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Abstract

Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under 

consideration for the development of new clinical entities to treat metabolic disorders and diabetes 

mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, 

can become a devastating disease that leads to cellular injury through oxidative stress pathways 

and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, 

gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins 

also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either 

lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon 

signal transduction pathways that include silent mating type information regulation 2 homolog 1 

(S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular 

metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, 

and require in-depth analysis of the epigenetic and post-translation protein modifications that drive 

FoxO protein activation and degradation.
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1. Diabetes Mellitus: Clinical Implications

Diabetes mellitus (DM) is a devastating disease that can involve any system of the body (1, 

2). In the nervous system, DM can result in cerebral ischemia stroke (3-8), retinal disease 

(9-12), peripheral nerve disorders (13, 14), dementia such as Alzheimer's disease (15-18), 

and psychiatric disorders (19, 20). Vascular disease can be mediated by DM and result in 

endothelial cell senescence (21), injury to endothelial cells (22-28), cardiovascular disease 

(29-37), atherosclerosis (8, 38-40), platelet dysfunction (3, 41), loss of endothelial 

progenitor cells (42-47), and impaired angiogenesis (27, 35, 48). Given the broad disorders 

that can be a result of DM in the nervous and cardiovascular systems, it comes as no surprise 
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that DM can have profound negative effects on the immune system (36, 49-55), renal 

function (56-60), hepatic metabolism (13, 61-66), and musculoskeletal integrity (38, 67-70).

The incidence of DM is increasing throughout the world (71). Approximately 350 million 

individuals currently have DM, but the World Health Organization estimates that DM will 

be the seventh leading cause of death by the year 2030 (72). In developed countries such as 

the United States that have an estimated 21 million individuals with DM (73), it is surprising 

to learn that another 8 million individuals are believed to suffer from metabolic disorders but 

remain undiagnosed (12, 74, 75). Costs to care for individuals with DM are significant. 

Almost $9,000 USD are spent in the United States for each individual with DM per year and 

overall care for patients with DM consumes 17% of the Gross Domestic Product (76).

2. Cellular Injury with Diabetes Mellitus

At the cellular level, a significant mediator that leads to injury during DM involves oxidative 

stress and the release of reactive oxygen species (ROS) (8, 13, 77-80). Several genetic 

polymorphisms in oxidative stress pathways have recently been linked to the complications 

of DM (81). Agents that can promote the complications of DM, such as advanced glycation 

end products (AGEs) (30), result in the release of ROS, caspase activation (47, 82-84), and 

loss of anti-oxidant levels (85). In the nervous system, oxidative stress during DM can affect 

cognition (86), behavior (19), retinal nerve function (25), and brain mitochondria (52, 

87-91). In the cardiac system, oxidative stress during DM can be responsible for 

cardiomyopathy (37, 92), myocardial infarction and re-perfusion injury (93), cardiomyocyte 

injury (94), and fibrosis (37). Vascular cell and endothelial cell dysfunction occurs during 

DM through oxidative stress pathways that involve impairment of stem cell and progenitor 

cell mobilization (42, 44), endothelial senescence (21), inhibition of angiogenesis (48), 

vascular aging (95), and endothelial cell injury (22-24, 46, 96-98). Pancreatic human islet 

cells also are susceptible to oxidative stress injury during DM (99, 100) and high lipid 

exposure (101). In clinical studies, poor glycemic control in DM patients can lead to the 

depression of endothelial progenitor cell levels (43). Patients with DM have serum markers 

of oxidative stress with ischemia-modified albumin (102).

During oxidative stress with DM, cell death can result from programmed cell death 

pathways of autophagy and apoptosis. Apoptosis has both an early phase that involves the 

externalization of plasma membrane lipid phosphatidylserine (PS) residues and a subsequent 

phase that consists of genomic DNA degradation (103-105). Macrophages and microglia can 

be prevented from engulfing otherwise functional cells that are tagged with PS residues by 

blocking membrane PS externalization (2, 106, 107). The later phase of apoptosis with DNA 

destruction is not readily reversible (108-113). In experimental studies with diabetic rats, 

elevated glucose can lead to oxidative stress and apoptotic injury in areas of the prefrontal 

cortex of the brain (19). Hyperglycemia not only leads to endothelial senescence, but also 

results in the presence of apoptotic makers and cell death on endothelial cells (21, 23, 96, 

97). Elevated glucose in diabetic mice can injure pancreatic islet cells and lead to apoptotic 

cell death (99).
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In reference to autophagy, this is a process that removes non-functional organelles and 

recycles cytoplasmic components to remodel tissue (105, 114-117). During 

macroautophagy, cytoplasmic proteins and organelles are sequestered into autophagosomes 

and then combined with lysosomes for degradation and are recycled for future cellular 

processes (32, 46, 71, 118, 119). Under some circumstances, autophagy may protect cells 

during DM by eliminating non-functional organelles and may be less of a significant 

mediator of cell injury (120). Autophagy removes misfolded proteins and eliminates non-

functioning mitochondria to prevent β-cell dysfunction and the onset of DM (121). 

Autophagy has been reported to improve insulin sensitivity during high fat diets in mice 

(69). Exercise in murine models can foster the induction of autophagy and regulate glucose 

homeostasis (122). Loss of autophagy with haploinsufficiency of an essential Atg7 gene in 

murine models of obesity results in increased insulin resistance with elevated lipids and 

inflammation (118). It is important to note that autophagy and apoptosis are closely tied in 

DM to influence cell survival. Autophagy may protect cardiomyocytes from apoptotic cell 

death during DM (32).

Autophagy has a detrimental side during DM (123). Increased activity of autophagy can 

result in the loss of cardiac and liver tissue in diabetic rats during diet modification in 

attempts to achieve glycemic control (64). AGEs lead to atherosclerosis (38) and 

cardiomyopathy (92) through the induction of autophagy. Autophagy has been reported to 

injure endothelial progenitor cells, promote mitochondrial oxidative and endoplasmic 

reticulum stress (124), and block angiogenesis (46) during exposure to elevated glucose.

3. Targeting Forkhead Transcription Factors of the “O” Class

Mammalian forkhead transcription factors assigned to the O class represent a novel target 

for drug development to treat metabolic disorders and DM (125, 126) (Table 1). Mammalian 

FOXO proteins, FOXO1, FOXO3, FOXO4, and FOXO6 (127), have a butterfly-like 

appearance on X-ray crystallography (128) and nuclear magnetic resonance (129). The 

forkhead box (FOX) family of genes has a conserved forkhead domain described as a 

“winged helix” (130). In regards to nomenclature, all letters are capitalized for human Fox 

proteins (131). Only the initial letter is listed as uppercase for the mouse and for all other 

chordates the initial and subclass letters are in uppercase (34, 113, 132, 133).

FoxO proteins are found throughout the body. In regards to metabolic signaling, FoxO 

proteins are conserved among multiple species that include Caenorhabditis elegans, 

Drosophila melanogaster, and mammals. FoxO proteins are homologous to the transcription 

factor DAuer Formation-16 (DAF-16) in the worm Caenorhabditis elegans. DAF-16 can 

determine metabolic insulin signaling and lead to lifespan extension (134, 135).

Both epigenetic (7, 136, 137) and post-translation protein modifications regulate the 

function of FoxO proteins. FoxO proteins are modified by phosphorylation (22, 97, 

138-147), acetylation (137, 138, 148), and ubiquitylation (24, 52, 149, 150) (Table 1). 

Phosphorylation of FoxOs can occur through the serine-threonine kinase protein kinase B 

(Akt) (54, 75, 151-155) and the serum- and glucocorticoid-inducible protein kinase (SgK) 

(156). Akt and SgK phosphorylate FoxO proteins at different sites affording various 
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pathways to control FoxO protein activity (157). Kinases such as Akt phosphorylate FoxO 

proteins to foster binding to 14-3-3 proteins in the cell cytoplasm, prevent nuclear 

translocation of FoxOs, and then block the transcription of target genes that promote 

apoptosis (141, 145, 158, 159). Yet, the phosphorylation site of FoxO proteins by specific 

protein kinases can be important in determining the activity of forkhead transcription 

factors. For example, mammalian sterile 20-like kinase-1 can phosphorylate FOXO proteins, 

disrupt the binding to 14-3-3, and allow nuclear translocation of FOXO to promote apoptotic 

cell death (160).

Similar to post-translational phosphorylation of FoxO proteins, ubiquitylation and 

acetylation are also vital counterparts to modulate activity of FoxO proteins (35, 161). 

Ubiquitination and the degradation of FoxO proteins can be fostered through the silent 

mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1) (148, 162, 163). 

SIRT1 can oversee stem cell development (5, 164) and protect cells through the inhibition of 

FoxO activity (53, 148, 165-167). FoxOs can bind to the SIRT1 promoter region that 

contains a cluster of five putative FoxO core binding repeat motifs (5 x insulin receptor 

substrate (IRS-1)) and a forkhead-like consensus-binding site (FKHD-L) to promote SIRT1 

transcription (168). FoxO proteins can then regulate SIRT1 transcription and increase SIRT1 

expression (168). SIRT1 promotes FoxO-driven SIRT1 autotranscription through the 

activation and deacetylation of FoxOs (169). Akt also results in the ubiquitination and 

degradation of FoxOs through the 26S proteasome of FoxO proteins (170, 171). In relation 

to acetylation, FoxO proteins are acetylated by histone acetyltransferases that include p300, 

the CREB-binding protein (CBP), and the CBP-associated factor (172). Once acetylated 

such as by CBP, FoxO proteins translocate to the cell nucleus but have diminished activity 

since acetylation of lysine residues on FoxO proteins can limit the ability of FoxO proteins 

to bind to DNA (173). Acetylation can increase phosphorylation of FoxO proteins mediated 

through Akt (173). FoxO proteins are deacetylated by histone deacetylases, such as SIRT1 

(170, 174-176). Histone deacetylase 2 (HDAC2) also forms a physical complex with 

FoxO3a to affect FoxO3a-dependent gene transcription and oxidative stress-induced cell 

death (137).

4. FoxO proteins, Oxidative Stress, Apoptosis, and Autophagy

FoxO proteins play a critical role in cell survival and regeneration (Table 1). FoxO proteins 

may have different effects upon cell survival during oxidative stress with FOXO1 

preventing oxidative stress damage and FOXO3a promoting oxidative cell death in systems 

that involve the maternal decidua (177). Under some conditions, the activation of FoxO 

proteins may prevent apoptotic cell injury during oxidative stress such as in chondrocytes 

(178). The conditional deletion of FoxO1, FoxO3a, and FoxO4 in mouse hematopoietic stem 

cells may be detrimental and lead to an increase in ROS (179). In addition, FoxO3a may be 

necessary with other pathways for rejuvenating the function of mesenchymal stem cells 

(180).

FoxO proteins can lead to the induction of autophagy and increase cell survival (Table 1). In 

experimental models of full-length mutant Huntingtin (mHtt) transgenic mice, ectopic 

expression of FoxO1 leads to autophagy and the clearance of toxic mHtt protein in neurons 
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(181). Expression of a constitutively active form of FoxO3 increases human articular 

chondrocyte cell viability and the expression of autophagy related proteins (178). SIRT1-

mediated deacetylation of FoxO1 leads to starvation-induced increases in autophagic flux 

that maintain left ventricular function during periods of starvation (182). Cardiac expression 

of constitutively active FoxO3 reverses heart atrophy through the activation of autophagic 

pathways (183). Yet, FoxO cell protection may not always be directly tied to the induction 

of autophagy. Up-regulation of FoxO3 and SIRT1 with a reduction in autophagy occurs in 

human bronchial epithelial cells exposed to cigarette smoke condensates in the presence of 

the anti-oxidant Amurensis H (Vam3), a dimeric derivative of resveratrol, that can reduce 

oxidative stress (184).

With apoptotic cell death, FoxO proteins promote membrane PS externalization and DNA 

degradation to lead to cell injury (185, 186). Endothelial cell dysfunction occurs with a 

reduction in SIRT1 expression and an increase in FoxO1 expression during exposure to 

elevated glucose (21). Several studies support a detrimental role for FoxO proteins that can 

lead to cell injury. For example, inhibition or gene knockdown of FoxO1 or FoxO3a leads to 

protection against microglial cell injury during oxidative stress (187) and Aβ exposure 

(185), increased neuronal cell survival through nicotinamide adenine dinucleotide (NAD+) 

precursors (140), growth factor protection with erythropoietin (EPO) (22, 139, 141, 162) and 

neurotrophins (188-190), protection against cerebral ischemia (159), and increased cell 

survival with metabotropic glutamate receptor activation (191). EPO can phosphorylate 

FoxO proteins, inactivate these proteins (75, 192), and lead to cellular protection in models 

of experimental DM and oxidative stress (22, 141, 193).

FoxO cell death pathways are dependent, in part, upon Wnt signaling (Table 1). Wnt 

signaling, including Wnt1 inducible signaling pathway protein 1 (WISP1), also known as 

CCN4 (194, 195), regulates cell development, vascular growth, immunity, cancer, stem cell 

proliferation (196-200) and cellular metabolism (25, 195, 198, 200). Wnt signaling may 

assist in wound healing during DM (200) and can prevent vascular injury during 

experimental DM (22, 23). Wnt signaling promotes cellular protection against apoptotic cell 

death through the inactivation of FoxO proteins. Phosphorylation and inhibition of FoxO3a 

activity by Wnt signaling β-catenin protects hepatocytes from apoptosis (143). Osteoblastic 

differentiation can be preserved in the presence of oxidative stress through the increased 

expression of Wnt signaling pathways and the inhibition of FoxO3a (201). Wnt signaling 

blocks apoptosis through the inhibition of FoxO3a activity to prevent cytochrome c release, 

Bad phosphorylation, and activation of caspases (186). WISP1 also can increase cell 

survival by limiting FoxO3a activity, blocking caspase 1 and 3 activation, and fostering 

SIRT1 nuclear trafficking (145). Growth factors such as EPO use Wnt signaling during 

experimental DM to block FoxO3a activity and increase endothelial survival (22).

Of note, FoxO regulation of Wnt signaling may be beneficial under other conditions. FoxO 

proteins can inhibit prostate cell malignant phenotypes by down-regulating Wnt signaling 

and β-catenin (202). The absence or loss of FoxO activity, such as through microRNA 

activity, may indicate an increased risk for cancer development (203) and promote tumor 

growth (204).
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5. Pursuing Regenerative Pathways with FoxO for Diabetes Mellitus

In addition to impacting cellular survival and regeneration, FoxOs are important in 

regulating cellular metabolism and DM (34, 113, 125) (Table 1). Several studies suggest that 

inactivation of FoxO proteins may foster cytoprotection during DM. Insulin resistance may 

be resolved with the genetic deletion of hepatic FoxO1 (205). During exposure to high 

glucose in endothelial cells, FoxO1 is acetylated and leads to premature senescence that can 

be detrimental to vascular function (21). Activation of FoxO3a occurs during elevated 

glucose exposure that results in mitochondrial membrane depolarization, cytochrome c 

release, and caspase activation with subsequent apoptotic cell death (22, 24, 97). In mice, 

FoxO6 depletion can prevent diet-induced glucose intolerance and insulin resistance through 

inhibition of hepatic gluconeogenesis and limiting macrophage infiltration in the liver and 

adipose tissues (206). FoxO proteins can influence pancreatic β-cell survival as well. 

Thioredoxin-interacting protein (TXNIP) is necessary for β-cell survival. FoxO1 can bind to 

the TXNIP promoter, decreases TXNIP expression, and prevents TXNIP expression during 

the exposure to glucose (207). Retinal disease is prevented during therapies tied to FoxO3a 

inhibition in murine models of DM (208). In studies that examine the loss of SIRT1 with 

concurrent increased activity of Foxo1 in mice, insulin sensitivity is lost and overproduction 

of hepatic glucose leads to chronic hyperglycemia and increased ROS production (209). 

Models of diabetic nephropathy show that transforming growth factor-beta results in the 

nuclear exclusion of FoxO3a, blocks FoxO3a transcriptional activity, and protects renal 

mesangial cells from apoptosis (210). Enteric neurons can be protected from hyperglycemia 

by glial cell line-derived neurotrophic factor that activates Akt and inhibits FoxO3a 

activation (188). Mice overexpressing Foxo1 in skeletal muscle have impaired glycemic 

control and impaired skeletal muscle function (211).

Some clinical studies suggest a detrimental effect associated with forkhead transcription 

factors, body weight, and DM. A single nucleotide polymorphism in the 5′ flanking region 

of FOXO3a was associated with the greatest body mass index in individuals who were 

homozygous for the major allele of FOXO3a (212). Additional studies report that haplotype 

analyses of FOXO1a revealed that carriers of a specific haplotype had higher HbA1c levels 

with increased mortality risk attributable to death from DM (213). Analyses with FOXO3a 

haplotypes demonstrate no differences in metabolic profile, fertility or fecundity, but an 

increased risk of stroke is present for specific Foxo3a haplotypes (213). Agents that control 

FoxO protein activity during metabolic disturbances may offer treatment for patients with 

DM. One potential agent to consider for the maintenance of cellular metabolism in DM is 

nicotinamide (52, 214-223). Nicotinamide can improve metabolic control in combination 

therapy (224), can be protective for pancreatic β-cell function (225), and reverses disease 

during diabetic peripheral neuropathy in animal models (226). Oral nicotinamide 

administration can protect β-cell function and prevent clinical disease in islet-cell antibody-

positive first-degree relatives of Type 1 DM (225). Nicotinamide may be protective through 

the post-translational modification of FoxO3a. Nicotinamide can inhibit FoxO3a activity and 

preserve the integrity of the FoxO3a protein to block FoxO3a proteolysis that can yield pro-

apoptotic amino-terminal fragments (140). It is important to discuss that prolonged exposure 

to nicotinamide in some studies has been reported to impair β-cell function and reduce cell 
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growth (227, 228). As a result, studies have shown a benefit with reduction in nicotinamide 

activity through nicotinamidases that degrade nicotinamide and lead to increased lifespan 

(215, 229-231).

However, in some sub-populations with specific haplotypes for FoxO1 and FoxO3, 

increased metabolic risk and disease from FoxO proteins in cardiovascular disorders may 

not occur (232). In fact, FoxO proteins may exert a beneficial effect during metabolic 

disorders under some conditions. FoxO proteins are homologous to DAF-16 that can 

regulate cellular metabolism and lifespan (149, 230, 233). FoxO proteins can stimulate the 

insulin-like growth factor binding protein-1 (IGFBP1) promoter by binding to a conserved 

insulin response sequence (234). Insulin and insulin-like growth factor-1 (IGF-1) can control 

and suppress this activity through activation of Akt (234, 235). Interferon-gamma driven 

expression of tryptophan catabolism by cytotoxic T lymphocyte antigen 4 can activate 

Foxo3a to protect dendritic cells from ROS generation in non-obese diabetic mice (236). In 

caloric restricted mice that have decreased energy reserves, mRNA expression in rat skeletal 

muscles is increased for specific Foxo proteins, suggesting that Foxo may have a protective 

function during metabolic disorders (237). In addition, FoxO1 expression leads to increased 

insulin signaling to regulate cellular metabolism in Drosophila and mammalian cells (238).

6. Future Considerations

DM affects multiple systems throughout the body leading to significant disability as well as 

death. New development of strategies targeting FoxO proteins may offer the opportunity to 

effectively provide clinical treatments for disorders of cellular metabolism and the clinical 

complications of DM. However, a number of hurdles must be overcome in consideration of 

the clinical utility of FoxO proteins. Further understanding of the pathways that determine 

injury in DM and the biological role of FoxO proteins are necessary to move forward. For 

example, how can cell death pathways of autophagy and apoptosis determine tissue injury 

during FoxO activation? Oxidative stress is a significant mediator of cell injury during DM. 

Under some conditions, autophagy can improve insulin sensitivity and regulate glucose 

homeostasis. FoxO proteins can lead to the induction of autophagy and enhance cell survival 

such that FoxO proteins reduce oxidative stress and assist with metabolic homeostasis. Yet, 

increased autophagy during DM may lead to the loss of tissue, may injure endothelial 

progenitor cells, and promote oxidative stress. Activation of FoxO proteins may prevent 

apoptotic cell injury during oxidative stress in some cell types. In other scenarios, it is the 

inhibition of FoxO protein activity that leads to cytoprotection that may require the 

activation of Wnt signaling pathways as well as SIRT1. Control of FoxO activity may be 

dependent upon a number of factors including the phosphorylation site of FoxO proteins by 

specific protein kinases that can determine whether FoxO proteins foster cell survival or 

conversely lead to cell death.

Furthermore, what are the factors that influence the ability of FoxO proteins to affect 

cellular metabolism? A number of studies suggest that inactivation of FoxO proteins may 

foster cytoprotection during DM, block insulin resistance, assist with pancreatic β-cell 

survival, and prevent immune cell tissue infiltration. Some clinical studies support a role to 

limit FoxO activity and decrease the risk of mortality from DM. In contrast, other clinical 
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work indicates that there is little or no association between increased metabolic risk and 

FoxO proteins. Other experimental studies suggest that increased FoxO protein expression is 

beneficial for insulin signaling and maintaining energy reserves. Epigenetic as well as post-

translational modification of FoxO proteins during impairments in cellular metabolism may 

play an essential role in impacting the variable clinical outcome modulated by FoxO 

proteins. Only through the initiation and progression of future investigations can these 

questions be addressed to both safely and effectively develop FoxO signal transduction 

pathways into viable clinical treatments for metabolic disorders and DM.
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Table 1
FoxO Transcription Factors and Diabetes Mellitus

FoxO Proteins Biology

Expression and Structure FoxO proteins possess a butterfly-like appearance on X-ray crystallography and nuclear magnetic 
resonance

FoxO proteins are present throughout the body and have a conserved forkhead domain described as a 
“winged helix”

Post -Translational Modification FoxO proteins are modified by phosphorylation, acetylation, and ubiquitylation through pathways 
involving Akt, SgK, SIRT1, and Wnt signaling with WISP1

Akt and SgK phosphorylate FoxO proteins at different sites affording various pathways to control FoxO 
protein activity

Programmed Cell Death Under some conditions, the activation of FoxO proteins may prevent apoptotic cellular injury during 
oxidative stress

FoxO protein activation can lead to the induction of autophagy and increase cell survival, such as during 
the clearance of toxic mHtt protein in neurons and during starvation to maintain cardiac function

However, activation of FoxO proteins usually leads to apoptotic membrane PS externalization and DNA 
degradation. In some circumstances, a reduction in autophagy is required to block oxidative stress injury

Cellular Signaling Wnt signaling can promote cellular protection against apoptotic cell death through the inactivation of 
FoxO proteins

WISP1 can limit FoxO3a activity, block caspase 1 and 3 activity, and promote SIRT1 nuclear trafficking

FoxO proteins can control SIRT1 transcription and increase SIRT1 expression. In addition, SIRT1 
promotes FoxO-driven SIRT1 autotranscription through the activation and deacetylation of FoxO 
proteins

Agents that are protective during DM, such as EPO and nicotinamide, can phosphorylate and inactive 
FoxO proteins to lead to cellular protection

Outcomes with Diabetes Mellitus Some clinical studies suggest a detrimental effect associated with FoxO proteins and DM

Inactivation of FoxO proteins during DM may protect pancreatic β-cells, retinal cells, renal cells, and 
glucose homeostasis

In some clinical populations, FoxO protein activation may be protective during metabolic disorders for 
the immune system, assist with insulin signaling, and maintain energy reserves

Akt: protein kinase B; DM: diabetes mellitus; DNA: deoxyribonucleic acid; EPO: erythropoietin; FoxO: mammalian forkhead transcription factors 
of the O class; mHtt: mutant Huntingtin; PS: phosphatidylserine; SgK: serum- and glucocorticoid-inducible protein kinase; SIRT1: silent mating 
type information regulation 2 homolog 1 (S. cerevisiae); WISP1: wnt1 inducible signaling pathway protein 1; Wnt: proteins derived from the 
Drosophila Wingless (Wg) and the mouse Int-1 genes
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