Skip to main content
. Author manuscript; available in PMC: 2016 Oct 1.
Published in final edited form as: Brain Behav Immun. 2015 Jun 15;49:171–181. doi: 10.1016/j.bbi.2015.05.010

Table 3.

Comparison of nested model statistics

Covariance Models −2LL D.F. AIC BIC Difference χ2 p-value


BMI × IL-6 ACE 39.22 405 −770.77 −922.81
CE 41.52 406 −770.48 −924.00 2.29 0.13
AE 40.69 406 −771.31 −924.41 1.46 0.23

BMI × sIL-6r ACE −216.23 405 −1026.23 −1050.54
CE −215.63 406 −1027.63 −1052.57 0.60 0.44
AE −215.99 406 −1027.99 −1052.75 0.25 0.62

BMI × CRP ACE 1396.80 401 594.80 −232.80
CE 1398.10 402 594.10 −234.47 1.31 0.25
AE 1396.81 402 592.81 −235.12 0.01 0.91

CRP × IL-6 ACE 1415.15 401 613.15 −223.63
CE 1415.46 402 611.46 −225.79 0.31 0.57
AE 1415.48 402 611.47 −225.78 0.33 0.57

−2LL (−2 * Log-Likelihood), maximum likelihood estimate; AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; Lower -2LL, AIC and BIC indicate models that more parsimoniously fit the data; Non-significance in chi-square (χ2) values between saturated and nested models indicate equivalent fit of data; Bold highlighted font indicates the model that most parsimoniously fit the data, based on AIC and BIC.