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Abstract

Purpose—To develop new techniques for reducing the effects of microscopic and macroscopic 

patient motion in diffusion imaging acquired with high-resolution multi-shot EPI.

Theory—The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is 

extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors 

in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate 

quantitative DTI measures in the presence of subject motion, we also account for the altered 

diffusion encoding among shots arising from macroscopic motion.

Methods—MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted 

multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and 

estimated diffusion tensor metrics.

Results—AMUSE was found to reduce image blurring resulting from macroscopic subject 

motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered 

diffusion encoding. Including the altered diffusion encoding in AMUSE produced better 

estimations of diffusion tensors.

Conclusion—The use of AMUSE allows for improved image quality and diffusion tensor 

accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. 

These techniques should facilitate future high-resolution diffusion imaging.
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INTRODUCTION

Over the past two decades diffusion-weighted imaging (DWI) has established itself as an 

important tool in both clinical and research settings to study water diffusion characteristics 

in health and in disease. One of its greatest clinical utilities is in the detection of acute 

ischemic stroke in its early stages (1,2). The early diagnosis of acute stroke allows for 
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greater flexibility in treatment options, and can greatly improve the therapeutic outcomes for 

patients (3,4). DWI is also capable of successfully discriminating among abnormalities such 

as brain tumors and abscesses (5,6), and is thus an important tool in diagnostic evaluations. 

Furthermore, diffusion-tensor imaging (DTI) enables detailed mapping of neuronal 

connectivity in the brain (7–10), which has shown promise in characterizing alterations of 

neuronal micro-structures in neurodegenerative disorders such as Parkinson’s and 

Alzheimer’s (9,10).

Despite the wide utility of DWI, a major limitation of the technique is its sensitivity to 

patient motion. The application of large diffusion gradients makes DWI sensitive not only to 

water diffusion, but also to subject movement. A common solution in clinical practice is to 

use a single-shot pulse sequence such as single-shot echo-planar imaging (EPI), because of 

its fast acquisition time and low sensitivity to patient motion (11). There are however several 

drawbacks to single-shot EPI acquisitions (12–18). First, single-shot EPI data are affected 

by significant vulnerability to magnetic field inhomogeneity (12). Moreover, single-shot EPI 

is inherently limited in its maximum attainable spatial resolution (13). Due to these 

shortcomings, small anatomical structures of clinical significance may be difficult to 

identify with single-shot DWI acquisitions.

On the other hand, multi-shot techniques such as interleaved EPI can greatly improve spatial 

resolution and reduce distortions (4,19–23), thereby enabling the identification of 

microstructures. At present, however, multi-shot acquisitions in DWI pose challenges when 

patient motion occurs. Specifically, minuscule patient motion and cerebrospinal fluid 

pulsations during the application of diffusion gradients causes phase variations among 

interleaves, leading to ghosting artifacts in the reconstructed image (19,20). Furthermore, in 

the presence of macroscopic motion (i.e. large changes in head position), multi-shot 

acquisitions suffer from two additional errors, the first being pixel misregistrations which 

result in blurred images, and the second being an altered diffusion contrast which can result 

in inaccurate estimations of diffusion tensors and their related measures. This second error, 

while relatively straightforward to correct in single-shot EPI, is more difficult to correct in 

multi-shot acquisitions as individual shots would experience potentially very different 

diffusion-encoding directions (21,22).

To address some of these errors, navigator-based acquisitions are often used to estimate the 

phase variations and degree of macroscopic motion between interleaves (18,21,22,24–32). 

This information can then be used to reduce artifacts through improved image 

reconstruction. An advantage of using navigators is that they allow flexibility in acquisition 

trajectories. For example, it has been shown that navigator-based acquisitions combined 

with readout-segmented EPI instead of interleaved EPI can simplify the correction of 

motion-induced phase variations in DWI (18). However, navigator approaches in general 

suffer from two limitations: reduced imaging throughput, and less accurate estimations for 

cases in which motion occurs in the interval between the interleaf and navigator acquisition. 

Moreover, very few studies have been presented which address the problem of correcting 

altered diffusion-encoding due to motion in multi-shot DTI (21).
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As an alternative to multi-shot acquisitions with navigation, PROPELLER-based 

acquisitions have also been applied to DWI (16,17). These methods are effective due to their 

inherent self-navigation and ability to satisfy the Nyquist criterion, allowing relatively 

straightforward reconstruction and motion correction. However, PROPELLER-based 

acquisitions have their limitations. For example, the FSE-based PROPELLER suffers from 

difficulties in satisfying CPMG conditions (16), and concerns about specific absorption rates 

(17). On the other hand, PROPELLER EPI suffers from geometric distortions due to off-

resonance effects that are not unidirectional, as they are with Cartesian EPI. This causes 

blurring when combining PROPELLER EPI blades and compromises the final image quality 

(17,33). Additionally, the levels of geometric distortions in PROPELLER EPI are typically 

similar to those of single-shot EPI, although this can be alleviated using a short-axis 

acquisition (33).

Recently, our group presented a technique, termed Multiplexed Sensitivity-Encoding 

(MUSE), to inherently correct motion-induced phase errors arising from minuscule motion 

in multi-shot diffusion EPI without the need for navigator echoes (23). A similar method has 

also been recently presented for the case of multi-shot spiral DTI (34). While these 

techniques were shown to effectively suppress the ghosting artifacts associated with 

minuscule motion and reduce geometric distortions compared to single-shot EPI, their 

implementations lacked the capability to correct for macroscopic patient motion. In light of 

this, here we present an improved method which inherently estimates and simultaneously 

corrects 1) motion-induced phase errors, 2) macroscopic blurring, and 3) motion-corrupted 

diffusion-encoding in multi-shot diffusion EPI, without the need for navigator echoes. The 

method, termed Augmented MUSE (AMUSE), enables reliable high-resolution diffusion 

images and accurate diffusion tensor estimation even in the presence of macroscopic subject 

motion during interleaved EPI scans.

THEORY

Without loss of generality, we will discuss the AMUSE procedure for a 2-shot interleaved 

EPI sequence with an arbitrary number of diffusion directions, acquired using an arbitrary 

number of coil channels.

Minuscule Motion

First consider the case in which the only motion is minuscule motion (e.g., < 1 voxel) during 

the application of diffusion gradients. Such motion typically occurs in the form of brain 

pulsations and results in a random spatially-varying phase term for each interleaf, which in 

turn produces aliasing artifacts in the final reconstructed interleaved DWI image. These 

phase terms can be inherently estimated from the originally acquired data and used to 

produce artifact-free images in the following manner.

Reconstruction of each interleaf separately results in aliased images which can be described 

by

[1]
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[2]

where γ is the coil number (γ = 1…Nγ), and δ is the diffusion-gradient direction number (δ = 

1…Nδ). Sγ are the sensitivity profiles for each coil γ, and pε,δ is the ideal unaliased full-FOV 

image from an interleaf ε (ε = 1,2 in this example) and diffusion direction δ. Note that the 

second terms in Eqs. [1,2] have opposite signs due to the k-space shift between the two 

interleaf trajectories. The images a1,γ,δ and a2,γ,δ are aliased because each interleaf in multi-

shot EPI is undersampled along ky, much like in a parallel-imaging acquisition. Therefore, 

using the known sensitivity profiles Sγ, the unaliased images pε,δ can be calculated from 

Eqs. [1,2] using the SENSE reconstruction method (35) commonly employed in parallel-

imaging. The resulting images are given by

[3]

where Iδ and θδ represent the magnitude and global background phase, respectively, of the 

diffusion-weighted image signal for each diffusion direction δ. Additionally, φε,δ are the 

different motion-induced phase terms of each interleaf for each diffusion direction. For 

convenience, we will combine the motion-induced and background phase terms such that 

Φε,δ = φε,δ + θδ, giving

[4]

In Eqs. [3,4] ηε,δ are the SENSE-produced noise terms associated with each image. Despite 

this noise, the phase terms Φ1,δ and Φ2,δ can still be reliably estimated from the SENSE 

images in Eq. [4]. Assuming the phase variations are spatially smooth, which is generally 

the case, Φε,δ can be estimated as

[5]

where TV is the total variation denoising operator (36). Thus we are able to estimate the 

shot-specific phase errors using SENSE reconstructions of the original data. Note that 

because the phase is estimated from full field-of-view (FOV) SENSE reconstructions in the 

image domain as opposed to estimation in k-space, the nonlinearity of motion-induced phase 

errors is easily captured by this approach.

Now, using these estimates of Φ1,δ and Φ2,δ, Eqs. [1–2] can be re-written as

[6]
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[7]

from which we can directly calculate the artifact-free diffusion-weighted images Iδ. Note 

that Eqs. [6,7] have two common unknowns, Iδ(x, y) and Iδ(x, y + FOVy/2), and a combined 

total of 2 x Nγ equations, assuming that shot-to-shot phase variations derived from Eq [5] are 

accurate. This is an improvement over the conditions in the conventional SENSE procedure 

(two unknowns and only Nγ equations), and as a result the noise levels in the reconstructed 

images Iδ from this procedure are comparatively lower than the SENSE images.

Putting the above procedure in matrix form, for a given location (x = xm, y = yn) in the 

aliased image of diffusion direction δ, the voxels at (xm, yn) and (xm, yn + FOVy/2) in the 

image Iδ can be calculated via matrix inversion by solving

[8]

This can be repeated until Iδ is solved for all (x, y). That is, we can split up the calculation of 

the final diffusion image into many small matrix inversions.

The above procedure summarizes the initial implementation of MUSE, as presented in (23). 

Note that while MUSE can effectively correct the effects of minuscule motion as described 

in this section, it fails to account for macroscopic motion (e.g., > 1 voxel). We would like to 

point out that the SNR and accuracy of MUSE produced images may be reduced by 

undesirable noises in the SENSE-estimated phase values (i.e., Φε,δ in Eq. [8]). Therefore, it 

is important to first denoise the SENSE-estimated phase values (e.g., with Eq. [5]), 

assuming that shot-to-shot phase variations are spatially smooth.
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Macroscopic Motion

Consider the more general case in which macroscopic motion is also present in addition to 

minuscule motion. Macroscopic motion is characterized as large movements occurring 

between interleaves of the acquisition, i.e. large-scale head movement. Starting again from 

Eqs. [1,2], a SENSE reconstruction of each interleaf in this case produces images given by

[9]

Ωε,δ represents a spatial transformation of the image for each interleaf ε and diffusion 

direction δ, and describes the changes in object position among interleaves. In the case of 

rigid-body motion, it is a combination of both rotation and translation parameters, and 

transforms an image according to Ωε,δ(x,y)=Rε,δ[x,y]T+[Δxε,δΔyε,δ]T, where Rε,δ is the 

rotation matrix and [Δxε,δ Δyε,δ]T is the translation vector. In the case of non-rigid body 

motion, Ωε,δ will represent the affine matrix transformation of the point (x, y). The second 

exponential term in Eq. [9] represents the change in diffusion-encoding contrast due to 

rotational motion. D is the diffusion tensor, and B*ε,δ is a modified b-matrix given by

[10]

where Bδ is the b-matrix given by the originally applied gradient orientations for the 

diffusion direction δ. Note that when there is no rotation B*ε,δ equals zero and the 

exponential term in Eq. [9] equals one, indicating no alterations in the diffusion-encoding 

contrast as expected.

To correct macroscopic motion and obtain the ideal diffusion images Iδ, estimates of the 

parameters Rε,δ and [Δxε,δ Δyε,δ]T are needed to calculate Ωε,δ and B*ε,δ. In AMUSE, these 

motion parameters are estimated by performing a 2D registration among the SENSE-

produced images from Eq. [9]. Choosing one of the images as a reference image (e.g. p1,3), 

all other SENSE-produced images can be registered to this reference image. These 

registrations will in turn supply estimates of Rε,δ and Ωε,δ for all images. Note that the 

registered images are not actually used; the registration process is done only to estimate Rε,δ 

and Ωε,δ which describe the motion among all interleaves. If an affine registration is used to 

estimate Ωε,δ instead of a rigid-body registration, the affine transformation represented by 

Ωε,δ should be decomposed to determine Rε,δ, which is needed for the modified b-matrix in 

Eq. [10].

Using Eq. [5] to estimate the phase terms Φε,δ arising from minuscule motion, we can now 

re-write Eqs. [1,2] for the case of both minuscule and macroscopic motion:
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[11]

[12]

where

[13]

[14]

In the majority of cases rotation will be a component of Ωε,δ, and as a result the location 

given by Ωε,δ(x, y) will typically not fall on the image grid. To address this, one can modify 

Eqs. [11,12] such that some number, Ninterp, of neighboring grid points around Ωε,δ(x, y) are 

incorporated with an appropriate weighting.

It is clear from Eqs. [11,12] that when Ω1,δ ≠ Ω2,δ, which is the case for macroscopic motion, 

there are no common unknowns between the interleaves. Therefore Eqs. [11,12] cannot be 

solved in the same manner as in Eq. [8], in which Iδ is solved two voxels at a time. Instead, 

all voxels in Iδ must be solved simultaneously.

We therefore denote a solution vector vδ which contains the values of Iδ for all voxels, i.e. vδ 

= [Iδ(r1) Iδ(r2) … Iδ(rNx x Ny)]T, where rp (p = 1 … Nx x Ny) is the spatial location in an 

image of matrix size Nx x Ny. We also denote a vector aδ which contains the values of a1,γ,δ 

and a2,γ,δ for all voxels within half of FOVy, for all coils: aδ =

Next we define the coefficient matrix Eδ, containing the coil sensitivities, motion-induced 

phase terms, and altered diffusion contrast τ, which will allow us to solve vδ in the form
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[15]

The structure of Eδ will be dependent on Ωε,δ. That is, using Eqs. [11,12], the elements of Eδ 

must be arranged such that Eq. [15] is valid. In this two-interleaf example, Eδ would contain 

2 x Ninterp non-zero elements per row, positioned in columns corresponding to the voxel 

locations given by Eqs. [11,12].

In general, Eδ can be of considerable size, with dimensions (Nγ x Nx x Ny) x (Nx x Ny). As a 

result, a direct inversion to solve Eq. [15] for vδ is impractical. However Eδ is also sparse, 

containing only Nε x Ninterp non-zero elements per row. Because of this we can apply the 

Conjugate Gradient (CG) method (37), which is well suited for solving systems involving 

large sparse matrices. Using CG to solve Eq. [15] we consequently can obtain vδ, a 

diffusion-weighted image free of both ghosting artifacts from minuscule motion, and 

blurring from macroscopic motion.

However, it can be seen from Eqs. [11,12,14] that in order to solve Eq. [15] accurately we 

must already know τ, which would require a priori knowledge of the diffusion tensors D at 

all locations in the image. Clearly this is not possible. As τ represents the altered diffusion 

contrast due to motion, neglecting these terms in Eq. [15] would result in images with 

incorrect diffusion-weighting, and thereby inaccurate estimates of the diffusion tensors 

calculated from these images. To address this problem, we hypothesize that it is sufficient to 

estimate τ by obtaining initial estimates of D from the SENSE produced images. Namely, 

initial tensor estimates are calculated by using multivariate regression (38) on the registered 

SENSE images from all shots and diffusion directions, taking into account any b-matrix 

rotations corresponding to rotations of each shot (39). These estimates are subsequently used 

to calculate the τ terms for matrix Eδ, after which Eq. [15] can be solved for diffusion 

images with more accurate contrast. These more accurate images are then used to calculate 

diffusion tensors with reduced error resulting from macroscopic motion. A flowchart of the 

AMUSE procedure is provided in Figure 1.

For studies in which diffusion tensors are not desired (e.g. clinical DWI), it may be 

appropriate to neglect the inclusion of τ in the reconstruction method. To clarify the 

difference when comparing results with or without the inclusion of τ, here we will refer to 

reconstruction without its inclusion as “AMUSE-DWI”, which corrects ghosting from 

minuscule motion and blurring from macroscopic motion, but not altered diffusion contrast. 

When τ is included to correct the altered diffusion (e.g. in studies where diffusion tensors 

are of interest), we will refer to it as “AMUSE-DTI”, which will be required to produce 

quantitatively accurate DTI measures while mitigating macroscopic motion effects.

METHODS

All experiments were conducted on a 3T system (GE HD, Waukesha, WI) using healthy 

volunteers. T2-weighted and diffusion-weighted data were acquired using a 4-shot 

interleaved EPI sequence. Multiple image reconstruction methods were employed in each 

experiment to compare the effectiveness of each method. Prior to all reconstructions, 

Nyquist artifacts were removed from the T2-weighted and diffusion data using a recently 
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developed phase-cycled reconstruction procedure (40). The reconstruction methods used 

were:

A. No motion correction: Images were produced only by directly applying the 2-D 

Fourier transform on the interleaved diffusion data.

B. Minuscule motion correction with MUSE: Images were reconstructed using the 

MUSE method, as outlined above and in (23). Coil sensitivity profiles were 

estimated from the T2-weighted image.

C. Minuscule and macroscopic motion correction with AMUSE-DWI: Images were 

reconstructed using the new method described above. To account for macroscopic 

motion and estimate Ω1–4,1–15, a 2D registration with 5 degrees of freedom (1 

rotation, 2 translations, 2 scaling parameters) using FSL-FLIRT (41–43) was 

performed on the SENSE-produced images. The two scaling parameters were 

included to account for differing geometric distortions coupled to motion (44). The 

reference image used for registration was chosen as the one that had the maximum 

correlation coefficient among all SENSE images. The estimated motion parameters 

from registration were then used to set up Eq. [15] without τ, which was 

subsequently solved using the Conjugate Gradient algorithm to produce the final 

DWI images. Implementation of Conjugate Gradients was done with the built-in 

MATLAB function “pcg”.

D. Minuscule and macroscopic motion correction + initial tensor estimation with 

SENSE: A purely SENSE-based motion correction was performed by phase-

correcting and coregistering (using the same registration as method C above) the 

initial SENSE images of each shot. As described in the theory section, initial 

estimates of diffusion tensors were then calculated via multivariate regression on 

the coregistered and b-matrix corrected SENSE images.

E. Minuscule and macroscopic motion correction + tensor correction with AMUSE-

DTI: Reconstruction was performed following the same steps as in method C, 

however τ was included. τ was calculated from the initial diffusion tensors 

provided from method D above.

DWI correction

The motivation of this experiment was to determine the effectiveness of macroscopic motion 

correction using AMUSE-DWI. Four diffusion scans were acquired on the volunteer using 

an 8-channel GE coil. Scan parameters included: in-plane resolution = 0.75 × 0.75 mm2 

(without sinc-interpolation), slice thickness = 4 mm, number of slices = 30, effective echo-

spacing (for 4 interleaves) = 250 µs, FOV = 19 cm2, number of partial Fourier overscans 

(i.e. the number of additionally acquired ky lines beyond half Fourier EPI) = 12, TR = 6 s, 

TE = 71 ms, number of diffusion gradient directions = 15, and b-value = 800 s/mm2. Partial 

Fourier reconstruction of the acquired data was performed using the Cuppen method (45). In 

the first two scans the volunteer was asked to remain stationary during acquisition. Between 

the two scans, the volunteer was asked to rotate his head by ~ 15°. A hybrid-simulation of 

macroscopic motion corruption was then simulated by combining data from both scans (i.e., 

from both head positions). Specifically, the first and third interleaves from the first scan 
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were combined with the second and fourth interleaves from the second scan. In the third 

diffusion scan the volunteer was asked to rotate his head by small amounts of ~ ±5° every 

10–15 seconds during the acquisition (about every 2 TR), resulting in data with actual 

macroscopic motion corruption. Similarly, in the fourth diffusion scan the volunteer was 

asked to rotate his head by slightly larger amounts of ~ ±10° every 10–15 seconds during 

acquisition. Image reconstruction methods A-D were performed on the hybrid-simulated 

dataset and the in vivo datasets with actual motion corruption. The reconstruction results 

were compared with the first stationary scan, which was used as a gold-standard image. The 

gold-standard image was processed using methods A-D. Since the motivation of this 

experiment was only to characterize motion correction on DWI image quality, diffusion 

tensors were not calculated in method D. The signal-to-noise ratios (SNR) and contrast-to-

noise ratios (CNR) were calculated for both the SENSE-based corrections and the AMUSE-

DWI corrections for quantitative comparison. SNRs were calculated on the mean diffusion-

weighted images (i.e. the mean of 15 images for AMUSE-DWI, and 60 images for SENSE) 

within a white-matter (WM) region: , where S is the mean diffusion-

weighted image for AMUSE-DWI or SENSE and σB is the standard deviation in a 

background region of S. Similarly, CNR was calculated between gray matter (GM) and 

white-matter as: .

Diffusion contrast and tensor correction simulations

The primary purpose of this experiment was to thoroughly characterize tensor correction 

with AMUSE-DTI for various levels of motion using simulations. A diffusion scan was 

acquired on the same volunteer. Scan parameters included: in-plane resolution = 0.75 × 0.75 

mm2, slice thickness = 4 mm, number of slices = 39, effective echo-spacing = 250 µs, FOV 

= 19 cm2, number of partial Fourier overscans = 20, TR = 5 s, TE = 73 ms, number of 

diffusion gradient directions = 15, and b-value = 800 s/mm2. The volunteer was asked to 

remain stationary during the scan, and the diffusion data was processed using method B to 

obtain a gold-standard set of diffusion tensors D and a gold standard T2-weighted image. 

Simulations of macroscopic motion for a 4-shot interleaved EPI sequence with 15 diffusion 

gradient directions were then performed in the following manner. First, the gold-standard 

tensors D were replicated 4×15 = 60 times, resulting in a set of diffusion tensors Dε,δ for 

each interleaf and diffusion gradient direction. Next, each set of tensors were either rotated 

by a chosen angle αε,δ > 0° or kept unchanged (αε,δ = 0°) with a random probability of 1/2 

for either option of α.

Following these rotations, the modified tensor sets were used to create simulated diffusion-

weighted images. This was done by creating diffusion-weighting exponential terms from the 

tensor sets and their corresponding diffusion direction and multiplying these exponential 

terms to the gold-standard T2-weighted image. This resulted in a total of 60 diffusion 

weighted images. As the final step in simulating macroscopic motion, each image was 

rotated by the same angle αε,δ for which its tensors were rotated. MATLAB’s “imrotate” 

with bicubic interpolation was used for the image rotations. To simulate the effects of 

minuscule motion, all images were multiplied by a unique linear phase ramp.
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Next, a gold-standard T2-weighted image was used to estimate the coil sensitivities for our 

8-channel coil. The estimated sensitivities were subsequently fitted to fill the entire FOV, 

and then applied individually to all diffusion-weighted images, resulting in 4×15×32 = 1920 

images. These images were then grouped by their respective diffusion gradient directions 

and underwent FFTs into k-space. Within each group, the k-space datasets were then 

separated by interleaf, and 1/4 of the k-space lines from each interleaf were extracted in a 

fashion resembling 4-shot EPI. Finally, these extracted lines from each interleaf were 

combined together into one dataset per diffusion direction, thereby creating a synthetic k-

space dataset with the effects of motion corruption in 4-shot interleaved EPI.

The simulations were performed with three different choices of αε,δ > 0° : 20° (small 

motion), 40° (moderate motion), and 60° (large motion). Furthermore, noise was added to 

the datasets for all simulations in order to assess the reconstruction methods at multiple SNR 

levels. For each simulation, image reconstruction methods B-E were used. Three 

quantitative criteria were used to assess the tensors calculated from each reconstruction 

method B-E for all simulations: 1) the percentage error in fractional anisotropy (FAerr) 

compared to gold-standard values, 2) the percentage error in mean diffusivity (MDerr) 

compared to gold-standard values, and 3) the angular deviation of the principal eigenvectors 

V1 (∡V1) from the gold-standard values. The criteria were calculated within a known white-

matter ROI obtained from the gold-standard diffusion images; the threshold used for the 

white-matter ROI was an FA greater than 0.4.

In Vivo Diffusion Tensor Correction

In vivo sagittal diffusion scans were acquired on the same volunteer using the 8-channel GE 

coil. Scan parameters were: in-plane resolution = 0.86 × 0.86 mm2, slice thickness = 5 mm, 

number of slices = 30, effective echo-spacing = 250 µs, FOV = 22 cm2, number of partial 

Fourier overscans = 24, TR = 4 s, TE = 73 ms, number of diffusion gradient directions = 15, 

and b-value = 800 s/mm2. Two scans were acquired: one in which the volunteer was asked 

to remain stationary, and one in which the volunteer was asked to nod his head (in-plane 

rotations) between 0 degrees and the maximum amount possible within the head coil (~ 

±25° degrees) every 8–10 seconds (~ every 2 TR). Image reconstruction methods B-E were 

applied on these in vivo motion-corrupted datasets. The final diffusion images for each 

method were then denoised using anisotropic filtering (46,47) before applying multivariate 

regression to calculate a final set diffusion tensors. These final sets of tensors were 

compared to the tensors calculated from the stationary dataset using the same metrics as in 

the simulation experiments (i.e., FAerr, MDerr, and ∡V1).

All processing was performed in MATLAB (The MathWorks, Natick MA) on a Linux 

machine (2.30 GHz CPU, 16 GB RAM).

RESULTS

DWI Correction

Figure 2 shows the results of our reconstruction procedures (averaged over all diffusion 

directions) for the hybrid-simulated DWI dataset and the in vivo motion-corrupted DWI 
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datasets. Reconstruction of the gold-standard dataset is shown in the leftmost column of 

Figure 2 for reference. For all datasets, reconstruction with a direct FFT resulted in severe 

ghosting artifacts due to the presence of minuscule motion (Figure 2a). A clear improvement 

in image quality was seen after using MUSE (Figure 2b), in which the phase errors among 

interleaves were corrected to suppress the ghosting artifacts. However, the datasets with 

macroscopic motion-corruption still had degradation in image quality even after MUSE, as 

seen by the blurring effects in the rightmost columns of Figure 2b. Figure 2c shows the 

results of AMUSE-DWI reconstruction, in which both the ghosting artifacts from minuscule 

motion and the blurring effects from macroscopic motion were corrected. The resulting 

AMUSE-DWI images for the motion-corrupted datasets were very similar to the gold-

standard image. Note that MUSE and AMUSE-DWI reconstructions produced the same 

results for the gold-standard dataset because no macroscopic motion was present.

Figure 2d shows the results of the purely SENSE-based motion correction (times 4 and 

averaged over all interleaves/diffusion directions). A visual decrease in SNR can be seen in 

these images compared to those produced by AMUSE*. Table 1 lists the SNRs and CNRs 

for AMUSE-DWI and the SENSE-based correction for each dataset. The white-matter, gray-

matter, and background regions used to calculate the SNR/CNR in all images are indicated 

by the red, yellow, and blue boxes, respectively, in Figure 2c for the stationary dataset. 

Table 1 demonstrates that AMUSE-DWI provided an improvement in both SNR and CNR 

compared to the purely SENSE-based correction.

Figure 3 further demonstrates AMUSE-DWI on several other slices of the moderate-motion 

dataset, with MUSE results also shown to provide context of the macroscopic motion levels.

The average computation times of the initial SENSE reconstructions and phase error 

estimations were 11.8 and 4.0 seconds per diffusion direction, respectively. The average 

computation time of the 2D registration was 13.4 seconds per diffusion direction. The final 

image reconstructions for AMUSE had average computation times of 6.67 seconds per 

diffusion direction.

Diffusion contrast and tensor correction simulations

Figure 4 shows the results of our reconstruction methods with αε,δ = 40° at SNR = 5 (SNR 

was calculated within a SENSE produced image of a single simulated shot, not shown). The 

leftmost column of Figure 4 shows ∡V1 between tensors calculated from the reconstructed 

images and the gold-standard image, the middle column shows FAerr, and the final column 

shows MDerr (note the different scales). The metrics are shown within our white-matter ROI 

and are overlaid on their corresponding reconstructed image. MUSE reconstructions, shown 

in Figure 4a, produced images with severe blurring due to the method's inability to correct 

macroscopic motion. As a result, the principal eigenvectors V1 calculated from these blurred 

images had very large angular deviations from the gold-standard dataset, and the percentage 

errors in FA and MD from their respective gold-standard values were also high. Using 

AMUSE-DWI reconstruction resulted in a correction of these blurring effects from 

macroscopic motion, and the V1 calculated from these images showed some reduction in 

angular deviation from the gold-standard dataset. Likewise, the FAerr and MDerr were also 

reduced compared to MUSE. However, residual errors still existed due to the effects of 
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altered diffusion contrast from macroscopic motion, which was not accounted for in 

AMUSE-DWI.

With the application of AMUSE-DTI or the SENSE-based correction to include the altered 

diffusion contrast, a significant reduction in ∡V1 was seen, as shown by Figures. 4c–d. 

Similarly, the FAerr was reduced for both methods compared to AMUSE-DWI. However, 

AMUSE showed a larger reduction in FAerr than the SENSE-based correction. Furthermore, 

MDerr was much higher in the SENSE-based correction than with either AMUSE-DWI or 

AMUSE-DTI.

The average FAerr, MDerr, and ∡V1 of the reconstruction methods for all motion simulations 

(αε,δ = 20°, 40°, 60°) at SNR = 5 are listed in Table 2. The AMUSE-DTI and SENSE-based 

corrections performed similarly in reducing ∡V1, however AMUSE-DTI outperformed the 

SENSE-based correction in terms of residual FAerr and MDerr.

The average ∡V1, FAerr, and MDerr of AMUSE-DTI and SENSE-based corrections at 

varying SNR and constant αε,δ = 40° are shown in Figure 5. AMUSE-DTI resulted in lower 

FAerr and MDerr for all SNR levels, with the most marked differences from SENSE at lower 

SNRs. In terms of ∡V1 both techniques performed similarly however, with only minute 

differences on the order of a few degrees.

In Vivo Diffusion Tensor Correction

The results of applying MUSE, SENSE-based correction, and AMUSE-DTI on an in-vivo 

motion-corrupted sagittal slice are shown in Figure 6. Figure 7 shows tensor error metrics 

(compared to the gold-standard stationary data acquired) for MUSE, AMUSE-DWI, 

SENSE-based correction, and AMUSE-DTI, in a zoomed-in region from the slice in Figure 

6 (blue box in Figure 6c). The zoomed-in region shown in Figure 7 contains the superior 

longitudinal fasciculus (SLF) and sagittal stratum (SS) white-matter tracts, as pointed out in 

the leftmost image of Figure 7a. As expected, with MUSE there was severe blurring due to 

pixel misregistrations among shots, and the resulting tensor metrics in these white-matter 

regions had large errors (Figure 7a). While the macroscopic blurring was corrected by using 

AMUSE-DWI, there were still errors in the calculated tensor metrics due to the uncorrected 

changes in diffusion-encoding among shots. Figures 7c–d show the metrics after correction 

of the altered diffusion-encoding with SENSE-based correction and AMUSE-DTI. These 

images show a reduced ∡V1 and FAerr compared to AMUSE-DTI, however the SENSE 

correction resulted in an increased MDerr.

Table 3 lists the average errors in tensor metrics in the SLF and SS for each reconstruction 

method. In all slices, AMUSE-DTI provided the smallest residual ∡V1 and FAerr.

DISCUSSION

DWI Correction

The results of the multi-shot DWI motion correction experiment, presented in Figure 2, 

demonstrate the ability of AMUSE-DWI to correct both minuscule and macroscopic motion 

corruption effectively without the use of navigator data. By using preliminary SENSE 
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images to inherently estimate the motion parameters and phase errors among shots, blurring 

and ghosting artifacts can be corrected through a multiplexed reconstruction using the 

estimated information. It should be noted that a slight decrease in apparent resolution and a 

loss of detail in the ventricles in the images in Figure 2 are due to the averaging of multiple 

diffusion directions. As the data were not corrected for eddy current induced distortions, 

there are slight discrepancies among images for each diffusion direction, which when 

averaged appears to reduce the resolution. Furthermore, the contrast in the lateral ventricles 

varies among diffusion directions, which results in a loss of detail in this region when 

averaged.

Compared to using phase-corrected and registered SENSE images directly (Figure 2e), 

AMUSE-DWI provides better SNR in the final images due to its multiplexed nature and 

improved matrix conditioning. As described in the Theory section, 1) the MUSE 

reconstruction relies on accurate estimation of shot-to-shot phase variations, and 2) the SNR 

of MUSE reconstructed images may be lower than the theoretically expected value due to 

the noises in SENSE-produced phase variation maps. A potential difficulty of using the 

initial SENSE images to estimate macroscopic motion parameters through registration can 

occur if the SENSE images are significantly noisy. The dominance of noise can cause 

registration schemes to perform poorly, thereby producing inaccurate estimations of motion 

among shots. A quick method for resolving this is to apply a low-pass filter to the k-space of 

the SENSE images to reduce the level of noise, and subsequently use these filtered images 

for registration. Similarly, one may use regularized SENSE (48) to reduce the noise levels in 

the reconstructed SENSE images.

When the shot-to-shot phase variations in interleaved DWI scans are accurately measured 

(either from navigator echoes or a SENSE-based estimation), they can be used to reduce 

interleaved DWI artifacts with different approaches. The existing ‘direct phase subtraction’ 

methods remove phase errors directly from each individual segment, and then combine the 

phase-corrected segments to produce full-FOV images (28). However, because the 

complicated segment-specific signal overlapping patterns (in reduced FOV) are not taken in 

consideration in this simple phase subtraction procedure, the residual artifacts are usually 

noticeable. In contrast, the MUSE and AMUSE methods incorporate the segment-specific 

phase terms when reconstructing full-FOV images through a matrix inversion that takes 

segment-specific signal overlapping patterns into consideration, and can more effectively 

reduce aliasing artifacts in interleaved DWI data. The MUSE and AMUSE methods also 

incorporate the coil sensitivity profiles, as additional constraints, to stabilize the image 

reconstruction.

AMUSE is an image-based correction technique, and as such it provides benefits over k-

space-based correction methods, including the ability to account for non-rigid motion types 

(49). The experiments in this work used motion parameters estimated from non-rigid 2D 

registrations with 5 degrees of freedom (DOF). The two scaling parameters in the 5 DOF 

registration produce improved alignment between shots in which some level of non-rigid 

transformation has occurred, such as differences in geometric distortions (44) or slight 

through-plane motion. Our framework can also incorporate motion parameters estimated 

from even more complex nonlinear registrations with higher DOF if needed.
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The matrix formalism of AMUSE is similar to that used in other multi-shot motion 

correction techniques, such as those presented by Bammer et al. (31) and Batchelor et al. 

(49). This formalism is also presented in the works by Atkinson et al. (15), Liu et al. (30), 

and Truong and Guidon (34), however they are specific to correcting motion-induced phase 

errors only, and do not address macroscopic motion. The consensus among these works is 

that the matrix system approach is well suited to multi-shot trajectories that are 

undersampled (e.g. interleaved EPI), and for which alternative methods like direct phase 

subtraction to correct motion-induced errors (16–18,20) would be less effective (30).

Furthermore, it should be noted that our approach differs from the works of Bammer et al. 

(31) and Liu et al. (30), which when combined address both minuscule and macroscopic 

motion (21), in two aspects. First, our framework is specifically designed for interleaved 

EPI, and can therefore exploit its properties for a more straightforward implementation. 

Namely, we exploit the simple image-space aliasing patterns of each undersampled EPI 

interleave in order to explicitly form a sparse matrix describing the motion effects. We 

directly relate the desired uncorrupted image to the aliased images of all interleaves using 

this explicit matrix, and avoid the need for gridding as would be necessary in an image-

space/Fourier-space relationship for motion correction. Thus our approach provides benefits 

in implementation as it is specific to interleaved EPI. However, for alternative multi-shot 

trajectories other than EPI (e.g. non-Cartesian trajectories) in which the aliasing patterns are 

more complex, an explicit relation of the desired image to aliased images will be less 

straightforward, and therefore a framework more similar to those presented in (21,31,49) 

could be more appropriate.

The second difference is that AMUSE uses initial SENSE images for inherent motion 

correction instead of navigator data. This inherent correction method was previously 

demonstrated by Chen et al. (23) and Truong et al. (34) to correct motion-induced phase 

errors in interleaved EPI and multi-shot spiral, respectively, but these works did not 

capitalize on the ability to use the initial SENSE images for correcting macroscopic motion 

as well. The main benefit of this inherent approach compared to navigator-based motion 

estimation methods is an improved imaging throughput. Additionally, using SENSE images 

to estimate the motion prevents the possibility of an inaccurate estimation with navigators if 

motion occurs between the primary data and navigator data acquisition. Furthermore, 

navigator-produced information usually has a lower spatial-resolution than the actual DWI 

data, potentially lowering the accuracy of the reconstructed images.

On the other hand, a drawback of our inherent approach compared to navigator-based 

methods is that it is dependent on the quality of SENSE reconstructions for each interleave. 

As the number of shots approaches or exceeds the number of coil channels the SENSE 

images will be prone to stronger g-factor noise, making the estimation of accurate motion 

information difficult. Therefore, in our current implementation the number of achievable 

shots is limited by the number of coil channels. This is not an issue in the navigator-based 

correction techniques (15,21,30,31), which can be applied with any number of shots and are 

not dependent on the number of coil channels. However, recent works using projection onto 

convex sets (POCS) combined with MUSE (POCSMUSE) (50), or a self-feeding MUSE 

technique (51), have demonstrated the ability to perform inherent phase correction at higher 
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numbers of shots less strictly limited by the number of coil channels (50, 51). These recent 

advances could be combined with the AMUSE technique to partially overcome its current 

shot limitations, enabling both macroscopic and minuscule motion correction with more 

interleaves.

Diffusion contrast and tensor correction simulations

Using a set of gold-standard tensors for motion simulations allowed us to quantitatively 

assess the performance of our tensor correction approach with AMUSE-DTI. As seen by 

Figure 5b and Table 2, correcting for macroscopic motion between shots without accounting 

for the altered diffusion encoding produces significant errors in tensor calculations. These 

errors manifest themselves as incorrect estimations of the principal diffusion direction (as 

given by V1) and FA. Both of these effects can have serious implications on the analysis of 

diffusion data. For example, the principal diffusion direction V1 is a very important metric 

for many fiber tractography algorithms (39,52), and thus errors in V1 can lead to inaccurate 

estimations of tracts. Furthermore, some pathologies have been shown to be associated with 

reduced FA in specific regions (52–54). Therefore in order to ensure that interpretations of 

tractography and FA evaluations are accurate in studies using multi-shot diffusion data, it is 

necessary to correct the altered diffusion contrast in addition to the pixel misregistrations 

and phase errors among shots.

The results shown in Figure 5d and Table 2 demonstrate that AMUSE is able to correct this 

altered diffusion encoding arising from macroscopic motion and produce significantly more 

accurate calculations of the diffusion tensors, even for large rotations of up to 60 degrees 

(Table 2). The correction resulted in improved estimations of V1, FA, and MD.

An important finding in our simulations is that AMUSE-DTI provides improved FA and 

MD metrics compared to only using the coregistered (and b-matrix corrected) SENSE 

images, as demonstrated by Table 2 and Figures 5–6. This improvement is particularly 

apparent at lower SNR levels, with the mean diffusivity being most vulnerable to errors 

from noise (Figure 6). These findings indicate that despite the errors in the initial SENSE-

based tensors, AMUSE-DTI can use these tensor estimates to reconstruct more accurate 

diffusion images, which subsequently can be used to calculate new tensors with reduced 

error. This has important implications for multi-shot data acquired at very high spatial 

resolutions and/or using a number of shots approaching the number of coil channels, which 

generally produce images with reduced SNR. The application of AMUSE-DTI in these types 

of acquisitions could alleviate the effects of noise in tensor calculations.

In Vivo Diffusion Tensor Correction

AMUSE-DTI was evaluated on data that contained the largest amount of motion our 

volunteer could perform within our head coil, at intervals of approximately every 2 shots 

(i.e. 2 TR), thereby creating a difficult case of macroscopic motion with large changes in 

diffusion-encoding between shots. Even in this difficult scenario AMUSE-DTI performed 

well in correcting the diffusion images and subsequent tensor calculations, as demonstrated 

by Figure 7 and Table 3. In agreement with our simulation results, AMUSE-DTI again 
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outperformed SENSE-based correction in this in-vivo scenario. Residual errors in the tensor 

calculations after AMUSE-DTI can be attributed to several effects.

The primary effects are those caused by through-plane motion; for very large rotations, such 

as those in this experiment, it is likely that some level of through-plane motion is involved. 

The first potential effect of through-plane motion is large signal dropout, and in this scenario 

it is best to simply discard the shot experiencing the dropout from reconstruction. The 

second potential effect occurs when there is no signal dropout, but instead the brain is 

imaged at a different location along the slice direction. This is problematic since the 

assumption that anatomy does not change between shots becomes invalid for through-plane 

motion. Consequently our 2D correction approach will incorrectly mix anatomy from 

different brain locations along z, and this results in significant errors in tensor calculations. 

An additional effect of through-plane motion is the change in diffusion-encoding when 

rotation occurs along the through-plane axis. A 2D correction approach will be unable to 

estimate these rotations, and thus will not be able to correct the altered diffusion-encoding. 

These effects of through-plane motion can potentially be solved in the future by extending 

the AMUSE framework to 3D.

Another minor effect that can cause residual tensors errors is imperfect registrations to 

estimate the motion parameters. While we used a registration model with 5 DOF (1 rotation, 

2 translations, 2 scaling parameters), this may not perfectly estimate motion in which the 

object has deformed in a more complex fashion, as can be the case with large rotations (44). 

Given that the AMUSE framework can be applied with any type of motion parameters, these 

effects can potentially be corrected by using registrations with higher DOF (e.g. including 

shear deformations). However, while higher DOF registrations may provide improved 

alignment visually, one must consider the possible effects of over-warping on the accuracy 

of tensor calculations.

In comparison to the multi-shot tensor correction method developed by Aksoy et al. (21), 

which uses a non-linear conjugate gradient (NLCG) approach, our findings produced similar 

results to those presented in their paper. However the primary advantage of our approach is 

in its significantly faster computation time. Namely, their work reported computation times 

on the order of ~ 4 hrs, while the method presented here achieved corrections on the order of 

minutes. It should be noted that our current implementation is specific to correction for 

multi-shot EPI, whereas the NLCG approach can be generalized to arbitrary multi-shot 

trajectories. However, we expect that future implementations of AMUSE should be able to 

account for non-Cartesian trajectories, such as spiral imaging, in addition to EPI. This can be 

accomplished by incorporating the macroscopic transformation and altered diffusion 

properties of AMUSE with the recently developed POCSMUSE, which is applicable to 

arbitrary k-space trajectories (50,55).

Furthermore, while our findings in this paper were specific to 4 shots, AMUSE can be 

generalized to a higher number of shots approaching or exceeding the number of coil 

channels if a method such as POCSMUSE (50), or self-feeding MUSE (51), is incorporated 

in a future implementation. Given the computational efficiency of the AMUSE, this 

provides a very high potential for practical motion-immune imaging at even higher spatial 
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resolutions. It is important to note, however, that a higher number of shots necessarily 

requires a longer scan time for any multi-shot technique. Therefore in order to acquire a set 

number of diffusion directions within a given scan time it is not always possible to 

arbitrarily increase the number of shots, and the tradeoff between spatial and angular 

resolution must be considered.

CONCLUSION

While multi-shot diffusion-weighted imaging offers several advantages over single-shot 

techniques, its capabilities have been limited by the effects of patient motion. Namely, 

macroscopic patient motion can introduce phase errors, pixel misregistrations, and altered 

diffusion-encoding among shots, leading to unusable or inaccurate images. Here we have 

presented a novel approach to inherently estimate and correct all of the aforementioned 

effects from patient motion. As a result, diffusion tensor information that would otherwise 

be inaccurate can be estimated more precisely. We therefore expect that this method will be 

valuable for clinical and neuroscience investigations in which accurate high-resolution 

diffusion information is needed, even with the presence of subject motion.
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Figure 1. 
Flowchart depicting the AMUSE procedure within an acquired diffusion direction for a two 

interleave example. a1 and a2 are the aliased signals of each interleave, and S are the coil 

sensitivity profiles. Ω1 and Ω2 are the macroscopic motion parameters calculated for each 

interleave. Dest are the initial estimates of the diffusion tensors calculated using coregistered 

SENSE images from all diffusion directions, and D are the final estimates of the diffusion 

tensors calculated using AMUSE images from all diffusion directions.
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Figure 2. 
Reconstruction of diffusion-weighted images with varying levels of motion, using a) direct 

FFT, b) MUSE, c) “AMUSE*” (AMUSE-DWI), and d) a SENSE-based motion-correction. 

While MUSE is capable of correcting ghosting artifacts, blurring from macroscopic motion 

remains. AMUSE-DWI and the SENSE-based correction can correct both ghosting and 

macroscopic motion effects, however it can be appreciated that AMUSE provides higher 

SNR.
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Figure 3. 
Diffusion-weighted images reconstructed from the moderate-motion dataset at several slices 

using a) MUSE, and b) AMUSE-DWI.
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Figure 4. 
Colormaps of the tensor error metrics ∡V1, FAerr, and MDerr from images reconstructed 

with a) MUSE, b) “AMUSE*” (AMUSE-DWI), c) SENSE-based correction, and d) 
“AMUSE” (AMUSE-DTI) for motion simulations with αε,δ = 40° and SNR = 5. ∡V1was 

reduced greatly with both AMUSE-DTI and SENSE reconstructions, but AMUSE-DTI 

moreover reduced FAerr and MDerr in the most significant manner.
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Figure 5. 
Plots of ∡V1, FAerr, and MDerr of tensors from SENSE and AMUSE-DTI reconstructions at 

varying SNR levels in our motion simulations (αε,δ = 40 °). AMUSE-DTI produced the 

lowest FAerr and MDerr at all SNR levels, with increasing improvement over SENSE at 

lower SNRs. For ∡V1, AMUSE-DTI and SENSE performed similarly with only slight 

differences of a few degrees at most SNR levels. However more significant differences in 

∡V1 start to become apparent at lower SNRs.
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Figure 6. 
Images reconstructed from a slice of the in-vivo motion-corrupted dataset with a) MUSE, b) 
SENSE-based correction, and c) AMUSE-DTI. Diffusion tensors were calculated from these 

images and compared to gold-standard (stationary) tensors within the region given by the 

blue box in c). The results of these comparisons are shown in Figure 7.
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Figure 7. 
Colormaps of the tensor error metrics ∡V1, FAerr, and MDerr from images reconstructed 

with a) MUSE, b) “AMUSE*” (AMUSE-DWI), c) SENSE-based correction, and d) 
“AMUSE” (AMUSE-DTI) for the in-vivo head nodding experiment from Figure 6. The 

metrics were calculated within the SLF (black oval) and SS (white oval) white-matter 

regions. Average values of these errors are given in Table 3; AMUSE-DTI produced the 

smallest errors considering all metrics overall.
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Table 1

Signal to noise ratios (SNR) and contrast to noise ratios (CNR) of our AMUSE-DWI motion-correction 

scheme and a SENSE-based motion-correction scheme. Images reconstructed with AMUSE-DWI had both 

higher SNR and CNR for all experiments.

SNRs and CNRs of AMUSE and SENSE-based Motion Correction

SNR | CNR

Stationary Hybrid
Simulation

Small
Motion

Large
Motion

AMUSE-DWI
Correction

20.00 | 15.28 23.83 | 17.32 23.44 | 18.49 23.57 | 17.39

SENSE Correction 11.89 | 10.07 14.78 | 11.53 14.34 | 12.84 14.27 | 11.86
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Table 2

FAerr, MDerr, and ∡V1 calculated from images of all reconstructions in our motion simulations at SNR = 5. 

SENSE-based correction and AMUSE-DTI both produced low ∡V1 compared to MUSE and AMUSE-DWI. 

AMUSE-DTI furthermore produced the lowest residual FAerr and MDerr for all simulations.

Tensor Correction Simulation Results

20° Motion Simulation

∡V1
(degrees)

FAerr (%) MDerr (%)

MUSE 11.59 ± 12.36 24.90 ± 15.00 10.67 ± 8.34

AMUSE-DWI 5.09 ± 3.47 6.20 ± 4.15 2.74 ± 1.61

SENSE 3.37 ± 2.31 9.37 ± 5.43 13.60 ± 4.77

AMUSE-DTI 2.77 ± 1.89 5.18 ± 3.62 2.51 ± 1.46

40° Motion Simulation

∡V1
(degrees)

FAerr (%) MDerr (%)

MUSE 20.24 ± 14.67 27.36 ± 15.22 13.50 ± 11.09

AMUSE-DWI 12.69 ± 5.92 10.89 ± 6.80 3.11 ± 1.66

SENSE 3.59 ± 2.77 9.55 ± 5.77 14.26 ± 5.03

AMUSE-DTI 3.65 ± 2.48 6.06 ± 3.87 2.36 ± 1.54

60° Motion Simulation

∡V1
(degrees)

FAerr (%) MDerr (%)

MUSE 20.76 ± 13.82 27.41 ± 15.91 14.92 ± 16.06

AMUSE-DWI 18.73 ± 10.00 20.18 ± 11.36 3.48 ± 1.88

SENSE 4.01 ± 2.97 9.39 ± 5.55 15.20 ± 5.37

AMUSE-DTI 5.26 ± 3.84 7.97 ± 5.11 2.33 ± 1.46
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