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Abstract

Colorectal cancer (CRC) is a complex disease that develops as a consequence of both genetic and 

environmental risk factors. A small proportion (3–5%) of cases arises from hereditary syndromes 

predisposing to early onset CRC as a result of mutations in over a dozen well-defined genes. In 

contrast, CRC is predominantly a late-onset “sporadic” disease, developing in individuals with no 

obvious hereditary syndrome. In recent years genome-wide association studies have discovered 

over 40 genetic regions to be associated with weak effects on sporadic CRC and it has been 

estimated that increasingly large genome-wide scans will identify many additional novel genetic 

regions. Subsequent experimental validations have identified the causally related variant(s) in a 

limited number of these genetic regions. Further biological insight could be obtained through 

ethnically diverse study populations, larger genetic sequencing studies, and development of 

higher-throughput functional experiments. Along with inherited variation, integration of the 

tumour genome may shed light on the carcinogenic processes in CRC. In addition to summarizing 

the genetic architecture of CRC, this review discusses genetic factors that modify environmental 

predictors of CRC, as well as examples of how genetic insight has improved clinical surveillance, 

prevention, and treatment strategies. In summary, substantial progress has been made in 

uncovering the genetic architecture of CRC and continued research efforts are expected to identify 

additional genetic risk factors that further our biological understanding of this disease.
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INTRODUCTION

It is estimated that in 2015 there will be 777,987 new cases and 352,589 deaths from CRC in 

developed countries.[1] The average lifetime risk in these populations varies across 

countries ranging from 4.3–5.3% for men and 2.7–4.9% for women.[2,3]

Inherited susceptibility is a major component of CRC predisposition with an estimated 12–

35% of risk attributed to genetic factors.[4,5] Over the last two decades substantial progress 

has been made towards uncovering the genetic architecture of CRC, and yet there remains 

great opportunity for discovering additional variants. The genetic risk factors established 

thus far range between two extremes: (1) rare high-penetrance mutations, each conferring 

marked elevations in risk for hereditary syndromes to (2) common variants, also called 

polymorphisms, conferring weak effects on “sporadic” risk in individuals without family 

history of CRC (Figure 1). Revealing genetic factors underlying high-penetrance syndromes 

has led to more effective disease management for patients and their families. Further 

discovery of risk loci with weak effects could similarly improve clinical surveillance and 

prevention strategies. Although each common variant associates with weaker effects, 

collectively these variants enable a more accurate prediction of an individual’s risk given 

that the number of risk alleles carried by an individual varies substantially in a population. 

Moreover, common variants may modify the risk of CRC in individuals with hereditary 

syndromes.[6] In addition to personalized risk prediction, a deeper understanding of genetic 

etiology often implicates novel carcinogenic pathways and in turn new potential targets for 

therapeutics.

This review begins with a summary of what is known about the genetic architecture of both 

rare hereditary syndromes and more common sporadic development of CRC. In addition, 

new approaches to investigate rarer variation, as well as the studies that integrate the tumor 

genome will be reviewed. Given that risk prediction and biological insight are improved by 

the identification of functional variants within associated regions, this review will also 

describe the current state of laboratory follow-up studies. Next, several noteworthy gene-

environment interactions with suggestive influences on CRC susceptibility are summarized. 

Lastly, the importance of translating genetic findings into clinical and public health practices 

is discussed.

GENETIC MUTATIONS PREDISPOSING TO HEREDITARY SYNDROMES

Hereditary syndromes resulting from high-penetrance germline mutations account for 

approximately 3–5% of all CRC.[7] Although rare, the mutations underlying these 

conditions were readily detected through relatively small linkage studies. To date, 14 genes 

underlying CRC syndromes have been identified (Table 1), beginning with the discovery of 

mutations in the adenomatous polyposis coli (APC) gene predisposing to familial 

adenomatous polyposis (FAP).[8] Later, the human homologs of the DNA mismatch repair 

(MMR) genes (MLH1, MSH2, MSH6, PMS2) were implicated in a non-polyposis familial 

condition now referred to as Lynch Syndrome.[9] Subsequently, mutations in the genes 

STK11,[10] BMPR1A,[11] SMAD4,[11] PTEN,[12] and MUTYH,[13] have been identified 

as additional genetic causes of polyposis syndromes. These genes highlight several 
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important molecular pathways, many of which are now thought to play a larger role in CRC 

pathogenesis supported by results from genome-wide association studies (GWAS) (Figure 1, 

Table 3). Previous genetic reviews of these syndromes [7,14,15] have discussed clinical 

management and screening strategies in greater detail. Here we describe the genetic 

etiologies and implicated pathways of hereditary syndromes.

Adenomatous Polyposis Coli (APC) and β–catenin

In 1987 the APC tumor suppressor gene was found to harbor causative germline mutations 

for the most severe polyposis syndrome, FAP.[8] Development of FAP requires the 

inheritance of a single mutated copy of APC and is characterized by the onset of hundreds to 

thousands of small adenomatous polyps throughout the entire length of the colon after the 

first decade of life. If left untreated, the risk of CRC by age 40 is nearly 100%. Decreased 

APC function is now understood to play an important role in colorectal tumorigenesis via 

aberrant regulation of intracellular levels of β–catenin (encoded by CTNNB1) within the 

wingless signal transduction (Wnt) pathway.[14,16] This pathway controls cell division, 

adhesion, and migration making it particularly important for cells with rapid turnover, such 

as intestinal epithelial that renew every 4–5 days.[17,18]

Classic FAP results from deleterious APC mutations that are typically positioned in or near 

functional domains that bind β–catenin. However, recent studies suggest that decreased 

transcription of APC through promoter mutations may also result in FAP predisposition.[19] 

Alternatively, mutations in the 5′ and 3′ ends of APC can result in a less profuse polyposis 

syndrome termed attenuated FAP (AFAP).[20,21] In comparison to the classic syndrome, 

AFAP has a delayed age of onset (mean 56 years) for CRC with reduced average lifetime 

risk of approximately 70%.[15,22,23]

MutY Homolog (MUTYH)

Unlike other hereditary syndromes, the inheritance of mutations in both copies of MUTYH 

(alias MYH) gene result in a recessive form of adenomatous polyposis, referred to as 

MUTYH-associated polyposis (MAP).[22] The MUTYH gene is involved in base excision 

repair of oxidative DNA damage. In some cases MAP is phenotypically indistinguishable 

from FAP or AFAP with an average lifetime CRC risk of about 80%.[7] The MAP 

carcinogenic pathway often involves a high frequency of somatically acquired APC 

mutations.[24]

Mismatch Repair Genes

Over the past two decades defective MMR genes have been discovered to play a role in 

subsets of both hereditary and sporadic CRC.[25] Specifically, Lynch syndrome (also 

known as hereditary nonpolyposis colorectal cancer, HNPCC), is the most common of the 

hereditary syndromes, accounting for 2–3% of all CRC cases [26]. Lynch syndrome is 

characterized by early-onset CRC (mean of 45 years) and an average lifetime risk of 66% 

for men and about 43% for women.[27] Lynch syndrome results from germline mutations in 

genes involved with DNA MMR (MLH1, MSH2, MSH6, PMS2, and EPCAM).[15,28] Loss 

of MMR activity leads to defective repair of single-base mismatches and insertion/deletions 

during DNA replication. The subsequent errors in replication results in the accumulation of 
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repetitive short nucleotide sequences referred to as microsatellites. Accordingly, high 

Microsatellite Instability (MSI) is a hallmark and critical component for the diagnosis of 

Lynch syndrome, although it should be noted that also approximately 12% of sporadic CRC 

are characterized by high MSI.[29]

DNA Polymerase Genes

DNA replication during cell division is inherently susceptible to errors that can be 

transmitted to daughter cells and incorporated as permanent mutations, which in turn can 

predispose to cancer. However, there are several conserved mechanisms to safeguard against 

replication error and subsequent somatic mutations. The role of such mechanisms in CRC 

risk have already been discussed in this review, such as mutations in base excision repair 

(MAP) and those in MMR genes (Lynch Syndrome). Recent discovery of germline 

mutations in the proofreading domains of two DNA polymerases (POLE and POLD1) now 

implicate a new highly penetrant hereditary syndrome referred to as ‘polymerase 

proofreading-associated polyposis’ (PAPP) leading to a large number of somatically 

acquired mutations (hypermutant tumors).[30–33] These discoveries reinforce the 

importance of mechanisms related to correct DNA replication, and show that reduced 

fidelity can result in a mutator phenotype increasing cancer susceptibility.

Serine/Threonine Protein Kinase 11 (STK11) and Phosphatase Tensin Homolog Deleted on 
Chromosome 10 (PTEN)

The harmatomatous polyposis syndromes (Peutz-Jeghers syndrome (PJS), Cowden 

Syndrome (CS), a subtype of CS (Bannayan-Riley-Ruvalcaba (BRR) syndrome) and 

Hereditary Mixed Polyposis Syndrome (HMPS) are very rare with frequencies of 

approximately 1 in 50,000 to 200,000 for PJS, and 1 in 200,000 to 250,000 births for CS, 

while the prevalence of BRR and HMPS remain unknown.[34]

STK11 and PTEN have been identified as genes underlying PJS, CS and BRR syndrome. 

STK11 (alias LKB1) encodes a tumor suppressor that is activated in PJS and is related to 

cellular energy homeostasis and regulation of the mammalian target of rapamycin (mTOR)

—a pathway that is central to metabolic signaling. In addition, STK11 governs whole body 

insulin sensitivity.[35] Similarly, PTEN is linked to CS, as well as BRR syndrome, and 

regulates metabolic signaling via the phosphatidylinositol 3-kinase (PI3K) and the v-akt 

murine thymoma viral oncogene homolog 1 (Akt1) pathway.[36] Moreover, the PI3k-Akt 

pathway is an important regulator of cell proliferation and is thought to mediate the effects 

of mTOR. As such, at least part of the activities of STK11 and PTEN are expected to 

converge through the mTOR pathway.

TGF-β superfamily

Other germline mutations linked to hereditary CRC syndromes, such as Juvenile Polyposis 

Syndrome (JPS) and Hereditary Mixed Polyposis Syndrome (HMPS) implicate genes that 

enhance growth and invasiveness, such as those belonging to the transforming growth factor 

(TGF)-β superfamily and the bone morphogenic protein (BMP) subfamilies (eg. SMAD4,

[37,38] BMPR1A,[39,40] BMP4,[41] GREM1,[42] ENG[43,44]). The BMPs play a critical 

role in orchestrating proper tissue architecture through their interaction with specific surface 
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receptors referred to as BMP receptors (BMPRs), which mobilize the SMAD family 

proteins.[45] Development of JPS is linked to mutations in one of two known genes in the 

TFG-β/BMP pathway. Specifically, 20% of patients with JPS are linked to mutations in 

SMAD4, while a similar proportion of cases are attributable to BMPR1A mutations. To date, 

more than 40 mutations (both single nucleotide and larger structural) in these genes have 

been linked to CRC.[46]

Novel Approaches to Further Discovery of Higher-Penetrant Mutations

Given their high penetrance and apparent clustering in families the aforementioned 

mutations could be discovered through relatively small linkage studies. While many genes 

underlying these syndromes have been uncovered, it is expected that additional higher-

penetrant genes exist but are more difficult to detect. For example, familial colorectal cancer 

type X (FCCTX) is a condition that meets the clinical criteria for Lynch Syndrome, with the 

caveat that FCCTX does not show mutations in any of the MMR genes. Although FCCTX is 

currently classified as a single condition, it is possible that FCCTX represents more than one 

underlying disorder resulting from various unknown genetic causes.[20,47] As such, 

additional research on familial CRC is likely to uncover additional rarer variants with 

moderate effects on risk. However, until recent advances in sequencing technology the 

investigation of such variation was prohibitively expensive.

It is expected that whole-exome or whole-genome sequencing of families at high risk with 

undetermined germline mutations will uncover higher-penetrance mutations within 

pathways or mechanisms not previously implicated in CRC. For instance, the discovery of 

POLE and POLD1 mutations resulted from such analyses.[45–48] In addition to discovering 

new genes it can be expected that sequencing studies will discover additional mutations in 

known CRC genes given that improved sequencing technologies more comprehensively 

captures entire genes and enables the study of more complex structural variation, such as 

copy number variations, translocations, and inversions.[49]

Whole-exome and whole-genome studies may also identify an increasing number of variants 

with unknown significance (VUS) in hereditary CRC genes.[48–50] Despite residing within 

genes known to harbor very rare and highly penetrant mutations, these uncharacterized VUS 

can range from benign to pathogenic and thus pose a challenging problem, particularly for 

clinical testing. For instance, unlike the well-characterized mutations linked to FAP and 

AFAP, more common variants in APC have also been observed near domains known to have 

functional importance. An example of this is the APC-I1307K variant (rs1801165) that is 

very rare in most populations but has a frequency of approximately 6% in Ashkenazim and a 

modest risk (odds ratio of 2.17) for colorectal cancer (Figure 1).[51] However, such effects 

(odds ratios near 2) can only be found with confidence if tested in sizable studies (several 

thousand participants). As the penetrance of mutations in syndromic genes varies by position 

within a gene and between genes, understanding the increasing discovery of variation within 

these genes through exome sequencing is a growing challenge.

To help catalog and better classify these variants, the International Society for 

Gastrointestinal Hereditary Tumours (InSiGHT) is curating a comprehensive database of 

observed variants in known syndromic genes for CRC. Such large-scale efforts in both 
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assembling locus specific databases and in expert review of variants will be important to 

establish consistent management of individuals suspected to have Lynch Syndrome,[50] as 

well as other hereditary syndromes.

DISCOVERIES OF COMMON LOW-PENETRANCE VARIANTS FROM GWAS 

OF SPORADIC CRC

Family-based linkage studies can successfully identify high-penetrance mutations; however, 

in a key work, Risch and Merikangas[52] argued that for many complex diseases such as 

CRC, linkage studies have limited power to detect more common variants with weaker 

effects. However, in combination, low penetrance mutations may contribute substantially to 

overall disease heritability given their higher prevalence in the population. As technologies 

were not available at the time to conduct comprehensive genome-wide scan, initial successes 

were limited to candidate gene approaches.[53–55] However, as genotyping technology 

rapidly evolved to allow simultaneous testing of more than a million single nucleotide 

variants, a growing number of lower-penetrance variants associated with sporadic CRC have 

been identified.[56–69]

To date GWAS have identified over 40 independent loci providing deeper insight into the 

underlying biology of CRC (Table 2). The risk allele frequency of these variants ranges 

from 0.06 to 0.9 and the genetic effect [odds ratio (OR) per risk allele] ranges from 

approximately 1.04 to 1.56 (Table 2). Importantly, most common susceptibility loci are 

positioned outside of coding regions many kilobases (kb) away from the nearest candidate 

gene. Although associated loci are often positioned in intergenic regions, their proximity to 

candidate target genes has implicated many known CRC-related genes and pathways. For 

example, GWAS have identified common variation in putative regulatory elements that 

impact the expression of genes within the TGF-β/BMP pathways (e.g. BMP2, BMP4, 

SMAD7, CCND2, GREM1)[70] and genes in the mitogen-activated protein kinases (MAPK) 

pathway (e.g. DUSP10, MYO1B, MYC, CCND2, SH2B).

In addition to genes within the TGF-β/BMP pathway, other GWAS findings have similarly 

demonstrated that genes linked to hereditary syndromes may also harbor common risk 

variants with weaker effects (Table 3). For instance, a truncating mutation CDH1 was 

previously linked to early onset colorectal and gastric cancers[71] and more common 

independent variants in the same gene show weaker associations with sporadic CRC.[72] 

Like APC and β–catenin (CTNNB1), the gene product of CDH1 is a component of adherens 

junctions and is involved with Wnt signaling, suggesting that aberrant regulation of CDH1 

expression could underlie the observed CRC association at the 16q22.1 locus near CDH1 

(rs9929218). [72,73] Similarly, GWAS have implicated POLD3[74] in CRC development. 

In light of the recent discovery of higher penetrance mutations in POLE and POLD1 

described earlier, these findings further suggest that DNA polymerase, as well as high- and 

low-penetrance variants in the same biological pathways, may play a role in CRC.

Although many GWAS-identified susceptibility loci are positioned in or near genes involved 

in established CRC-related pathways, many GWAS-identified regions do not harbor known 

candidate genes. This supports the utility of using agnostic genome-wide approaches, such 
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as GWAS to gain novel insight into the genetics of complex diseases. For instance, 

CDKN1A, EIF3H, TPD52L3, ITIH2, LAMA5, and LAMC1 represent genes in pathways not 

previously linked to CRC. CDKN1A encodes p21 which impacts multiple tumor suppressor 

pathways and represses MYC-dependent transcription.[74] TPD52L3 belongs to the family 

of tumor protein D52 genes, which have been implicated in cell proliferation and apoptosis 

and also serve as potential cancer biomarkers.[75] ITIH genes have been found to be down-

regulated in multiple human solid tumors, including colon, breast, and lung. As such, ITIH 

genes may represent a family of understudied putative tumor suppressor genes.[76] LAMA5 

and LAMC1 belong to the laminin gene family, which is involved in the maintenance of cell 

adhesion, migration, and signaling—suggesting that laminin genes may play an important 

role in the development of CRC.[77–79]

While we attempt to describe the most likely candidate gene linked to each of the newly 

identified genetic loci it is important to note that for most loci functional evaluations as 

described below are still missing and, hence, it is possible that for some loci the candidate 

genes may change as more functional evidence becomes available.

WHAT COMES AFTER DISCOVERY?

Fine-mapping and Functional Follow Up

While results for high-penetrance mutations usually point directly to the underlying casual 

variants, low-penetrance variants are typically correlated with (i.e., tag) the region that 

contains the underlying causal variant(s). For example, in Figure 2 any of the correlated 

single nucleotide polymorphisms (SNPs) with lower p-values could be the underlying causal 

variant in this GWAS locus (note the most significant variant is not necessarily the causal 

variant). To identify the causal variant(s) fine-mapping and laboratory (i.e., functional) 

follow-up studies are needed. Fine-mapping studies attempt to genotype or impute all 

genetic variants in a GWAS locus to test association with CRC risk and provide a 

comprehensive list of all potential candidate SNPs that could be the underlying causal 

variant.[80] Fine-mapping studies can further investigate the existence of multiple 

independent causal variants in the region by simultaneously including multiple variants in a 

single model (i.e., conditional analysis). This approach has successfully identified secondary 

independent CRC-related SNPs in 5 regions (BMP4-14q22.2, BMP2-20p12.3, 

CCND2-12p13.32, SMAD7-18q21, and TCF7L2-10q25.2, Table 2).[81] As has been shown 

for many other traits[82–88] fine-mapping is particularly powerful if conducted in multiple 

ethnicities with different haplotype structures to refine the number of possible causal 

variants. This is particularly true for participants of African descent given shorter haplotype 

blocks; unfortunately, there are currently limited numbers of available CRC studies in 

African decent populations.[80]

Once the list of potential causal variants has been refined, in silico functional follow-up can 

help to prioritize the most likely candidates for further evaluation in the laboratory to detect 

allele-specific effects and demonstrate likely target gene(s).[89] As stated earlier, most high-

penetrance mutations associated with hereditary syndromes disrupt the coding of a protein 

resulting in qualitative differences in protein structure that can be more readily predicted 

based on our knowledge of the genetic code and biochemical properties of the encoded 
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amino acids. However, most low-penetrance variants are located in non-coding regions and 

are predicted to confer weak effects on the expression of an often unknown target gene. Our 

limited understanding of transcriptional regulation and the consequences of polymorphisms 

in putative functional elements make interpretation of non-coding loci far more challenging. 

To address this, Encyclopedia of non-coding DNA elements (ENCODE) and Roadmap 

epigenomics projects have created comprehensive catalogs of histone modifications and 

chromatin structure across many cell-types and tissues allowing researchers to prioritize 

variants that are most likely to disrupt regulatory elements. In addition, these resources 

allow researchers to form testable hypotheses about allelic effects on gene expression or 

chromatin structure for further laboratory follow-up.

When the first GWAS-identified CRC-related variant (rs6983267) was discovered in 2007, 

little was understood about its function. The locus was positioned in a gene desert, 

suggesting if the association was real, the effects must be exerted through some regulatory 

mechanism. However, the closest putative target gene, MYC, was positioned more than 300 

kb away and rs6983267 was not associated with differences in MYC expression.[90] It took 

an additional 3 years for functional studies to demonstrate that the variant was located in 

transcriptional enhancer that differentially binds TCF7L2 (also known as TCF4) and 

physically interacts with the MYC promoter (Table 4).[91–94] Additional animal studies 

showed that knocking out the enhancer did not impact normal function. However, when 

crossed with APCmin mice, which have a mutated APC gene leading to multiple intestinal 

neoplasia (min), those mice with knocked out MYC enhancer had significantly reduced 

numbers of spontaneously developing colorectal tumors.[95] Accordingly, this extensive 

functional work was able to identify the causal variant and describe the mechanism by 

which it exerts long-range regulation of a gene. Notably, gene expression analysis was 

unable to reveal MYC as the target, demonstrating that even in the rare circumstance that the 

index association (or tagging SNP) is the causal variant, extensive functional follow-up is 

likely necessary to reveal the underlying biology driving CRC-associations in GWAS.

For many years researchers have focused on MYC as a candidate drug target,[96] but direct 

inhibition was difficult.[97] As such, the identification of the regulatory element through the 

GWAS variants rs6983267 positioned several hundred base pairs upstream of MYC and 

influencing MYC expression opens new avenues for drug development.[95] Given that most 

GWAS loci are not located in coding regions and may or may not impact the closest genes,

[98] functional work is critical to fully understand the importance of GWAS loci and reveal 

potential drug targets. However, functional work requires very different expertise and tools 

than discovery of susceptibility loci—necessitating interdisciplinary collaboration, such as 

those funded by the GAME-ON Initiative.[99,100] Furthermore, it is critical to develop 

novel functional assays with higher throughput[101] that simultaneously evaluate the 

growing number of GWAS loci, which can bridge the expanding gap between the numerous 

susceptibility loci and the limited number with laboratory-validated function (Table 4).
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FUTURE DIRECTION IN DISCOVERY

Identifying new risk loci through whole-genome and whole-exome sequencing

Common CRC susceptibility loci are expected to explain ~7–8% of the heritability of CRC,

[102] however, the heritability explained currently by GWAS identified common 

susceptibility loci is only ~1–4%.[56–61,63,72,74,81,102–106] This gap suggests that many 

common variants remain to be discovered. Notably, a third of common CRC susceptibility 

loci were only discovered in the last year, highlighting that—through larger study 

populations as well as improved technologies and analytic approaches—additional GWAS 

discoveries will likely be made. This is consistent with other common cancers and complex 

diseases, such as breast[107] and prostate cancer[108] in which increasingly larger meta-

analyses are discovering many novel genetic loci. Ongoing large-scale consortia, e.g. funded 

through the GAME-On Initiative of the National Cancer Institute and other non-US agencies 

are expected to further facilitate these discovery efforts.[109]

While GWAS discoveries are ongoing, next generation sequencing as well as denser 

genotyping arrays are increasingly being used to investigate less frequent (minor allele 

frequency, MAF=1–5%) and rare (MAF<1%) variants. Importantly, these variants 

contribute to the vast majority of the genetic variation in the genome (Figure 3) and, hence, 

likely account for part of the missing heritability of CRC. Progress in discovering these 

variants will depend on their effect size; initial data suggest that at least some of the less 

frequent and rare variants have stronger effects (OR>1.5).[110–113] This is consistent with 

the discovery of several independent signals in GWAS[114–116] and high-penetrance 

regions[117] with MAF<5% and ORs between 1.5 and 4.3. However, it is important to note 

that these initial findings likely overestimate the effect of less frequent variants as they 

represent the most easily detectable of these variants. Subsequent discoveries of less 

frequent and rare variants with weaker effects will require rigorous study designs at a much 

larger scale.

Current sequencing studies focus on either the 1 to 2% of the genome that encodes proteins 

(the “exome”) or on sequencing the “whole genome”. Exome sequencing studies are 

successful in identifying high-penetrance mutations; however, it remains unclear what 

fraction of lower penetrance variants will fall within the exome. Sequencing studies, when 

conducted at sufficient depth, allow for the investigation of more complex genetic variants, 

such as insertions or deletions (indels) or copy number variations (CNVs, also called 

structural variation).[118–124] Although the absolute number of these complex genetic 

variants is substantially lower than the number of single nucleotide variants, the fraction of 

the genome affected by CNVs is substantially larger.[125–132] The global assessment of 

complex variation has remained mostly elusive[122,133–136] and it is currently unknown to 

what extent these types of variations contribute to the heritability of CRC.

Given the tens of millions of rare variants currently discovered through whole genome 

sequencing studies, even large sequencing studies will have limited statistical power to 

detect these variants. For instance, to detect a low frequency (1% allele frequency) CRC risk 

variant with modest effect (odds ratio =1.5) among approximately five million tested 

variants would require 21,800 CRC cases and 21,800 controls as this variant would need to 
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reach a p-value of 1×10−8 (alpha threshold=0.05/5,000,000) to adequately account for the 

multiple comparisons. However, novel statistical methods that incorporate the growing body 

of functional data, such as ENCODE,[137] RoadMap,[138] GTEX,[139] and TCGA[140] 

are expected to improve prediction of variants likely to have functional importance, which 

will in turn enable more hypothesis-driven discovery of novel CRC susceptibility loci. 

Rigorous bioinformatics that combine data from various laboratory-based assays (e.g. RNA–

seq, ChIP-seq, Dnase-seq, chromosome capture, and motif enrichment analysis) have 

improved substantially the resolution of predicted functional elements. These efforts have 

also enabled better prediction of long range interactions between regulatory regions and 

target genes. As such, functional information is beginning to reach sufficient fruition to help 

inform association testing of rare variants uncovered through sequencing efforts.

Integration of the cancer genome

Cancer is characterized by genetic and epigenetic alterations occurring in the tumor, also 

referred to as somatic mutations. In the past there has been limited exchange between cancer 

genetics research focusing on somatic mutations and germline genetics research focusing on 

inherited disease-related variants. However, high and low-penetrance germline variation for 

CRC are located in genes that often possess somatic mutations in CRC tumors, which are 

located in pathways thought to impact tumor development, such as Wnt, TGF-β, and 

MAPK.[141,142] This is somewhat unsurprising given that germline high-penetrance 

mutations in tumor suppressor genes (e.g. APC, BMPR1A, PTEN) only progress to cancer 

after a somatic mutation results in the dysfunction of the second copy of the gene. Further 

demonstrating the complexity of CRC, low-penetrance genetic variants are distinct because 

they are predominantly positioned outside of coding regions (yet often close to somatic 

driver genes) and confer more subtle effects leading to small increases in CRC risk. As 

stated previously, the link between somatic mutations and germline variants is an inherent 

feature of cancer development and, therefore, it is important for future studies to integrate 

both germline and tumor genetics to obtain a more comprehensive understanding of the 

carcinogenic processes in CRC.

GENE-ENVIRONMENT (GxE) INTERACTIONS

CRC has several established environmental risk factors, many of which are modifiable. The 

most consistently observed positive associations are seen with age, male sex, obesity, height, 

smoking, alcohol, and red and processed meat; protective associations are seen with physical 

activity, non-steroidal anti-inflammatory drug (NSAID) use, exogenous hormone use, 

calcium, vitamin D, folate, and, to a lesser extent, fruits, vegetables, and fiber.[143–148] 

Extensive methodological and applied research provides a strong rationale for examining 

GxE interactions.[149–153] GxE interaction analyses have identified interaction between a 

known GWAS locus, rs16892766 (8q23.3), and vegetable intake[154,155] and genome-wide 

approaches have found statistically significant interactions with several environmental risk 

factors, such as processed meat and postmenopausal hormone use.[156,157] However, it is 

important to note that investigation for GxE interactions is still at an early stage because 

sufficiently powered studies require well-characterized samples with environmental data 

harmonized across multiple ongoing studies. Statistical power is a particular challenge for 
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GxE analysis given that the discovery of GxE interaction requires approximately 4 times the 

sample size than the discovery of marginal effects of genetic variants.[158] However, these 

explorations are of particular interest to the public as they can help identify subpopulations 

for which modifiable environmental exposures are most influential. [159]

IMPACT OF GENETIC LOCI ON TREATMENT

As the discovery and functional follow-up of the many CRC-related genetic loci are ongoing 

it is important to consider the potential implications of these findings. Here, we present 

examples across multiple diseases that demonstrate the potential opportunities for genetic 

data. In Crohn’s disease, for instance, GWAS loci implicated previously less appreciated 

physiologic processes, such as autophagy, innate immunity, and IL-23R signaling.

[67,160,161] These discoveries have already lead to chemical screens for candidate 

therapeutic agents.[67,162,163] For age-related macular degeneration, GWAS identified 

several genes involved in inflammation, a link that was not previously established and has 

now opened up new treatment approaches and prevention strategies.[164,165] Identifying 

the genetic basis of several Mendelian disorders has led to the development of FDA-

approved drugs.[166] Furthermore, genomic information can help improve clinical trial 

design (e.g., screening for subtypes and adverse drug reactions).[167,168] For the HIV 

antiviral drug, Abacavir, genetically guided prescription is now standard of care.[169] This 

is also true for CYP2C19/clopidogrel, CYP2D6/codeine, TPMT/azathioprine, and 27 other 

interactions now endorsed by the American Society of Health System Pharmacists.[170] 

These and other examples have led to new therapies[166,171–174] and improved medical 

practices,[175,176] demonstrating the potential of genetic findings.[68,177] However, as 

drug development takes years to establish efficacy and effectiveness in clinical settings,

[178] it is likely that the full impact of the many recently discovered genetic findings is only 

beginning to be understood. In some instances, however, the identification of underlying 

genes will not readily translate into improved treatment. For example, the genes for cystic 

fibrosis and sickle cell anemia were identified more than twenty years ago;[67] although 

recent findings suggest that treatment options remain possible.[166,179] GWAS findings 

may also be useful for repositioning approved drugs.[180] For instance, GWAS findings 

revealed variants in dopamine beta-hydroxylase (DBH) impact smoking cessation and 

thereby opened the possibility for targeted use of Nepicastat (a drug targeting DHB and 

traditionally used to treat post-traumatic stress disorder). Many more examples for drug 

repositioning are shown here.[180] As these examples include both rare high-penetrance and 

common low-penetrance variants, it is clear that neither the frequency nor the effect size will 

determine which susceptibility variants will lead to new treatment strategies. Accordingly, 

coordinated efforts to screen the growing number of susceptibility loci for putative drug 

targets seems promising, particularly if combined functional studies to identify the 

underlying functional variant(s).

Impact of Genetic Loci on CRC Prevention Using Risk Prediction Modeling

Although common susceptibility variants have limited power in discriminating cancer 

outcomes and many have yet to be identified,[109,181–183] studies have begun to explore 

the potential clinical applications of polygenic risk profiling.[184] Such models could 
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potentially identify individuals at higher CRC risk for targeted screening and intervention.

[182,184–186]

CRC remains the second leading cause of cancer death despite slight declines in CRC 

incidence. Paradoxically, it is among the most preventable and treatable of neoplastic 

diseases when detected early. For instance in the U.S., endoscopic screening, particularly 

colonoscopy, is the most commonly used strategy;[187–192] however, it is costly, invasive, 

and carries risk.[190,193–199] Although there have been improvements in screening uptake, 

40–50% of eligible persons do not follow current screening recommendations.[193,199–

203] Current recommendations are primarily based on age (over 50 years) and family 

history of CRC [204] despite the knowledge that incidence of CRC varies substantially in 

the population and most cases occur in those without positive family history.[205,206] 

Therefore, risk-prediction models that stratify the population into risk groups according to 

their risk profile could result in more effective screening. Furthermore, those at higher 

susceptibility may be more likely to follow recommendations once they have been made 

aware of their increased risk.[207–212] For instance, those with a positive family history of 

CRC are more likely to undergo endoscopy screening.[213]

We recently showed that a genetic risk score incorporating the first 27 known CRC GWAS 

findings in addition to family history improved the discriminatory accuracy.[213] 

Specifically, the AUC improved from 0.51 to 0.59 for men and 0.52 to 0.56 for women; 

these results were similar to that in a previous study.[214] Although the improvement in 

AUC risk prediction is modest, the genetic risk score could be used to develop age-specific 

guidance for screening more reflective of the individual’s genetic risk. Current 

recommendations in the United States advise that screening should commence at an age of 

50 years in those without a first-degree family history of CRC or age of 40 years in 

individuals with family history of CRC. However, the genetic risk score identified a large 

fraction of men and women without a positive family history of CRC that had a higher risk 

for CRC (comparable or higher than those with a positive family history of CRC) justifying 

an earlier screening age than 50 years in a subset of individuals without a positive family 

history.[206] These results demonstrate that the combination of multiple common 

susceptibility loci can lead to improved screening recommendations tailored to an 

individual’s risk despite the weak effects of any of the individual locus. [215] In fact, an 

extensive GWAS of inflammatory bowel disease recently showed that including hundreds of 

variants with suggestive, but not genome-wide significant associations, improved 

substantially risk prediction compared to models limited to GWAS findings.[216] 

Accordingly, it can be expected that incorporating a large number of genetic variants from 

genome-wide scans can further improve risk-prediction models, particularly if based on 

large sample sizes.[216–220]

Risk models should provide equitable benefits to the public. Currently the majority of risk 

models have been evaluated among those of European descent. Evaluation of models across 

diverse ethnicities is critical because many GWAS findings are tagging a region, rather than 

the causal or disease-influencing variant, and this correlation structure can vary across 

ethnicities. Another concern with risk prediction models is the potential for over or under 

prediction of risk due to failure to validate in an independent study.[206,221,222] These 
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issues are no longer conceptual since genetic risk profiling has now entered the commercial 

world. For instance, close to half a million individuals have purchased genetic information 

from 23andMe, which provided customers with vastly incomplete CRC risk estimates based 

on only 4 GWAS loci. Although the FDA has now restricted 23andMe commercialization of 

genetic risk profiling, clinical practice will increasingly be confronted with ambiguous 

genetic information.[223] Accordingly, in the era of direct-to-consumer genetic testing, 

rigorous evaluation of screening models that include new genetic and non-genetic 

information is of critical importance and expected to reduce the burden of CRC and other 

common complex diseases.[224]

SUMMARY

In summary, substantial progress has been made to discover high-penetrance mutations and 

common variants, and we expect that discovery of many additional variants will occur. 

Discovery of CRC loci is driven by sample sizes and available technologies. Genetic 

variants can be discovered in well-defined CRC pathways, such as TGF-β or Wnt, but can 

also point to novel genes and pathways not previously implicated in CRC. It remains critical 

that we stay on the path to uncover the complete genetic architecture of CRC to more fully 

understand the etiology of this severe disease; these findings, in turn, can lead to improved 

treatment and prevention.
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Abbreviations

Note that genes often have the same name as the encoded protein. To distinguish between 

the two italics are used to refer to the gene.

AFAP attenuated form of familial adenomatous polyposis

APC adenomatous polyposis coli 

BMP bone morphogenic protein

BMPRs bone morphogenic protein receptors

BRR Bannayan-Ruvalcaba-Riley

CRC colorectal cancer

CS Cowden Syndrome

DBH dopamine beta-hydroxylase 
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FAP familial adenomatous polyposis

FCCTX familial colorectal cancer type X

GWAS genome-wide association studies

GxE Gene-environment

HMPS Hereditary mixed polyposis syndrome

HNPCC hereditary nonpolyposis colorectal cancer

InSiGHT the International Society for Gastrointestinal Hereditary Tumours

JPS Juvenile polyposis syndrome

kb kilobases

MAF minor allele frequency

MAP MUTYH-associated polyposis

MAPK mitogen-activated protein kinases

MMR Mismatch Repair

MSI Microsatellite Instability

NSAID non-steroidal anti-inflammatory drug

PJS Peutz-Jeghers syndrome

TGF transforming growth factor

VUS variants of unknown significance
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Figure 1. Genetic architecture of known CRC genetic susceptibility loci
Allele frequency shown for the risk allele frequency of the ethnicity in which the locus was 

discovered; except for variants with a recessive effect (MUTYH), for which the frequency 

of the homozygote rare allele is shown. Supplemental Table 1 provides details on each 

genetic variant presented in this Figure 1.
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Figure 2. Fine-mapping of GWAS findings. Association results (p-values) and correlation 
structure for all SNPs in the 8q24 risk locus
The top part of the Figure has physical position along the x axis, and the −log10 of the SNP-

CRC association p-value on the y-axis. Each dot on the plot represents the p-value of the 

association for one SNP with risk of CRC. The most significant SNP (rs6983267) is marked 

as a purple diamond. The color scheme represents the pairwise correlation (r2) for the SNPs 

across the 8q24 region with the most significant SNP (rs6983267) based on the European 

descent participants from the 1000 Genomes Project data. Gray indicates that correlation 

was missing for this p-value because the variant had no r2 estimation due to low MAF or 

because the SNP is not in older versions of the 1000 Genomes data. The bottom half of the 

Figure shows the position of the genes across the region.
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Figure 3. Most genetic variants are rare - Distribution of genetic variants by minor allele 
frequency (MAF)
Sources: Gorlov et al. Clin Genet 2011;[238] https://esp.gs.washingtonedu/drupal[239]
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Table 1

Genes with predisposing mutations to inherited colorectal cancer syndromes

Gene Hereditary Syndrome Age of Onset 
(years)

Pathway/Biological function*

APC FAP, AFAP 34–43 Wnt signaling pathway

MUTYH MAP

MLH1, MSH2,MSH6, PMS2,EPCAM Lynch Syndrome 44–56 Mismatch repair

PTEN Cowden syndrome (includes Bannayan-
Ruvalcaba-Riley (BRR) syndrome)

<50 (BRR 
pediatric 
onset)

Negative regulator of metabolic 
signaling

STK11 Peutz-Jeghers Syndrome (PJS) 65 Tumour suppressor responding to 
changes in cellular energy balance

GREM1,15q13 locus Hereditary mixed polyposis syndrome 
(HMPS)

48 TGF-β/BMP signaling pathway

BMPR1A HMPS, juvenile polyposis syndrome 48, 42 TGF-β/BMP signaling pathway

MADH4/SMAD4 Juvenile polyposis syndrome 42 TGF-β/BMP signaling pathway

POLE, POLD1 Oligopolyposis or Polymerase 
proofreading-associated polyposis

23–80 DNA repair

*
Many of these pathways interact at multiple levels and as such are not necessarily independent biological mechanisms
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Table 3

Biological mechanisms marked by common risk loci

Implicated Genes† Biological mechanism

Well-established CRC pathways

CTNNB1, VTl1A, TCF7L2, CDH1, SMAD7, SHROOM2 Cell adhesion, differentiation, and migration (Wnt signaling pathway)

BMP4, BMP2, GREM1, TGFB1 Cell adhesion, differentiation, and migration (TGF-β/BMP signaling pathway)

DUSP10, MYO1B, MYC, CCND2, SH2B Cell adhesion, differentiation, and migration (MAPK signaling pathway)

PITX, POLD3, CDKN1A, FEN1, MLH1, CHEK2 DNA repair, fidelity of DNA replication

Novel CRC pathways

LAMC1, LAMA5 Cell adhesion (extracellular matrix structural constituent)

EIF3H Translational initiation

CD9 Cell adhesion, differentiation, migration, and signaling (cell surface glycoprotein)

PLCB1 Intracellular transduction of extracellular signals

RHPN2 Organization of the actin cytoskeleton

PREX1 Intracellular signaling (guanine nucleotide exchange factor)

LRIG1 Intestinal tumor suppressor

TERC Telomerase

PITX Hormone Regulation

DNMT3B DNA Methyltransferase involved with epigenetic modification

SLC22A2 Steroid binding

DIP2B DNA Methylation

NOS1, ITIH Tumor Suppressor

†
Given that for most loci the functional variant(s) marked by the association have yet to be tested through laboratory expression assays the listed 

genes are based on predicted function and most likely candidate gene
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Table 4

Functional evidence for variants in common risk loci

Locus Independent Index SNP† Predicted 
functional SNP 
(D′)

Findings from Laboratory Follow-up Reference

8q23.3/EIF3H rs16892766 rs16888589 Allele specific differential luciferase and 
chromosomal interaction through 
chromosome conformation capture (3C)

Pitmman et al. PLoS Genet. 
2010[233]

8q24.21/MYC rs6983267 rs6983267 Allele specific differential luciferase Tuupanen et al. Nat Genet. 
2009[92,234]

11q23/COLCA2 rs3802842 rs7130173 Allele specific differential luciferase and 
reduced binding affinity through 
electromobility shift assay

Biancolella et al. Hum Mol 
Genet. 2014[235]

14q22.2/BMP4 rs4444235 rs4444235 Allele specific differential luciferase Lubbe et al. Oncogene. 
2012[236]

18q21/SMAD7 rs4939827 rs58920878 Allele specific differential in transgenic 
Xenopus model and differential 
electromobility shift assay

Pittman et al. Genome Res. 
2009[237]
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