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Abstract

Clinicians, basic researchers, representatives from pharma and families from around the world met 

in Cordoba, Argentina in October, 2014 to discuss recent research progress at the 14th 

International Congress on Neuronal Ceroid Lipofuscinoses (NCLs; Batten disease), a group of 

clinically overlapping fatal, inherited lysosomal disorders with primarily neurodegenerative 

symptoms. This brief review article will provide perspectives on the anticipated future directions 

of NCL basic and clinical research as we move towards improved diagnosis, care and treatment of 

NCL patients.

Basic and drug discovery research

An impressive collection of lower organism and mammalian disease models has been 

developed since the discovery of the first NCL genes in 1995 (1, 2). These disease models, 

most recently summarized in this Special Issue, are increasingly well characterized and are 

being employed in both basic research and pre-clinical drug development for NCL. A major 

focus of research efforts is the search for the primary protein functions, which remain 

unsolved for most of the NCL proteins. Work in lower organism models should contribute 

further knowledge on the function of the evolutionarily conserved NCL proteins, 

complementing ongoing and new research efforts that utilize higher organism and human 

cell-based models. Expanded efforts into delineating the protein interaction networks for 

each of the NCL proteins should also shed important light on their molecular properties and 

the extent to which NCL protein interactomes overlap. With advancing technologies in the 

field of systems biology, such as transcriptomics, metabolomics, lipidomics and proteomics, 

it is anticipated that more systems level approaches will be applied to the study of NCL 

disorders. For example, in other neurodegenerative disease areas and in autoimmune 
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disease, metabolomics research is leading to the development of important diagnostic and 

disease tracking biomarkers, as well as important insights into disease mechanisms (3–5). 

With the current array of NCL animal models, which now exist for CLN1-CLN8, and 

CLN10-CLN12, these methods could already be applied to the NCLs.

Patient-derived samples are increasingly being used for NCL-focused research. Expansion 

of biobanks that include clinical phenotype data linked to DNA, tissue samples, cell lines 

(e.g. EBV-transformed lymphoblastoid cells, fibroblasts), serum and plasma will be needed 

for biomarker development and for genetic modifier studies. The development of cellular 

reprogramming technology now makes it possible to establish collections of NCL patient 

induced pluripotent stem cell lines (iPSCs) that can be differentiated into any cell type of 

interest (6). The successful development of iPSCs from CLN1, CLN2, and CLN3 patients 

has recently been reported (Uusi-Rauva, 14th International Congress on the NCLs Abstract 

Book, Medicina v74, Suppl. II, O-5 and (7)). Efforts to expand the development of a more 

comprehensive set of NCL patient iPSCs are anticipated, and the use of these iPSCs for both 

basic disease mechanism and drug discovery research will undoubtedly continue to grow. 

Moreover, given increasing evidence that there are cell-type specific defects in many of the 

NCLs and that the interaction of different cell-types and even organ systems may play an 

important role, these reagents will help facilitate more complex disease modeling (e.g. iPSC-

derived cerebral organoids (8)) to complement whole organism studies using genetic animal 

models (e.g. mouse, dog, sheep, pig models, see up to date review in this Special Issue), for 

an improved understanding of the full impact of the NCL disease process and how to treat it.

Several key questions that may be answered in the coming years include:

1. what are the primary functions of each of the NCL proteins?

2. what imparts the selective vulnerability of certain cells over others (e.g. neurons 

versus hepatocytes, or one neuronal subtype over another)?

3. what, if any, overlap is there in the function of each of the NCL proteins?

In addition to these important questions, it is anticipated that the fully developed cellular 

disease models, particularly those involving the human patient-derived cell lines (e.g. iPSCs 

and their differentiated derivatives), will greatly facilitate the application of phenotype-

based genetic and pharmacologic modifier screens to identify lead drugs or target pathways 

for further development and testing as NCL treatments.

Emerging clinical trials: need for developing good natural history data

While some forms of NCL remain more challenging for researchers to solve because they 

involve loss of function of transmembrane proteins that are poorly understood (e.g. CLN3, 

CLN6, CLN7, CLN8, and CLN12), there are exciting developments in the treatment of the 

enzymatic forms of NCL (CLN1, CLN2, CLN5), which are most amenable to gene therapy 

and enzyme replacement approaches. The most advanced therapies to date target the CLN2 

enzyme, TPP1 (tripeptidyl peptidase I). Strong pre-clinical data utilizing a Tpp1 knockout 

mouse model and a naturally occurring dog model (9–13) led to the development of clinical 

trials testing gene transfer (14)(ClinicalTrials.gov NCT01414985) and enzyme replacement 
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therapy (Biomarin, BMN 190, ClinicalTrials.gov NCT01907087). While these trials are still 

ongoing, they are groundbreaking in the NCL field because they have led to the 

establishment of strong international collaborative networks that are succeeding to develop 

much needed natural history data and rating scales with across-site consistency for this form 

of NCL (14) (Crystal, 14th International Congress on the NCLs Abstract Book, Medicina 

v74, Suppl. II, L-5, Schultz et al., 14th International Congress on the NCLs Abstract Book, 

Medicina v74, Suppl. II, O-39). This is critical for the fair and accurate assessment of 

efficacy in current and future clinical trials. As candidate treatments for other forms of NCL 

make their way into clinical trials, the successful efforts for CLN2 will serve as an important 

model. The first CLN3 human clinical trial is also under way (Phase 2 trial of CellCept, 

ClinicalTrials.gov NCT01399047) and is aiding in the optimization of an across-site CLN3 

rating scale for future analysis of efficacy (15–17).

Improved diagnosis and supportive care

One of the most significant advances in the past decade in genetic disease research is the 

development of next generation sequencing technology, which is expected to widely impact 

the speed and scope of clinical genetic testing for all inherited disorders. There are 

nevertheless significant challenges in the analysis of the vast genetic data generated and in 

its interpretation. Continued use of complementary classical genetics methods is typically 

needed. Major efforts around the world to improve this technology and data interpretation 

are expected to help facilitate the implementation of next generation sequence analysis into 

clinical genetics testing laboratories.

Through collaborative and NCL genetics consortia efforts, the application of whole exome 

sequencing has contributed to the expansion of the clinicopathologic and genetic spectrum 

of the NCLs. From eight genes in 2010, the list of genes implicated in NCL is now thirteen, 

and the phenotypic spectrum of disease arising from a single gene has considerably 

broadened. Of note, several of these newer implicated genes are also involved in rare forms 

of Parkinsonism (18), Progressive Myoclonic Epilepsy without lysosomal storage (19), and 

in the second most common form of adult onset dementia, frontotemporal dementia (FTD) 

(20), consistent with overlap in disease mechanisms across these neurodegenerative brain 

disorders. A more comprehensive summary of NCL genetics and these recent advances can 

be found elsewhere in this Special Issue (‘Genetics of the NCLs’).

It is expected that additional rare NCL genes will be identified as there continue to be 

patients with an unsolved genetic etiology for their disorder despite full sequence analysis of 

the known NCL genes. The collection of large datasets and mutation databases, such as the 

NCL mutation database (http://www.ucl.ac.uk/ncl/mutation.shtml), particularly if they 

include functional variant information, will continue to expand and should further inform 

our understanding of the molecular basis of the NCL disorders and should greatly facilitate 

genetic diagnosis of NCL patients. The broadening of the pathogenetic spectrum of the 

NCLs should also bring together experts from across disciplines, which will have a positive 

impact on the breadth of research into the role of the NCL proteins in maintaining healthy 

brain function.
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Despite major advances in clinical genetics, the diagnosis of NCL remains a challenge, even 

in highly developed countries. Improved awareness and health professional training should 

be emphasized. Specific recommendations from a panel of experts to improve knowledge on 

rare diseases, and in particular on the NCLs, can be found in a separate chapter in this 

Special Issue. In addition to ultimately finding a treatment that will prevent or delay the 

degenerative symptoms of this devastating group of disorders, research that is aimed at 

better management of symptoms should also be emphasized. For example, associated 

psychiatric disturbances and seizures in some forms of NCL are challenging to manage. 

Clinicians often have little information to make rational choices for treatment of these 

symptoms because a mechanistic understanding of them is lacking. These gaps in the NCL 

clinical and research arenas are beginning to be addressed and should be further supported if 

we hope to have an impact on the lives of NCL patients and their caregivers.

15th International Congress on NCL

In two years, the international NCL research community will once again come together to 

discuss new research findings and to build upon old and new research networks. The 

meeting will be held in Boston in the fall of 2016.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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