaction on right inferior frontal gyrus gray matter volume. These interactions were 

driven by differences between individuals with cocaine use disorders and controls that were 

accentuated in individuals carrying the higher-risk PENK C-allele. Taken together, the PENK 

polymorphism – and potentially opioid neurotransmission more generally – modulates functioning 

and structural integrity of brain regions previously implicated in error-related processing. PENK 

could potentially render a subgroup of individuals with cocaine use disorder (i.e., C-allele carriers) 
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more sensitive to mistakes or other related challenges; in future studies, these results could 

contribute to the development of individualized genetics-informed treatments.
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cocaine addiction; proenkephalin; error processing; functional magnetic resonance imaging; 
imaging genetics

1. INTRODUCTION

Error processing is a core executive function that allows for successful identification and 

correction of discrepancies between an intended and executed response [1, 2]. In health, the 

neural correlates of error-related processing typically encompass a network of regions of the 

medial prefrontal cortex (PFC) including the anterior cingulate cortex (ACC) [3–5]. Despite 

this common neural signature, error-related processing is also modulated by individual 

differences [6–9]. That is, certain individuals or groups may differ in the frequency with 

which they commit errors, and/or in the reactivity they show upon committing such errors. 

One important individual difference is the presence of a substance use disorder (SUD), a 

psychopathology marked by pervasive and disruptive neurocognitive disruptions (e.g., in 

error-related processing) that modulate the severity and course of the disease [10–19]. Our 

goal in the current study was to explore whether error-related processing in SUD is further 

modulated by another potentially important individual difference: opioid system genetics 

[specifically, a single nucleotide polymorphism (SNP) of the protein-coding proenkephalin 

gene (PENK: rs2609997)].

The opioid system forms a crucial component of the brain’s reward circuit and importantly 

contributes to SUD symptomatology [20, 21]. Preclinical work has largely shown that 

knocking out proenkephalin – alone or in combination with related neuropeptides – reduces 

motivation, drug reward, and drug self-administration behavior [22–24]. In human SUD, 

opioid neurotransmission has been examined with positron emission tomography (PET). For 

example, [11C]carfentanil has been used to image mu opioid receptor binding in smokers 

[25–27], and in abusers of heroin [28], alcohol [29–31], and cocaine [32–35]. More 

proximally to the current goals, PENK gene variants that have a functional relationship with 

gene expression levels have been associated with increased risk for marijuana use disorder 

[36] and opioid use disorder [37, 38]. In contrast, PENK was not associated with alcohol 

dependence [39], and a postmortem study of alcohol-dependent individuals and controls did 

not reveal differences in PENK expression [40]. These studies collectively provide some 

suggestive evidence that PENK is associated with a substance abuse phenotype, highlighting 

this SNP as a potentially interesting candidate for further study. However, the specific role 

of the gene in SUD remains unclear.

Here, we used an imaging genetics approach to test for PENK associations with fMRI 

response to error (during a classical color-word Stroop task) and gray matter volume as a 

function of cocaine use disorder (CUD) diagnosis. The C-allele of PENK SNP rs2609997, 

associated with increased PENK expression compared with the T/T genotype, has been 

characterized as the “riskier” allele because of its association with increased negative 
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emotionality and a higher prevalence of cannabis abuse [36]. Nevertheless, because the 

literature on the functional effects of this particular PENK SNP – and, indeed, of PENK in 

general – is minimal, the findings of the current study can add crucial new information to the 

field by clarifying the neurobiological and psychological implications of carrying this C-

allele. More specifically, uncovering this kind of intermediate imaging phenotype can 

provide important clues about this gene’s operation vis-à-vis SUD [41]. Our decision to 

focus on CUD in the context of PENK was informed by prior research showing that PENK 

mRNA expression is impaired in monkeys that self-administered cocaine [42] and in 

humans who used cocaine [43], and that variants of this gene have been linked to other 

addictive disorders [36]. Our decision to focus on errors in the context of PENK was 

informed by prior research showing that PENK mRNA is expressed in limbic brain regions 

(e.g., amygdala) [36], relevant to a Stroop task insofar as these regions participate in the 

assigning of negative valence to errors and other negative action outcomes [44]. More 

importantly, PENK is also expressed in regions of the PFC [40, 45–48], of core relevance 

for performing Stroop tasks (recently reviewed in [49]). In the current study, participants 

performed an event-related color-word Stroop task while undergoing functional magnetic 

resonance imaging (fMRI) [50]; we have previously used this task to evaluate error-related 

processing in CUD [51–53]. During these same scanning sessions, structural MRI was also 

collected. We hypothesized that the “riskier” C-allele of the PENK SNP rs2609997 (i.e., 

compared with the less risky T/T genotype) (A) would be associated with more frequent and 

severe cocaine use; and (B) would accentuate group differences between CUD and controls 

in structure and responsiveness to error in limbic and PFC brain regions as indicated by 

significant whole-brain CUD × PENK interactions in these respective measures.

2. METHODS

2.1 Participants

Fifty-five CUD and 37 healthy controls, recruited through advertisements, local treatment 

facilities, and word of mouth, participated in this research; all provided written informed 

consent in accordance with the local Institutional Review Board. Some of these participants 

have been included in prior imaging genetics studies in our lab, but these studies have 

always included different genes and/or different neural probes, and accordingly have 

reported activations in different brain regions [54–56]. More specifically, we previously 

reported on polymorphisms of the dopamine transporter (DAT1) [54] and the protein-coding 

monoamine oxidase A gene (MAOA) [55, 56] while participants performed a drug-word 

inhibitory control task during fMRI [54], viewed unpleasant images during EEG [55], or 

simply while they underwent structural MRI scans [56]. For these reasons, overlap in 

variance with the current study is likely minimal. Exclusion criteria for the current study 

were: (A) history of head trauma or loss of consciousness (> 30 min) or other neurological 

disease of central origin (including seizures); (B) abnormal vital signs at time of screening; 

(C) history of major medical conditions, encompassing cardiovascular (including high blood 

pressure), endocrinological (including metabolic), oncological, or autoimmune diseases; (D) 

history of major psychiatric disorder, with some exceptions (for both groups: nicotine 

dependence; for CUD: comorbidities of known high co-occurrence including other SUD, 

major depression, and/or post-traumatic stress disorder [57, 58]); (E) pregnancy as 
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confirmed with a urine test in all females; (F) contraindications to the MRI environment; (G) 

except for cocaine in CUD participants, positive urine screens for psychoactive drugs or 

their metabolites (amphetamine or methamphetamine, phencyclidine, benzodiazepines, 

cannabis, opiates, barbiturates and inhalants) (note that although participants were permitted 

to have a current comorbid SUD as described below, participants who tested positive for 

other drugs indicating active use were excluded from all study procedures in the lab); (H) 

current evidence of intoxication from alcohol or any illicit drug. Protection against acute 

intoxication (alcohol and other drugs including cocaine) was afforded by our trained 

research staff, which has extensive experience with recognizing signs of intoxication in 

individuals with CUD (note that cigarette smoking was not restricted to avoid possible 

confounding effects on the fMRI results of cigarette withdrawal).

Participants underwent a comprehensive diagnostic interview, which consisted of: (A) 

Structured Clinical Interview for DSM-IV axis I Disorders [59]; (B) Addiction Severity 

Index [60], a semi-structured interview instrument used to assess history and severity of 

substance-related problems in seven problem areas (medical, employment, legal, alcohol, 

other drug use, family-social functioning, and psychological status); (C) Cocaine Selective 

Severity Assessment Scale [61], measuring cocaine abstinence/withdrawal signs and 

symptoms (i.e., sleep impairment, anxiety, energy levels, craving, and depressive symptoms) 

24 hours within the time of interview; (D) Severity of Dependence Scale [62]; and (E) 

Cocaine Craving Questionnaire [63]. This interview identified the following cocaine-related 

diagnoses in CUD participants: current cocaine use disorder (N=43), cocaine use disorder in 

partial remission (N=8), and cocaine use disorder in full remission (N=4). Current Axis-I 

comorbidities were identified in 11 CUD participants, including marijuana use disorders 

(N=2), alcohol use disorders (N=5), ecstasy abuse (N=1), and major depression (N=1). 

Forty-two participants reported past comorbidities, including marijuana use disorder (N=27), 

alcohol use disorder (N=26), other stimulant use disorder (N=1), opiate (heroin) use disorder 

(N=2), phencyclidine use disorder (N=2), major depression (N=6), and post-traumatic stress 

disorder (N=2). Because all CUD participants indicated that cocaine was their primary drug 

of choice and/or that cocaine had led to their most severe substance-related consequences, 

other drug use disorders were considered as secondary to the cocaine diagnosis. 

Nevertheless, we controlled for histories of alcohol and cannabis use in follow-up analyses.

A subset of participants (12 CUD, 10 controls) was culled from a protocol that included 

administration of a dopaminergic partial agonist (methylphenidate) or counterbalanced 

placebo. In this case, the placebo data were used for the current analyses. Importantly, 

participants in this administration study were not overrepresented in any of the study groups 

(χ2
3=3.99, p>0.26). Yet, we controlled for this procedural issue in follow-up analyses.

2.2 Genetics Screening

Participants’ genotype was determined using an ABI 7900HT available at the Mount Sinai 

Quantitative PCR Shared Resource Facility, ascertained with whole blood samples. The 

chosen PENK SNP (rs2609997) was selected for inspection based principally on a prior 

study that linked this SNP to addictive behavior (cannabis dependence) in a fully 

independent sample of participants [36]. This SNP was also chosen based on pairwise 
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linkage disequilibrium (LD) relationships of an r2 threshold of 0.8 and on haplotype data 

(www.hapmap.org) showing a minimum allele frequency of 0.10 in the population. The call 

rate was 100%, and the genotypes conformed to Hardy-Weinberg equilibrium. Following 

prior work [36], we partitioned the study participants into those with the T/T genotype 

versus C-allele carriers. C-allele carriers included 21 CUD and 15 controls, and T/T 

genotype included 34 CUD and 22 controls; analysis of the cross-tabulations did not reveal 

significant differences (χ2
1=0.05, p>0.8). Demographic and drug use information on the 

current study sample, split by PENK and Diagnosis, are provided in Tables 1 and 2, 

respectively.

2.3 fMRI Procedures

Participants performed three runs of an event-related fMRI color-word Stroop task, with 

instructions to press for the ink color of color-words (red, blue, yellow, green) printed in 

their congruent or incongruent colors [50–53]. Each task run contained 12 incongruent 

events, totaling 36 such events per participant; there were 188 congruent events, totaling 564 

such events. Participants committed an average of 28.7 ± 26.2 errors over the course of the 

task (i.e., summed across congruent and incongruent trials, and averaged across the 3 runs). 

No word or color of an incongruent stimulus mirrored the preceding congruent color-word; 

otherwise, stimuli were presented randomly. On each trial, a color word was presented for 

1300 ms, which was also the time allotted for response (intertrial interval=350 ms); 

participants were not given performance feedback. Remuneration for task completion was 

$25 (fixed).

2.3.1 MRI Data Acquisition—MRI scanning was performed on a 4T whole-body Varian/

Siemens MRI scanner. The blood-oxygenation-level-dependent (BOLD) fMRI responses 

were measured as a function of time using a T2*-weighted single-shot gradient-echo planar 

sequence (TE/TR=20/1600 ms, 3.125×3.125 mm2 in-plane resolution, 4 mm slice thickness, 

1 mm gap, typically 33 coronal slices, 20 cm FOV, 64 × 64 matrix size, 90°-flip angle, 

200kHz bandwidth with ramp sampling, 207 time points, and 4 dummy scans to avoid non-

equilibrium effects in the fMRI signal). Anatomical images were collected using a T1-

weighted 3D-MDEFT (three-dimensional modified driven equilibrium Fourier transform) 

sequence [64] and a modified T2-weighted hyperecho sequence [65].

2.3.2 BOLD-fMRI Analyses—Image processing and analysis were performed with 

Statistical Parametric Mapping (SPM8) (Wellcome Trust Centre for Neuroimaging, London, 

UK). Echo-planar image reconstruction was performed using an iterative phase correction 

method that produces minimal signal-loss artifacts [66]. A six-parameter rigid body 

transformation (3 rotations, 3 translations) was used for image realignment and correction of 

head motion. Criteria for acceptable motion were 2 mm displacement and 2° rotation. All 

task runs from all participants meeting these motion criteria were included in the analyses 

(i.e., to maximize sample size in this imaging genetics study and similarly to our prior work 

[51, 52], we did not exclude participants listwise). The realigned datasets were spatially 

normalized to the standard Montreal Neurological Institute (MNI) stereotactic space using a 

12-parameter affine transformation [67] and a voxel size of 3 × 3 × 3 mm. An 8-mm full-

width-half-maximum Gaussian kernel spatially smoothed the data.
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Two general linear models [68], which each included six motion regressors (3 translation 

and 3 rotation) and one task condition regressor convolved with a canonical hemodynamic 

response function and a high-pass filter (cut-off frequency: 1/90 s), were used to calculate 

individual BOLD-fMRI maps. Our primary design matrix of interest was constructed with 

one task regressor collapsed across both error trials (Congruent Incorrect and Incongruent 

Incorrect), leaving both correct trials (Congruent Correct and Incongruent Correct) to serve 

as the active, implicit baseline. Because the task contained mostly correct events, the beta 

weights for this incorrect (error) regressor reflected the variance to error events that 

remained after removing the variance related to correct events. Importantly, we have 

provided evidence that activations resulting from this design matrix reflect the error events, 

not the correct events [52]. Using this design matrix, we calculated a 1st Level contrast 

defined as (Incongruent Error + Congruent Error) – (Incongruent Correct + Congruent 

Correct). A secondary design matrix was constructed with one task regressor collapsed 

across both conflict trials (Incongruent Incorrect and Incongruent Correct), leaving both 

congruent trials (Congruent Incorrect and Congruent Correct) to serve as the implicit 

baseline. Using this second Design Matrix, we calculated a 1st Level contrast defined as 

(Incongruent Error + Incongruent Correct) – (Congruent Error + Congruent Correct).

At the 2nd Level, we conducted two whole-brain 2 (Diagnosis: CUD, control) × 2 (PENK: 

T/T vs. C/T or C/C) analyses of covariance (ANCOVA), one for each fMRI contrast, in 

SPM8; demographic variables that differed between the groups inclusive of race, smoking 

history, age, education, verbal IQ, and depression (Tables 1 and 2) were included in the 

models as covariates of no interest. We specified a height threshold of p<0.005 voxel-level 

uncorrected (T=2.68). We then used a Monte Carlo procedure [69], a program similar to 

AlphaSim, to identify the number of contiguous voxels necessary for a p<0.05 cluster-

corrected threshold (i.e., given our imaging parameters and a height threshold of T=2.68), 

which was calculated to be 26 contiguous voxels [52]. Moreover, we applied additional 

statistical correction considering that we analyzed separate design matrices for 

incorrect>correct and incongruent>congruent; thus, we only report activations at a p<0.01 

(rather than p<0.05) cluster-corrected threshold. The BOLD signals from significant clusters 

were extracted to inspect for outliers, for use in correlation analyses (see below), and to 

ensure that our main effects were not attributable to substance use histories of alcohol or 

marijuana (Tables 2) or to administration of a placebo pill [which occurred in a minority of 

participants (see above)]. For all analyses, anatomical specificity was corroborated using the 

AAL atlas in MRIcron. Note that because group differences between CUD and controls 

have been previously explored in this sample [51, 53], in the current study we only report 

PENK main effects and Diagnosis × PENK interactions.

2.3.3 Gray Matter Volume Analyses—Voxel-based morphometry (VBM) analysis was 

conducted with the VBM toolbox (VBM8) (Gaser, C, University of Jena, Department of 

Psychiatry, Germany; http://dbm.neuro.uni-jena.de/vbm/), which combines spatial 

normalization, tissue segmentation, and bias correction into a unified model. The MDEFT 

scans, which produce especially precise characterization of gray matter tissue [70], were 

first spatially normalized to standard proportional stereotaxic space (voxel size: 1 × 1 × 1 

mm) and segmented into gray matter, white matter, and cerebrospinal fluid tissue classes 
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according to a priori tissue probability maps [71, 72]. A hidden Markov random field [73] 

maximized segmentation accuracy. Jacobian modulation compensated for the effect of 

spatial normalization and restored the original absolute gray matter volume in the gray 

matter segments. After smoothing the normalized and modulated gray matter segments with 

a 10 mm3 full-width at half maximum Gaussian kernel, we again estimated a 2 (Diagnosis: 

CUD, control) × 2 (PENK: T/T vs. C/T or C/C) ANCOVA (with the same covariates of no 

interest as for the functional analyses). The number of contiguous voxels for significance 

was estimated to be 16 [69]; otherwise, the same statistical significance criteria as for the 

functional data were also applied for these analyses (p<0.01 cluster-corrected). Prior 

research has indeed revealed gray matter volume differences between CUD and controls [52, 

74–76], and one study showed gray matter differences as a function of a different gene 

polymorphism (the monoamine oxidase A gene) [56].

2.3.4 Correlation Analyses—We first tested for functional-structural correspondence 

(correlations) between regions that showed parallel Diagnosis × PENK interactions for both 

methodologies. We then tested correlations between these functional activations or gray 

matter volume (i.e., limited to those activations that showed significant interactions) with 

behavior (task errors and reaction time) and current cocaine use frequency and severity 

(marked in Table 2). These correlations were conducted split by PENK; more exploratory 

correlations were also conducted to localize the source of any significant correlations that 

emerged (i.e., was a particular correlation driven by one diagnosis or significant across 

diagnoses?). Significance for all correlation analyses was set at p<0.002 to minimize Type I 

error (6 regions × 4 behavioral/drug use variables).

3. RESULTS

3.1 Associations with Disease Severity

In contrast to our first hypothesis, PENK was not associated with cocaine use frequency 

(days per week) or cocaine use severity (amount spent per use) within the CUD group 

(Table 2). The risk C-allele was also not more prevalent in CUD than controls.

3.2 Task Behavior

Our main interest in behavior was inspecting task errors, which were analyzed with a 2 

(Diagnosis: CUD, control) × 2 (PENK: T/T, C-allele) × 2 (Trial: congruent, incongruent) 

mixed ANCOVA (that included all the same covariates as the SPM analyses). There were no 

main effects or interactions with PENK. We also examined reaction time, using a similar 2 × 

2 × 2 mixed ANCOVA. This analysis revealed only a main effect of Trial [incongruent trials 

(891.8 ± 9.9 ms) > congruent (693.8 ± 7.0 ms) [F(1,82)=8.69, p=0.004], indicative of the 

reliable Stroop interference effect. Thus, neural effects of PENK (described below) are not 

attributable to group differences in task performance.

3.3 Color-Word Stroop (Table 3)

3.3.1 Error>Correct Activations—Main effects of PENK emerged in the superior 

frontal gyrus (C-allele>T/T genotype) and insula (T/T genotype>C-allele). Of greater 

interest, and supporting our second hypothesis, there were also Diagnosis × PENK 
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interactions to the error>correct contrast in the right putamen, left rostral ACC extending 

into medial orbitofrontal cortex (rACC/mOFC), and the right IFG extending to the middle 

frontal gyrus (dorsolateral prefrontal cortex). These interactions were driven by robust group 

differences between CUD participants and controls in individuals with the higher-risk PENK 

C-allele (in putamen and rACC/mOFC: reduced error-related activations in CUD; in IFG: 

increased error-related activations in CUD). These group differences were either absent 

(putamen, IFG) or reversed (rACC/mOFC) in individuals with the T/T genotype (Figure 

1A–C).

3.3.2. Incongruent>Congruent Activations—For this fMRI contrast of the classical 

Stroop effect, there were no Diagnosis × PENK interactions; only main effects of PENK 

were observed. C-allele carriers showed greater activity to the incongruent>congruent 

contrast in the hippocampus, insula, postcentral gyrus, precentral gyrus, and supplementary 

motor area. Individuals with the T/T-genotype showed greater activity to this contrast in the 

cerebellum (vermis), middle/superior temporal gyrus, calcarine fissure, and bilateral 

thalamus. Given the lack of interactions with Diagnosis, these incongruent>congruent 

effects were not analyzed further.

3.4 Structure (Table 3)

A Diagnosis × PENK interaction emerged in the right IFG, showing the same pattern of 

effects as the functional right IFG effect during error (Figure 1D). Other interaction effects 

were limited to visual and auditory areas.

3.5 Brain-Behavior Correlations

Across all task- and drug use variables, only one correlation reached significance. In the T/T 

genotype, the higher the IFG fMRI response to error, the fewer total errors were committed 

during the task [r(55)=−0.43, p=0.001]; a subsequent follow-up analysis (for this effect 

only) showed that this correlation was driven by controls, although it did not reach nominal 

significance [r(22)= −0.57, p=0.006]. Nevertheless, these effects could indicate that in this 

less risky genotype, all participants (and particularly controls) performed the task better 

when this IFG response to error was enhanced. Because this direction of activation in this 

genotype characterized the healthy controls (Figure 1), this correlation suggests that 

activation of this region in this context may be adaptive. IFG structure and function did not 

correlate.

3.6 Other Substance Use History

We repeated the analyses above that reached significance (brain interactions and brain-

behavior correlations) while (separately) controlling for history of alcohol use to 

intoxication, history of cannabis use, and placebo administration (through ANCOVAs or 

partial correlations as appropriate). Even when controlling for these variables, interactions 

were still detected across the whole sample in the putamen (p<0.002), rACC/mOFC 

(p<0.004), and IFG function (p<0.055 for cannabis; otherwise, p<0.024) and structure 

(p<0.032). The negative correlation between the number of errors and fMRI response to 

error in the IFG also remained significant (p<0.001). Thus, it is unlikely that our effects are 
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driven by histories of alcohol use or cannabis, or by the medication administration 

procedure.

4. DISCUSSION

The current study explored whether the PENK SNP rs2609997 (PENK) modulates brain 

function (error-related processing, assessed with fMRI BOLD during an event-related color-

word Stroop task) and structure (gray matter integrity, assessed with VBM) in health and 

CUD. Although PENK did not directly associate with CUD severity (unsupportive of our 

first hypothesis), group differences between CUD and controls on the neural response to 

error and gray matter integrity were accentuated in individuals carrying the riskier C-allele 

of PENK (supporting our second hypothesis).

Our results collectively showed that PENK modulated the neural response to errors in 

largely anticipated regions. In particular, diagnosis × PENK interactions emerged during 

error-related processing in the rACC/mOFC, putamen, and IFG; and a similar Diagnosis × 

PENK interaction emerged in IFG gray matter volume. A consistent pattern in these 

interactions was a robust group difference between CUD participants and controls especially 

in the C-allele carriers; in the rACC/mOFC, there was also an opposite Diagnosis difference 

in those with the T/T genotype. The rACC is a core region involved in error-related 

processing even during emotionally-neutral cognitive tasks, implicated in generating the 

affective response that occurs shortly after error commission [77–79]; the rACC is also a 

main region of interest in PET studies probing the opioid system (e.g., [11C]carfentanil 

imaging of mu opioid receptors [80, 81]). Interestingly, in the current study the more dorsal 

component of the ACC was not identified, possibly indicating that PENK modulation may 

have impacted emotion rather than cognition. Other regions activated in our study such as 

the putamen and IFG, although not as consistently identified during error-related processing 

as the ACC, are indeed often reported as supporting this function [82–89]. Furthermore, the 

putamen forms part of a limbic striatal circuitry that, in addition to the amygdala, is expected 

to be modulated by PENK [36].

One interpretation of these findings is that lower error>correct rACC/mOFC and putamen 

response, in this case conferred by the C-allele of PENK, might render this CUD subgroup 

more insensitive to mistakes. It is unclear from the current data whether such putatively 

reduced error sensitivity conferred by PENK translates into increased drug-taking (i.e., 

rACC/mOFC activations did not correlate with drug use variables), but our prior research 

suggests that this hypothesis merits follow-up in future studies [52]. It is also possible that 

this CUD subgroup might have compensated with increased IFG response, enabling 

comparable performance/behavior to the other groups (and in agreement with the negative 

correlation between this region and errors). Although the mechanisms of these collective 

effects require further clarification in future studies – and accordingly the current results/

conclusions should be interpreted with a degree of caution – our findings nonetheless 

support and justify additional investigation of this potentially interesting C-allele CUD 

subgroup.
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Limitations of this study include the following. First, the sample size was relatively small 

for an imaging genetics approach. Importantly, however, all Diagnosis × PENK cells always 

contained at least 15 participants. Moreover, we observed a similar interaction pattern for 

the IFG across function and structure, strengthening confidence in these effects. We also 

leaned heavily on results of a prior study with a completely independent sample that 

examined this same gene [36]. Second, we were unable to examine homozygote carriers of 

the C-C genotype, who were scarce in our sample (N=2 across all available participants). If 

future studies can recruit C-C genotype participants, graded effects as a function of C-allele 

load could be inspected, similarly to research that has been conducted with the dopamine 

transporter gene [90–92]. Third, the study groups differed with respect to several 

demographic variables including race (Table 1), largely because assignment into genetic 

groupings did not reflect a priori recruitment; groups also differed with respect to multiple 

substance-related variables including use of cigarettes, alcohol, and marijuana (Table 2). For 

the former (demographics), results cannot be attributed to demographic covariates that 

differed between the groups because we controlled for these variables in the analyses. 

Further supporting this point, an exploratory examination of our main interaction effects in 

only African Americans showed that the average partial η2 across the four interactions only 

dropped in magnitude from 0.098 to 0.077, suggesting that this variable (or the other 

demographics that differed between the groups) did not drive the results. Also note that we 

elected to use this covariation strategy instead of between-group matching, as our foremost 

priority was to maximize sample size for this study (i.e., in recognition of the first 

limitation). For the latter (drug use history), it is difficult to recruit healthy controls with the 

same levels of cigarette, alcohol, and cannabis use who do not also meet criteria for a SUD. 

Although we controlled for these variables in follow-up ANCOVAs/partial correlations, 

future work should aim to validate these findings using an active control group of substance-

using but not dependent individuals. Fourth, we examined a single gene variant, and other 

genes could be involved in these effects. Importantly, however, the current study was 

conducted with firm a priori hypotheses regarding the impact of this PENK SNP on 

addictive disorders [36].

In conclusion, results of this study increase understanding of the PENK gene’s modulation 

of brain structure and function in CUD. To our knowledge, this is one of the first studies to 

examine the functional correlates of this gene in human SUD – and the first to use functional 

neuroimaging for this purpose. This research augments work aiming to clarify the 

mechanisms underlying opioid genes’ modulation of addictive disorders in humans [25, 26, 

93] and of error-related processing more generally [94]. More importantly, our results 

suggest an intermediate phenotype that can increase understanding of the PENK gene’s 

contribution to disease-relevant phenotypes such as SUD [41]. Investigation of the opioid 

system inclusive of the C-allele of PENK could ultimately aid in the development of 

individualized, genetics-informed treatments and medications in SUD that target specific 

deficits in this system. This approach could ultimately enable more appropriate and efficient 

allocation of scarce clinical resources and improved clinical outcomes in this difficult-to-

treat psychopathology.
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Figure 1. 
PENK × Diagnosis effects on brain function and structure. During an event-related fMRI 

Stroop task, interactions for the fMRI contrast error>correct were observed in the (A) 

putamen, (B) rostral anterior cingulate cortex extending to the medial orbitofrontal cortex 

(rACC/mOFC), and (C) inferior frontal gyrus/dorsolateral prefrontal cortex. For all regions, 

these interactions were at least partially driven by a more pronounced difference between 

ocaine abusers and controls in individuals carrying the “riskier” C-allele. (D) As assessed 

with voxel-based morphometry (VBM), there was a similar PENK × Diagnosis interaction 

on IFG gray matter volume, again such that differences between cocaine abusers and 

controls were accentuated in C-allele carriers. All images are displayed in neurological 

convention; for display purposes only, they are thresholded at 2.0 ≤ T ≤ 5.0. Functional 

effects are in red shades; structural effects are in blue shades.
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