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Abstract

Protein Tyrosine Kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in 

the epithelial linings of the gastrointestinal tract and skin, where it is expressed in nondividing 

differentiated cells. We found PTK6 expression increases in the epidermis following UVB 

treatment. To evaluate the roles of PTK6 in the skin following UVB-induced damage, we exposed 

back skin of Ptk6 +/+ and Ptk6−/− SENCAR mice to incremental doses of UVB for thirty weeks. 

Wild type mice were more sensitive to UVB and exhibited increased inflammation and greater 

activation of STAT3 than Ptk6−/− mice. Disruption of Ptk6 did not have an impact on 

proliferation, although PTK6 was expressed and activated in basal epithelial cells in wild type 

mice following UVB treatment. However, wild type mice exhibited shortened tumor latency and 

increased tumor load compared with Ptk6−/− mice, and STAT3 activation was increased in these 

tumors. PTK6 activation was detected in UVB-induced tumors, and this correlated with increased 

activating phosphorylation of FAK and BCAR1. Activation of PTK6 was also detected in human 

squamous cell carcinomas of the skin. Although PTK6 plays roles in normal differentiation, it also 

contributes to UVB induced injury and tumorigenesis in vivo.

INTRODUCTION

Protein Tyrosine Kinase 6 (PTK6) is an intracellular tyrosine kinase that regulates growth 

and differentiation, as well as the response to DNA damage in epithelia [reviewed in (Brauer 

and Tyner, 2010)]. PTK6 was originally cloned from human melanocytes (Lee et al., 1993), 

human breast tumors (Mitchell et al., 1994) and the mouse intestine (Siyanova et al., 1994). 
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It is most highly expressed in the gastrointestinal tract and skin, where its expression is 

localized to differentiated epithelial cells (Vasioukhin et al., 1995). PTK6 is also expressed 

in the prostate (Derry et al., 2003; Zheng et al., 2013a), and at low levels in human breast 

tissue (Peng et al., 2014).

PTK6 is developmentally regulated and is first expressed in the skin at mouse embryonic 

day 15.5, when the skin becomes stratified (Vasioukhin et al., 1995). PTK6 is expressed in 

suprabasal layers of the adult mouse and human skin (Vasioukhin et al., 1995; Wang et al., 

2005). Calcium induced differentiation in embryonic mouse keratinocytes resulted in 

increased PTK6 activity and expression of the skin differentiation marker filaggrin 

(Vasioukhin and Tyner, 1997). In oral squamous cell carcinomas (SCC), PTK6 expression 

was reduced, and active PTK6 was excluded from the nucleus (Petro et al., 2004).

Analysis of Ptk6-null mice revealed delayed differentiation of intestinal epithelial cells 

(Haegebarth et al., 2006), and increased villus length compared with wild type intestine. 

PTK6 was induced in intestinal crypt cells in response to DNA-damage and Ptk6-null mice 

displayed resistance to DNA-damaged induced apoptosis in the intestine (Gierut et al., 2011; 

Haegebarth et al., 2009). When treated with the carcinogen azoxymethane (AOM), Ptk6-null 

mice were resistant to colon tumor formation compared with wild type mice (Gierut et al., 

2011). Activating phosphorylation of Signal Transducer and Activator of Transcription-3 

(STAT3), a substrate of PTK6 (Liu et al., 2006), was impaired in PTK6-null mice following 

administration of AOM (Gierut et al., 2011). STAT3 plays important roles in normal skin 

and skin carcinogenesis [reviewed in (Kimet al., 2007; Macias et al., 2013; Sano et al., 

2008)]. It regulates proliferation and survival of keratinocytes following exposure to 

ultraviolet B radiation (UVB) and it is activated in SCC induced by UVB (Sano et al., 

2005).

Additional PTK6 substrates include focal adhesion kinase (FAK) (Zheng et al., 2013a) and 

the adaptor protein breast cancer anti-estrogen resistance 1 (BCAR1), also commonly called 

p130CAS (Zheng et al., 2012). FAK and BCAR1 regulate cell adhesion, migration and 

proliferation and play important roles in cancer (Cabodi et al., 2010; Sulzmaier et al., 2014). 

Membrane localization of PTK6 phosphorylated on tyrosine residue 342 (PY342) has been 

shown to be important for activation of both FAK and BCAR1 and promotion of the 

epithelial mesenchymal transition (EMT) in the prostate (Zheng and Tyner, 2013).

To date, no in vivo studies have explored the significance of PTK6 expression in normal 

skin and its roles in the UVR-induced DNA-damage response and skin cancer. Using a Ptk6-

null mouse model in the SENCAR background, we examined the impact of loss of PTK6 on 

skin development and examined how disruption of Ptk6 affects UVB-induced tumor 

formation in mouse skin. Here we demonstrate that PTK6 is activated in both human and 

mouse skin tumors, and it positively regulates STAT3, FAK, and BCAR1 and contributes to 

UVB-induced tumor formation in vivo.
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RESULTS

Disruption of Ptk6 impairs UVB-induced tumorigenesis

PTK6 was shown to promote tumorigenesis in the mouse colon following carcinogen-

induced DNA damage (Gierut et al., 2011). To examine the roles of PTK6 in UVB-induced 

carcinogenesis, we backcrossed Ptk6−/− C57BL/6 mice into the SENCAR mouse strain, 

which was previously shown to be sensitive to UVR-induced carcinogenesis (Strickland, 

1982, 1986; Strickland and Swartz, 1987), and used to examine differentiation-promoting 

roles for PTK6 (Sik) in keratinocytes (Vasioukhin and Tyner, 1997). In order to determine 

the effect of PTK6 on UVB-induced tumorigenesis, shaved 8-week old wild type and Ptk6−/

− SENCAR mice were treated with incremental doses of UVB three times each week for a 

total of 30 weeks. After an additional latency period of 13 weeks, mice were sacrificed at 51 

weeks of age. Wild type mice began developing tumors at 28 weeks of age, and all of them 

had developed tumors by 36 weeks of age (Figure 1A). In contrast, Ptk6−/− mice did not 

begin to develop tumors until 32 weeks of age, and only half developed tumors. None of the 

control untreated wild type or Ptk6−/− mice, which were routinely shaved, developed 

tumors. Wild type mice developed a greater tumor load than Ptk6−/− mice, averaging 3.8 

tumors/mouse, while Ptk6−/− mice developed an average of 1.5 tumors/mouse (Figure 1B); 

representative wild type and Ptk6−/− animals are shown at later timepoints (Figure 1C).

UVB exposure leads to increased PTK6 expression and activation in the skin

Increased sensitivity of wild type mice to UVB was observed a few weeks after beginning 

UVB tumor induction protocol (Figure 2A). Wild type mice experienced a moderate to 

severe inflammatory reaction to UVB, which was visible within a week after the first dose 

was administered. In comparison, Ptk6−/− mouse skin exhibited a mild inflammatory 

reaction with only a slight reddening of the skin, which faded by the second week. We 

examined sections of skin and detected multifocal degeneration/necrosis of the upper 

epidermal layers in wild type mice, sometimes with complete loss of stratum corneum. 

Neutrophilic migration and microabscess formation could be found in these regions with or 

without the intact stratum corneum in the wild type animals (Figure 2B). Little apoptosis 

was detected at this timepoint in wild type and Ptk6−/− mice by immunofluorescence for 

TUNEL staining (data not shown). The inflammatory reaction faded as the skin became 

hyperplasic and adapted to the stress of UVB treatment, completely healing after four weeks 

in the wild type animals.

To determine the impact of short term UVB treatment on PTK6 expression and activation, 

wild type SENCAR mice were treated with five doses of UVB over 10 days. PTK6 

expression and activation were examined by immunoblotting and immunofluorescence. 

PTK6 protein expression levels increased up to three-fold (Fig. 2C and 2D), but 

immunoblotting was not sensitive enough to detect activation of PTK6 PY342. Using 

immunofluorescence, we observed hyperplasia of the skin and PTK6 was found throughout 

the wild type skin, with highest signals in the suprabasal layers (Figure 2E). Active PTK6 

PY342 was detected a subset of cells within the basal layer. We validated the antibody 

against active PTK6 phosphorylated on tyrosine 342 (PY342) by using it against Ptk6−/− 

tissues, and did not detect a specific signal (control, lower right panel).
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Disruption of Ptk6 impairs STAT3 activation

STAT3 is an important regulator of inflammation [reviewed in (Yu et al., 2009)], and a 

direct substrate of PTK6. PTK6 promotes STAT3 activation by phosphorylating it on 

tyrosine residue 705. To examine activation of STAT3 following short-term UVB treatment, 

total skin lysates were probed for STAT3 activation using an antibody specific for active 

STAT3 PY705. STAT3 activity was not significantly different between wild type and 

PTK6-null untreated skin (Figure 3A). However, after short term UVB treatment, STAT3 

was activated in wild type skin, but not in Ptk6−/− skin. Phosphorylation of STAT3 was 

quantitated and differences in activation between wild type and Ptk6−/− mice were 

statistically significant (p-value < 0.01) (Figure 3B). When analyzed using 

immunofluorescence, active STAT3 was detected in a greater number of nuclei in Ptk6+/+ 

skin than in Ptk6−/− skin at 10 days into the UVB-treatments (Figure 3C). At the endpoint 

of the long term study, we also observed an increase in STAT3 PY705 in epidermal cell 

nuclei of hyperplastic wild type skin compared with Ptk6−/− skin (Figure 3D).

PTK6 is activated in UVB-induced tumors but does not coincide with proliferation

UVB treated skin and tumors from control wild type and Ptk6−/− mice were examined by a 

veterinary pathologist (S. M. Ball-Kell). Tumors types ranged from well-differentiated SCC 

to spindle cell squamous cell tumors (Figure 4B, lower right panel). In both wild type and 

Ptk6−/− mice, moderate hyperkeratosis and acanthosis of the epidermis with irregular 

formation of rete ridges was observed. At the endpoint, which occurred either at the 

termination of the experiment when the mice were approximately 80 weeks of age, or when 

mice were sacrificed earlier at a humane, endpoint, active PY342 PTK6 was detected in the 

UVB irradiated skin. PTK6 PY342 was often localized to different intracellular regions 

within the same section in some samples. For example, while active PTK6 was detected at 

the membrane in the basal layer of the hyperplastic epidermis, it was in the cytoplasm or 

nucleus of neoplastic cells in the spindle cell squamous cell tumors (Figure 4 A, B). 

Hyperplasia, as well as necroulcerative dermatitis and actinic keratosis were observed in 

wild type mice. Total PTK6 was generally more highly expressed in the keratin 10 positive 

suprabasal layers of the epidermis, while active PTK6 PY342 was localized at the 

membrane in the more basal keratin 14 positive region of the tumors (Figure 4B). Spindle 

cell squamous cell tumors contained cells in the dermis that expressed both total PTK6 and 

PTK6 PY342 (Figure 4B). Immunohistochemistry for keratin-10 and keratin-14 expression 

confirmed the epithelial origin of the tumor cells within the dermis (Figure 4B).

To determine the roles of PTK6 in regulating proliferation at the endpoint of the experiment, 

BrdU incorporation was examined in hyperplastic skin, spindle cell squamous cell tumors 

(Fig. 4C) and SCC from UVB-treated Ptk6+/+ and Ptk6−/− mice. No significant 

differences in the numbers of BrdU incorporating S-phase cells were detected in any of the 

samples. Costaining for active PTK6 PY342 and BrdU incorporation indicated that cells 

with active PTK6 at the membrane are distinct from the BrdU incorporating cells, 

suggesting the active PTK6 does not directly promote S-phase progression at the time points 

examined. We also did not detect a significant difference in BrdU incorporation in younger 

Ptk6+/+ and Ptk6−/− mouse skin after 10 days of UVB treatment (not shown).
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PTK6 regulates phosphorylation of FAK and BCAR1 in UVB-treated skin

PTK6 mediated tyrosine phosphorylation of FAK has previously been shown to inhibit 

anoikis (Zheng et al., 2013a). PTK6 regulates phosphorylation of FAK at several tyrosine 

residues, including Y576/Y577 and Y925 which regulate activation and GRB2 binding 

respectively (Sulzmaier et al., 2014). To examine PTK6-mediated regulation of FAK, we 

stained sections of skin with antibodies specific for FAK phosphorylated on Y576/Y577 and 

Y925. No differences in phosphorylation of Y576/577 or Y925 were observed between wild 

type and Ptk6−/− untreated skin (Figure 5A). After short-term (10 day) UVB-treatment, 

some wild type epidermal cells contained FAK phosphorylated at both Y576/Y577 and at 

Y925, while no specific signals could be detected in Ptk6−/−epidermis (Figure 5B). At the 

endpoint, FAK phosphorylation at Y576/Y577 and Y925 was detected throughout the 

Ptk6+/+ hyperplastic epidermis, with striking membrane localization of PY925 in the upper 

layers. The pattern of FAK phosphorylation was less intense and much less striking in the 

Ptk6−/− skin (Figure 5C).

We previously showed that PTK6 promotes phosphorylation of tyrosine residue 165 in 

BCAR1 (p130CAS) (Zheng et al., 2012). In untreated skin, cells strongly positive for 

BCAR1 phosphorylated on tyrosine residue 165 (Y165) were detected only in Ptk6+/+ skin, 

but not in Ptk6−/− skin (Figure 5D, arrows). UVB irradiation promotes Y165 

phosphorylation of BCAR1 in both genotypes, but the BCAR1 PY165 signal is stronger in 

Ptk6+/+ skin than in Ptk6−/− skin (Figure 5E). BCAR1 is strongly phosphorylated at Y165 

in the endpoint Ptk6+/+ skin, particularly in the suprabasal layers of the epidermis, but is 

not highly phosphorylated in Ptk6−/− skin (Figure 5F).

PTK6 is activated in human cutaneous SCC

In order to explore the possible clinical significance of our mouse data, we examined PTK6 

expression in a set of 34 human biopsy sections that included normal skin and SCC. 

Sections were double stained for total and active PTK6 (PY342), and a section from the 

same block was H & E stained (Figure 6). In normal human skin, PTK6 expression was 

detected in the suprabasal layer of the epidermis, with minimal expression in the basal layer 

(Figure 6A), as reported previously (Vasioukhin et al., 1995; Wang et al., 2005). Significant 

activating phosphorylation of PTK6 (PY342) was not detected in normal human skin. 

However, in SCC, PTK6 is activated and phosphorylated in some epidermal cells, 

particularly those located at the borders of the epidermis/dermis (SCC1A, 1B). In another 

SSC sample (SCC #2), most active PTK6 PY342 was found adjacent to the keratinized 

surface area and next to a blood vessel (Figure 6A). These data show that high PTK6 

expression levels do not always correlate with PTK6 activation. In addition, activation of 

PTK6 is regulated by environmental cues and is not uniformly detected in PTK6 positive 

tissue.

Transcriptome profiling of human cutaneous SCC at different stages of progression was 

recently performed by Lambert and colleagues using laser capture microdissection and 

microarray analysis (Lambert et al., 2014). By analyzing PTK6 mRNA levels in the 

Lambert datasets, we found that Ptk6 transcript levels were reduced in SCC compared with 

the precancerous actinic keratosis (Figure 6B). In addition, there was a significant difference 
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in PTK6 transcript levels between well-differentiated SCC and poorly-differentiated SCC. 

While PTK6 protein expression levels did not appear reduced in SCC examined by 

immunofluorescence, this is not a highly quantitative technique. It is also possible that 

posttranscriptional mechanisms are important for regulation of PTK6 protein levels.

DISCUSSION

PTK6 belongs to a small family of intracellular tyrosine kinases that includes FRK and 

SRMS, and is evolutionarily related to the SRC-family (D'Aniello et al., 2008; Serfas and 

Tyner, 2003). Although PTK6-family kinases share structural similarity with SRC-family 

kinases, PTK6 family members lack an amino terminal SH4 domain that promotes lipid 

modification and membrane targeting. Nevertheless, membrane association of active 

endogenous PTK6 has been detected in mouse and human prostate (Zheng et al., 2013a; 

Zheng and Tyner, 2013) and mammary gland (Peng et al., 2013; Peng et al., 2014) tumors. 

A variety of data suggest that the intracellular localization and activation of PTK6 has 

profound effects on its activities. PTK6 can be detected in nuclei of normal differentiated 

glands of the human prostate, but nuclear localization is lost in prostate cancer (Derry et al., 

2003). Reintroduction of ectopic PTK6 into the nuclei of prostate cancer cells is growth 

inhibiting (Brauer et al., 2010). In studies where PTK6 was targeted to the plasma 

membrane in cell lines by the addition of a SH4 domain, membrane association of active 

PTK6 was sufficient to transform mouse embryonic fibroblasts (Zheng et al., 2013a), 

promote the epithelial mesenchymal transition, and contribute to human xenograft prostate 

tumor growth in vivo (Zheng et al., 2013b).

Here, we demonstrate that active PTK6 is associated with the plasma membrane in mouse 

skin tumors induced by UVB and in human cutaneous SCC. Since PTK6 is expressed in 

normal differentiated nondividing epithelial cells in the gastrointestinal tract and skin 

(Vasioukhin et al., 1995), and has been shown to promote differentiation in small intestine 

(Haegebarth et al., 2006) and cultured keratinocytes (Vasioukhin and Tyner, 1997; Wang et 

al., 2005), we initially proposed that PTK6 might have tumor suppressor functions in the gut 

and skin. However, we found that Ptk6 impairs cutaneous tumor growth in the UVB skin 

model, demonstrating PTK6 signaling is contributing to tumor development in vivo. These 

data are consistent with those obtained with intestinal tissues where PTK6 is also normally 

expressed in the nondividing, differentiated epithelial cells. Disruption of the Ptk6 gene led 

to significantly reduced tumor formation in mice treated with the colon carcinogen AOM, 

and impaired activation of STAT3 (Gierut et al., 2011).

In the colon, disruption of Ptk6 impaired activation of STAT3, a transcription factor that 

promotes epithelial tumor initiation and progression (Gierut et al., 2011). In this study, we 

observed increased activating tyrosine phosphorylation and nuclear localization of STAT3 

in wild type UV-irradiated skin treated with both the short-term and long-term UVB 

protocols and in tumors of wild type mice compared with Ptk6 −/−mice (Fig. 3). STAT3 

activation is positively regulated by tyrosine phosphorylation of tyrosine residue 705, which 

is a target of PTK6 (Liu et al., 2006). Several studies have demonstrated roles for STAT3 in 

skin tumorigenesis [reviewed in (Macias et al., 2013; Sano et al., 2008)]. STAT3-null mice 

were resistant to tumorigenesis induced by a 7,12-dimethylbenz[a]anthracene (DMBA/ 12-
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O-tetradecanoylphorbol-13-acetate (TPA) protocol (Chan et al., 2004). Consistently, 

disruption of STAT3 impaired and overexpression of STAT3 promoted UVB-induced skin 

carcinogenesis in mouse models (Kim et al., 2009).

Interestingly, membrane association of active PTK6 in established tumors did not correlate 

with proliferation (Figure 4C), and we were unable to detect significant differences in 

proliferation in skin between wild type and Ptk6−/− mice at any of the timepoints examined. 

In previous studies, we also found no correlation between PTK6 activation and proliferation 

in established mouse tumors in the prostate (Zheng et al., 2013b) or mammary gland (Peng 

and Tyner, in preparation). However, induction of PTK6 in the mammary glands of Ptk6+/+ 

ERBB2 overexpressing mice prior to tumor formation or significant hyperplasia correlated 

with increased epithelial cell proliferation and STAT3 activation compared with the Ptk6−/

− mammary gland (Peng and Tyner, in preparation). Lack of PTK6 mediated activation of 

STAT3 could at least in part explain our finding that disruption of PTK6 impairs UVB-

induced tumorigenesis in the mouse.

Reduced tyrosine phosphorylation of the PTK6 substrates FAK (Zheng et al., 2013a) and 

BCAR1 (Zheng et al., 2012) was detected in Ptk6−/− mice compared with wild type 

controls (Fig. 5). While BCAR1 is a substrate of FAK, PTK6 can directly phosphorylate 

both of these proteins (Zheng and Tyner, 2013). Both FAK and BCAR1 function in 

regulating cell adhesion, migration, and the cell cycle [reviewed in (Barrett et al., 2013; 

Duperret and Ridky, 2013; Sulzmaier et al., 2014)]. Disruption of FAK in keratinocytes led 

to some proliferation defects and a thinner epidermis (Essayem et al., 2006). FAK can 

regulate SCC cell survival (Zhang et al., 2004), and has been shown to play roles in 

cutaneous cancer stem cells (Schober and Fuchs, 2011). BCAR1 plays an important role in 

several oncogenic signaling pathways including the ERBB2 pathway (Cabodi et al., 2010; 

Cabodi et al., 2006).

While an intact Ptk6 gene enhanced UVB-induced tumorigenesis in SENCAR mice, our 

analysis of microarray data of mRNA expression in human SCC (Lambert et al., 2014) 

suggested that PTK6 mRNA expression levels decrease in less differentiated human 

cutaneous tumors. This correlates with the expression pattern observed in normal mouse and 

human skin, where PTK6 is expressed in the differentiated nondividing layers of the 

epidermis. A number of studies suggest that PTK6 has context specific functions and its 

roles differ depending on cell type/tissue, activation, and intracellular localization (Brauer et 

al., 2010; Derry et al., 2003; Peng et al., 2014; Zheng and Tyner, 2013). Activation of PTK6 

at the plasma membrane, as reported here in mouse and human skin tumors, may be a 

primary requirement for its tumor-promoting functions. Understanding the significance of 

changes in the intracellular localization and activation of PTK6 will be critical for 

determining when PTK6 may be an effective therapeutic target in cancer.

MATERIALS AND METHODS

Mouse Experiments

SENCAR (SENsitive to CARcinogenesis) mice were generated by crossing Charles River 

CD1 mice with skin tumor-sensitive mice (STS) mice, and they are hypersensitive to UVR 
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(Strickland, 1982; Strickland and Swartz, 1987). This strain has previously been used as a 

source of primary keratinocytes for the study of activation of PTK6 (Vasioukhin and Tyner, 

1997) and other tyrosine kinases (Calautti et al., 1995). The Ptk6-null mouse model 

(B6.129SV-Ptk6tm1Aty) in C57BL/6 was backcrossed for over 10 generations to generate a 

SENCAR Ptk6−/− mouse model. Age and sex matched were used for all experiments. All 

mouse experiments were reviewed and approved by the University of Illinois at Chicago 

Animal Care Committee.

For UVB treatment, the backs of 8 week-old male adult mice were shaved 24 hours prior to 

treatment. Mice were irradiated using an FB-UVXL-1000 UV crosslinker (Spectroline) 

fitted with five 8-Watt 312 nm tubes (Spectronics BLE-8T312, with filter assembly). The 

dorsal epidermis was exposed to 220 mJ/cm2 UVB irradiation three times per week for 

weeks 1-6, 260 mJ/cm2 UVB for weeks 7-8, 300 mJ/cm2 UVB for weeks 9-10, 360 mJ/cm2 

UVB for weeks 11-12, 405 mJ/cm2 UVB for weeks 13-14 and 450 mJ/cm2 UVB for weeks 

15-30. To achieve 220-450 mJ/cm2 UVB irradiation mice were irradiated for 3-6.5 minutes. 

UVB irradiation was stopped at 30 weeks and mice were kept without further treatment for 

43 weeks. Control animals were regularly shaved, but not exposed to UVB. Mice were 

photographed and weighed prior to each UV treatment. Short-term UVB treatments 

consisted of five doses of 220 mJ/cm2 UVB five times over the course of 10 days. The mice 

were sacrificed after 43 weeks and their skin harvested. The mice were injected 

intraperitoneally with BrdU (100 μg/g body weight) in PBS 2 hours before sacrifice to 

measure proliferation.

Antibodies

Anti-mouse PTK6 (C17), FAK (C20), and Cytokeratin 14 were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). Antibodies against STAT3, P-STAT3 (Y705), P-FAK 

(Y576,Y577), P-BCAR1 (Y165), and GAPDH (14C10) were purchased from Cell Signaling 

Technology (Danvers, MA). The anti-BCAR1 antibody came from BD Pharmingen. The P-

PTK6 (Y342) antibody came from Millipore. Cytokeratin 10 antibody was purchased from 

Abcam (Cambridge, MA). Donkey anti-rabbit and sheep anti-mouse antibodies conjugated 

to horseradish peroxidase were used as secondary antibodies for immunoblotting 

(Amersham Biosciences) and were detected by chemiluminescence using SuperSignal West 

Dura extended duration substrate (Pierce).

Protein Lysates

Skin tissue was homogenized in 1% Triton X-100 lysis buffer (1% Triton X-100, 20 mM 

HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM sodium 

pyrophosphate, 100 mM NaF, 5 mM iodoacetic acid, 0.2 mM phenylmethylsulfonyl fluoride 

(PMSF), protease inhibitor mixture (Roche Applied Science). Samples were separated by 

SDS-PAGE and transferred to Immobilon-P membrane (Millipore) for immunoblotting.

Histology and Immunofluorescence

Skin tissue was harvested and fixed in 10% neutral-buffered formalin, embedded in paraffin 

blocks, and cut into 5 micron sections. The slides were stained with hematoxylin and eosin 

(H & E) prior to histopathologic examination. For immunofluorescence microscopy, the 
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slides were deparaffinized by xylenes, dehydrated with ethanol, and rehydrated in PBS. 

Antigen retrieval was performed by incubation in 0.01 M citrate buffer (pH 6.0) at 75°C for 

20 minutes. Sections were blocked in TNT for 30 minutes at room temperature. The primary 

antibody was incubated overnight at 4°C in blocking buffer and washed in TNT, followed 

by the secondary incubation with biotinylated anti-rabbit or anti-mouse secondary antibodies 

at room temperature for 30 minutes. Sections were then stained with fluorescein 

isothiocyanate (FITC)-conjugated avidin (Vector Laboratories, Burlingame, CA). For 

double staining, FITC-conjugated anti-mouse secondary antibodies (Sigma-Aldrich) were 

used to detect primary antibodies made in mouse (green), and biotinylated anti-rabbit 

secondary antibodies (Vector Laboratories) were used and then incubated with Alexa Fluor 

594 strepavidin conjugate (Life Technologies) to detect primary antibodies made in rabbit 

(red). Slides were mounted in Vectashield fluorescent mounting medium containing 4’,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories). The skin was then viewed using 

standard UV, rhodamine, or FITC filters under 20X and 40X differential interference 

contrast objectives using a Zeiss LSM 5 PASCAL confocal microscope. Images were taken 

using an Axiocam HRc color digital camera and LSM 5 PASCAL software (Zeiss, Jena, 

Germany).

Human Tissues

Human tissue sections diagnosed as SCC were obtained from the tissue bank in the Section 

of Dermatology (Department of Medicine, University of Chicago, Chicago IL) and their use 

was approved by the University of Chicago Institutional Review Board. Slides were stained 

with H&E, total PTK6 (G6 antibody), and PY342PTK6 antibodies.

Statistical Analyses

Quantitative analysis of immunoblot data was performed using the NIH ImageJ program. 

For all statistical studies, p-values were determined using a two-tailed Student's t-test 

(Microsoft Excel 2011). Statistical significance was determined by a p-value that was less 

than 0.05.
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Figure 1. Ptk6−/− mice are resistant to UVB induced tumorigenesis
A: Kinetics of UVB-induced tumor development in wild type and Ptk6−/− mouse skin. 

Ptk6+/+ mice developed tumors sooner than Ptk6−/− mice. All Ptk6+/+ mice developed 

tumors, while only half of Ptk6−/− mice did. B: The average number of tumors that 

developed in wild type and Ptk6−/− mice is shown. C: Tumor formation in representative 

wild type and Ptk6−/− animals is shown at the indicated timepoints, including one of the 

tumor positive Ptk6−/− mice at 42 weeks.
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Figure 2. Increased Inflammation and PTK6 expression are detected in wild type mice after 
UVB treatment
A: Increased and prolonged inflammation was detected in wild type mice compared with 

Ptk6−/− mice after short term exposure to UVB. Ptk6+/+ mice (left panels) developed 

erythema and an inflammatory reaction on the lower dorsal skin within a week after 

beginning UVB treatments. Mice were treated with UVB three times a week. Size bar = 1 

cm. B: Increased degeneration and necrosis of the upper epidermal layers with neutrophilic 

migration and microabscess formation was detected in wild type mice when compared with 

Ptk6−/− skin at 10 days post initiation of short term UVB treatment. Representative H & E 

stained sections are shown. C: PTK6 expression is induced by UVB treatment in mouse 

skin. Lysates of adult (8-weeks old) mouse skin after short-term UVB were prepared and 

analyzed by immunoblotting. Each lane represents a sample from a different mouse. 

GAPDH was used as a loading control. D: The increase in PTK6 expression after UVB 

treatment (2C) was quantified using ImageJ (Rasband, 2011). The intensity of PTK6 signal 

was normalized to intensity of the GAPDH loading control and averaged across all samples. 
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p-value = 0.025. E: Total PTK6 and active PTK6 Y342 expression was examined by 

immunofluorescence in untreated and UVB-treated skin. Keratin 14 is expressed throughout 

the hyperplastic skin after UVB treatment. Controls included staining with IgG and staining 

of UVB-treated Ptk6−/− skin with the antibody against PTK6 PY342. No specific signal for 

PY342 was detected in Ptk6−/− mice. Size bar = 20 μm.
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Figure 3. PTK6 promotes STAT3 activation after UVB treatment
A: Increased STAT3 PY705 was detected in skin tissue lysates from wild type UVB-treated 

mouse skin compared with in Ptk6−/− UVB-treated mouse skin. Each lane represents lysate 

from an individual mouse, and a minimum of three mice were examined per treatment. B: 
Changes in STAT3 activation (PY705) after UVB treatment were quantified using ImageJ 

(Rasband, 2011). Relative levels of PY705 STAT3 normalized to total STAT3 were 

averaged across all samples. No significant difference between PY705 levels was detected in 

the untreated Ptk6+/+ and Ptk6−/− skin (p-value = 0.19), but there is a significant difference 

between PY705 STAT3 levels in Ptk6+/+ and Ptk6−/− UVB-treated skin (p-value = 0.009). 

C: Increased nuclear localization of STAT3 PY705 was detected by immunofluorescence in 

wild type mouse skin (10 day UVB treatment). D: Increased nuclear localization of STAT3 

PY705 was detected by immunofluorescence in wild type mouse skin following long-term 

UVB treatment (experiment endpoint). Size bar = 20 μm.
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Figure 4. PTK6 is activated in UVB damaged skin and UVB-induced skin tumors
A: PTK6 activation in different cellular locations following long-term UVB treatment. 

PTK6 PY342 localizes to the cytoplasm in neoplastic cells infiltrating the dermis (left 

panel). Active PTK6 PY342 is associated with the plasma membrane in the epidermal cell 

layers (center panels). Membrane and nuclear localization of PTK6 PY342 can be detected 

in different regions of the same section in endpoint UVB-treated hyperplastic skin showing 

epidermal necrosis and dermal inflammation (right panel). Size bar = 100 μm. B: 
Differential localization of active PTK6 in epidermal cells and neoplastic cells in the dermis 

of spindle cell squamous cell tumors. Tumors that formed in wild type mice were incubated 

with antibodies against total PTK6 and active PTK6 PY342. In actinic keratosis and 

anaplastic spindle cell tumors, total PTK6 is expressed throughout the adjacent or overlying 

epidermis, and PTK6 PY342 is present at the plasma membrane. Both total PTK6 and PTK6 

PY342 are found in the cytoplasm of keratin-expressing cells of epithelial origin in the 

dermis. Keratin 14 expression was detected in suprabasal layers of the hyperplastic skin. 
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Infiltrative neoplastic cells expressed either keratin 14 or keratin 10 identifying them as 

epithelial in origin. Size bar = 20 μm. C: BrdU incorporation does not correlate with 

activation of PTK6. BrdU incorporation (red) and membrane associated PTK6 PY342 

(FITC, green) does not colocalize in hyperplastic skin or spindle cell squamous cell tumors. 

Size bar = 20 μm.
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Figure 5. Activation of FAK and BCAR1 in UVB-treated SENCAR Mouse Skin
A: FAK is expressed throughout the epidermis in adult mouse skin, but is not 

phosphorylated in either Ptk6+/+ or Ptk6−/− adult mouse skin. B: After 10 days of regular 

UVB treatment, FAK becomes phosphorylated at the membrane in Ptk6+/+ adult mouse 

skin at both phosphorylation sites. There is no phosphorylation of FAK at either site in 

Ptk6−/− mouse skin. C: FAK is phosphorylated at both Y576/Y577 and at Y925 at the 

membrane in both Ptk6+/+ and Ptk6−/− mouse skin tumors, but is much more pervasive in 

Ptk6+/+ mouse skin tumors. D: BCAR1 is expressed throughout the epidermis in adult 

mouse skin. BCAR1 is phosphorylated in the basal layer of Ptk6+/+ mouse skin. There is no 

phosphorylation of BCAR1 in Ptk6−/− mouse skin. E: Within 10 days of regular UVB 

treatment, BCAR1 phosphorylation increases in both genotypes. Phosphorylation of BCAR1 

remains higher in Ptk6+/+ mouse skin than in Ptk6−/− mouse skin. F: BCAR1 is 

phosphorylated in both Ptk6+/+ and Ptk6−/− mouse skin tumors, but is much more 

pervasive in Ptk6+/+ mouse skin tumors. Size bar = 20 μm. Dashed lines indicate the 

boundary between epidermis and dermis.
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Figure 6. PTK6 is activated and membrane associated in human SCC
A: Expression of PTK6 in normal skin and SCC. Sections of human skin (normal, SCC) 

were costained for total PTK6 (Alexafluor 594, red) and active PY342 PTK6 (FITC, green) 

as described. A lower magnification H&E view with the area of interest boxed is also 

shown. Total PTK6 expression is restricted to the suprabasal layers of normal human skin. 

Little active PTK6 PY342 is present in the normal skin; a rare positive basal cell may be a 

lymphocyte. PTK6 is phosphorylated at the membrane of the basal layer in human 

squamous cell carcinoma samples. In SCC, highest levels of total PTK6 are expressed in 

suprabasal areas, while active membrane associated PTK6 is in the basal cell-like regions. 

Staining from two areas from the same patient sample, SCC1A and SCC1B are shown, 

while SCC#2 is from a different patient. 18 SCC samples were analyzed. Fluorescent signals 

over the red blood cells is background, that can also be detected with control IgG (not 

shown). Size bar = 20 μm. B: Transcriptome analysis of RNA expression in squamous cell 

carcinoma (Lambert et al., 2014) revealed PTK6 mRNA expression decreases in squamous 

cell carcinomas compared with actinic keratosis (p-value* = 0.008). The drop in PTK6 

mRNA expression in squamous cell carcinomas corresponds with decreased differentiation 

(p-value** = 0.031).
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